

NOTE
Part 2 available Fall 2012
See Table of Contents inside

Part 2

Windows® Internals

Russinovich
Solomon
Ionescu

Operating Systems/
Windows

ISBN: 978-0-7356-4873-9

About the Authors
Mark Russinovich is a Technical Fellow in
the Windows Azure™ group at Microsoft.
He is coauthor of Windows Sysinternals
Administrator’s Reference, co-creator of the
Sysinternals tools available from Microsoft
TechNet, and coauthor of the Windows Internals
book series.

David A. Solomon is coauthor of the
Windows Internals book series and has taught
his Windows internals class to thousands of
developers and IT professionals worldwide,
including Microsoft staff. He is a regular speaker
at Microsoft conferences, including TechNet
and PDC.

Alex Ionescu is a chief software architect and
consultant expert in low-level system software,
kernel development, security training, and
reverse engineering. He teaches Windows
internals courses with David Solomon, and is
active in the security research community.

The definitive guide—fully updated for Windows 7
and Windows Server 2008 R2
Delve inside Windows architecture and internals—and see how core
components work behind the scenes. Led by a team of internationally
renowned internals experts, this classic guide has been fully updated
for Windows 7 and Windows Server® 2008 R2—and now presents its
coverage in two volumes.

As always, you get critical, insider perspectives on how Windows
operates. And through hands-on experiments, you’ll experience its
internal behavior firsthand—knowledge you can apply to improve
application design, debugging, system performance, and support.

In Part 2, you will:
• Understand how core system and management mechanisms
 work—including object manager, synchronization, Wow64,
 Hyper-V®, and the registry
• Examine the data structures and activities behind processes,
 threads, and jobs
• Go inside the Windows security model to see how it manages
 access, auditing, and authorization
• Explore the Windows networking stack from top to bottom—
 including APIs, BranchCache, protocol and NDIS drivers, and
 layered services
• Dig into internals hands-on using the kernel debugger,
 performance monitor, and other tools

W
indow

s
® Internals

PA RT 2

microsoft.com/mspress

U.S.A. $39.99
Canada $41.99

[Recommended]

See inside cover

DEVELOPER ROADMAP

Step by Step
• For experienced developers learning a
 new topic
• Focus on fundamental techniques and tools
• Hands-on tutorial with practice files plus
 eBook

Start Here!
• Beginner-level instruction
• Easy to follow explanations and examples
• Exercises to build your first projects

Developer Reference
• Professional developers; intermediate to
 advanced
• Expertly covers essential topics and
 techniques
• Features extensive, adaptable code examples

S I X T H E D I T I O N

6
S

IX
T

H
E

D
IT

IO
N

Focused Topics
• For programmers who develop
 complex or advanced solutions
• Specialized topics; narrow focus; deep
 coverage
• Features extensive, adaptable code examples

Windows®

Internals
Part 2

6
S I X T H

E D I T I O N

Mark Russinovich
David A. Solomon

Alex Ionescu

spine = 1.2”

Cyan Magenta Yellow Black

PUBLISHED BY
Microsoft Press
A Division of Microsoft Corporation
One Microsoft Way
Redmond, Washington 98052-6399

Copyright © 2012 by David Solomon and Mark Russinovich

All rights reserved. No part of the contents of this book may be reproduced or transmitted in any form or by any
means without the written permission of the publisher.

Library of Congress Control Number: 2012933511
ISBN: 978-0-7356-6587-3

Printed and bound in the United States of America.

First Printing

Microsoft Press books are available through booksellers and distributors worldwide. If you need support related
to this book, email Microsoft Press Book Support at mspinput@microsoft.com. Please tell us what you think of
this book at http://www.microsoft.com/learning/booksurvey.

Microsoft and the trademarks listed at http://www.microsoft.com/about/legal/en/us/IntellectualProperty/
Trademarks/EN-US.aspx are trademarks of the Microsoft group of companies. All other marks are property of
their respective owners.

The example companies, organizations, products, domain names, email addresses, logos, people, places, and
events depicted herein are fictitious. No association with any real company, organization, product, domain name,
email address, logo, person, place, or event is intended or should be inferred.

This book expresses the authors’ views and opinions. The information contained in this book is provided without
any express, statutory, or implied warranties. Neither the authors, Microsoft Corporation, nor its resellers, or
distributors will be held liable for any damages caused or alleged to be caused either directly or indirectly by
this book.

Acquisitions Editor: Devon Musgrave
Developmental Editor: Devon Musgrave
Project Editor: Carol Dillingham
Editorial Production: Curtis Philips
Technical Reviewer: Christophe Nasarre; Technical Review services provided by Content Master,

a member of CM Group, Ltd.
Copyeditor: John Pierce
Indexer: Jan Wright
Cover: Twist Creative • Seattle

To our parents, who guided and inspired us to follow our dreams

Contents at a Glance

Windows Internals, Sixth Edition, Part 1 (available separately)

CHAPTER 1 Concepts and Tools

CHAPTER 2 System Architecture

CHAPTER 3 System Mechanisms

CHAPTER 4 Management Mechanisms

CHAPTER 5 Processes, Threads, and Jobs

CHAPTER 6 Security

CHAPTER 7 Networking

Windows Internals, Sixth Edition, Part 2

CHAPTER 8 I/O System 1

CHAPTER 9 Storage Management 125

CHAPTER 10 Memory Management 187

CHAPTER 11 Cache Manager 355

CHAPTER 12 File Systems 391

CHAPTER 13 Startup and Shutdown 499

CHAPTER 14 Crash Dump Analysis 547

 vii

Contents

Windows Internals, Sixth Edition, Part 1
(See appendix for Part 1’s table of contents)

Windows Internals, Sixth Edition, Part 2
Introduction . xv

Chapter 8 I/O System 1
I/O System Components . 1

The I/O Manager . 3
Typical I/O Processing . 4

Device Drivers . 5
Types of Device Drivers . 5
Structure of a Driver .12
Driver Objects and Device Objects .14
Opening Devices .19

I/O Processing .25
Types of I/O .25
I/O Request to a Single-Layered Driver .33
I/O Requests to Layered Drivers .40
I/O Cancellation .48
I/O Completion Ports .53
I/O Prioritization .58
Container Notifications .65
Driver Verifier .65

Kernel-Mode Driver Framework (KMDF) .68
Structure and Operation of a KMDF Driver .68
KMDF Data Model .70
KMDF I/O Model . 74

What do you think of this book? We want to hear from you!
Microsoft is interested in hearing your feedback so we can continually improve our
books and learning resources for you. To participate in a brief online survey, please visit:

microsoft.com/learning/booksurvey

viii Contents

User-Mode Driver Framework (UMDF) .78
The Plug and Play (PnP) Manager .81

Level of Plug and Play Support .82
Driver Support for Plug and Play .82
Driver Loading, Initialization, and Installation 84
Driver Installation .94

The Power Manager .98
Power Manager Operation .100
Driver Power Operation .101
Driver and Application Control of Device Power105
Power Availability Requests .105
Processor Power Management (PPM) .108

Conclusion .123

Chapter 9 Storage Management 125
Storage Terminology .125
Disk Devices .126

Rotating Magnetic Disks .126
Solid State Disks .128

Disk Drivers .131
Winload .132
Disk Class, Port, and Miniport Drivers .132
Disk Device Objects .136
Partition Manager .138

Volume Management .138
Basic Disks .139
Dynamic Disks .141
Multipartition Volume Management .147
The Volume Namespace .153
Volume I/O Operations .159
Virtual Disk Service .160

Virtual Hard Disk Support .162
Attaching VHDs .163
Nested File Systems .163

BitLocker Drive Encryption .163
Encryption Keys .165
Trusted Platform Module (TPM) .168
BitLocker Boot Process .170
BitLocker Key Recovery .172

 Contents ix

Full-Volume Encryption Driver .173
BitLocker Management . 174
BitLocker To Go .175

Volume Shadow Copy Service .177
Shadow Copies .177
VSS Architecture .177
VSS Operation .178
Uses in Windows .181

Conclusion .186

Chapter 10 Memory Management 187
Introduction to the Memory Manager .187

Memory Manager Components .188
Internal Synchronization .189
Examining Memory Usage .190

Services Provided by the Memory Manager .193
Large and Small Pages .193
Reserving and Committing Pages .195
Commit Limit .199
Locking Memory .199
Allocation Granularity .199
Shared Memory and Mapped Files .200
Protecting Memory .203
No Execute Page Protection .204
Copy-on-Write .209
Address Windowing Extensions .210

Kernel-Mode Heaps (System Memory Pools) .212
Pool Sizes .213
Monitoring Pool Usage .215
Look-Aside Lists .219

Heap Manager .220
Types of Heaps .221
Heap Manager Structure .222
Heap Synchronization .223
The Low Fragmentation Heap .223
Heap Security Features .224
Heap Debugging Features .225
Pageheap .226
Fault Tolerant Heap .227

x Contents

Virtual Address Space Layouts .228
x86 Address Space Layouts .229
x86 System Address Space Layout .232
x86 Session Space .233
System Page Table Entries .235
64-Bit Address Space Layouts .237
x64 Virtual Addressing Limitations .240
Dynamic System Virtual Address Space Management242
System Virtual Address Space Quotas .245
User Address Space Layout .246

Address Translation .251
x86 Virtual Address Translation .252
Translation Look-Aside Buffer .259
Physical Address Extension (PAE) .260
x64 Virtual Address Translation .265
IA64 Virtual Address Translation .266

Page Fault Handling .267
Invalid PTEs .268
Prototype PTEs .269
In-Paging I/O .271
Collided Page Faults .272
Clustered Page Faults .272
Page Files .273
Commit Charge and the System Commit Limit 275
Commit Charge and Page File Size .278

Stacks .279
User Stacks .280
Kernel Stacks .281
DPC Stack .282

Virtual Address Descriptors .282
Process VADs .283
Rotate VADs .284

NUMA .285
Section Objects .286
Driver Verifier .292
Page Frame Number Database .297

Page List Dynamics .300
Page Priority .310
Modified Page Writer .314

 Contents xi

PFN Data Structures .315
Physical Memory Limits .320

Windows Client Memory Limits .321
Working Sets .324

Demand Paging .324
Logical Prefetcher .324
Placement Policy .328
Working Set Management .329
Balance Set Manager and Swapper .333
System Working Sets .334
Memory Notification Events .335

Proactive Memory Management (Superfetch) .338
Components .338
Tracing and Logging .341
Scenarios .342
Page Priority and Rebalancing .342
Robust Performance .344
ReadyBoost .346
ReadyDrive .348
Unified Caching .348
Process Reflection .351

Conclusion .354

Chapter 11 Cache Manager 355
Key Features of the Cache Manager .355

Single, Centralized System Cache .356
The Memory Manager .356
Cache Coherency .356
Virtual Block Caching .358
Stream-Based Caching .358
Recoverable File System Support .359

Cache Virtual Memory Management .360
Cache Size. .361

Cache Virtual Size .361
Cache Working Set Size .361
Cache Physical Size .363

Cache Data Structures .364
Systemwide Cache Data Structures .365
Per-File Cache Data Structures .368

xii Contents

File System Interfaces .373
Copying to and from the Cache .374
Caching with the Mapping and Pinning Interfaces374
Caching with the Direct Memory Access Interfaces 375

Fast I/O .375
Read-Ahead and Write-Behind .377

Intelligent Read-Ahead .378
Write-Back Caching and Lazy Writing .379
Write Throttling .388
System Threads .390

Conclusion .390

Chapter 12 File Systems 391
Windows File System Formats .392

CDFS .392
UDF .393
FAT12, FAT16, and FAT32 .393
exFAT .396
NTFS .397

File System Driver Architecture .398
Local FSDs .398
Remote FSDs .400
File System Operation .407
File System Filter Drivers .413

Troubleshooting File System Problems .415
Process Monitor Basic vs. Advanced Modes415
Process Monitor Troubleshooting Techniques416

Common Log File System .416
NTFS Design Goals and Features .424

High-End File System Requirements .424
Advanced Features of NTFS .426

NTFS File System Driver .439
NTFS On-Disk Structure .442

Volumes .442
Clusters .442
Master File Table .443
File Record Numbers .447
File Records .447
File Names .449

 Contents xiii

Resident and Nonresident Attributes .453
Data Compression and Sparse Files .456
The Change Journal File .461
Indexing .464
Object IDs .466
Quota Tracking .466
Consolidated Security .467
Reparse Points .469
Transaction Support .469

NTFS Recovery Support .477
Design .478
Metadata Logging .479
Recovery .483
NTFS Bad-Cluster Recovery .487
Self-Healing .490

Encrypting File System Security .491
Encrypting a File for the First Time .494
The Decryption Process .496
Backing Up Encrypted Files .497
Copying Encrypted Files .497

Conclusion .498

Chapter 13 Startup and Shutdown 499
Boot Process .499

BIOS Preboot. .499
The BIOS Boot Sector and Bootmgr .502
The UEFI Boot Process .512
Booting from iSCSI .514
Initializing the Kernel and Executive Subsystems514
Smss, Csrss, and Wininit .522
ReadyBoot .527
Images That Start Automatically .528

Troubleshooting Boot and Startup Problems .529
Last Known Good .530
Safe Mode .530
Windows Recovery Environment (WinRE) .534
Solving Common Boot Problems .537

Shutdown .542
Conclusion .545

xiv Contents

Chapter 14 Crash Dump Analysis 547
Why Does Windows Crash? .547
The Blue Screen .548

Causes of Windows Crashes .549
Troubleshooting Crashes .551
Crash Dump Files. .553

Crash Dump Generation .559
Windows Error Reporting .561
Online Crash Analysis .563
Basic Crash Dump Analysis .564

Notmyfault .564
Basic Crash Dump Analysis .565
Verbose Analysis .567

Using Crash Troubleshooting Tools .569
Buffer Overruns, Memory Corruption, and Special Pool 569
Code Overwrite and System Code Write Protection573

Advanced Crash Dump Analysis .574
Stack Trashes .575
Hung or Unresponsive Systems .577
When There Is No Crash Dump .581

Analysis of Common Stop Codes .585
0xD1 - DRIVER_IRQL_NOT_LESS_OR_EQUAL585
0x8E - KERNEL_MODE_EXCEPTION_NOT_HANDLED586
0x7F - UNEXPECTED_KERNEL_MODE_TRAP588
0xC5 - DRIVER_CORRUPTED_EXPOOL .590
Hardware Malfunctions .593

Conclusion .594

Appendix: Contents of Windows Internals, Sixth Edition, Part 1 595

Index 603

What do you think of this book? We want to hear from you!
Microsoft is interested in hearing your feedback so we can continually improve our
books and learning resources for you. To participate in a brief online survey, please visit:

microsoft.com/learning/booksurvey

 xv

Introduction

W indows Internals, Sixth Edition is intended for advanced computer professionals
(both developers and system administrators) who want to understand how the

core components of the Microsoft Windows 7 and Windows Server 2008 R2 operating
systems work internally. With this knowledge, developers can better comprehend the
rationale behind design choices when building applications specific to the Windows
platform. Such knowledge can also help developers debug complex problems. System
administrators can benefit from this information as well, because understanding how
the operating system works “under the covers” facilitates understanding the perfor-
mance behavior of the system and makes troubleshooting system problems much
easier when things go wrong. After reading this book, you should have a better under-
standing of how Windows works and why it behaves as it does.

Structure of the Book

For the first time, the book has been divided in two parts. This was done to get the
information out more quickly since it takes considerable time to update the book for
each release of Windows.

Part 1 begins with two chapters that define key concepts, introduce the tools used in
the book, and describe the overall system architecture and components. The next two
chapters present key underlying system and management mechanisms. Part 1 wraps
up by covering three core components of the operating system: processes, threads, and
jobs; security; and networking.

Part 2 covers the remaining core subsystems: I/O, storage, memory management,
the cache manager, and file systems. Part 2 concludes with a description of the startup
and shutdown processes and a description of crash-dump analysis.

xvi Introduction

History of the Book

This is the sixth edition of a book that was originally called Inside Windows NT
(Microsoft Press, 1992), written by Helen Custer (prior to the initial release of Microsoft
Windows NT 3.1). Inside Windows NT was the first book ever published about Windows
NT and provided key insights into the architecture and design of the system. Inside
Windows NT, Second Edition (Microsoft Press, 1998) was written by David Solomon. It
updated the original book to cover Windows NT 4.0 and had a greatly increased level
of technical depth.

Inside Windows 2000, Third Edition (Microsoft Press, 2000) was authored by David
Solomon and Mark Russinovich. It added many new topics, such as startup and shut-
down, service internals, registry internals, file-system drivers, and networking. It also
covered kernel changes in Windows 2000, such as the Windows Driver Model (WDM),
Plug and Play, power management, Windows Management Instrumentation (WMI),
encryption, the job object, and Terminal Services. Windows Internals, Fourth Edition was
the Windows XP and Windows Server 2003 update and added more content focused
on helping IT professionals make use of their knowledge of Windows internals, such as
 using key tools from Windows Sysinternals (www.microsoft.com/technet/sysinternals)
and analyzing crash dumps. Windows Internals, Fifth Edition was the update for
Windows Vista and Windows Server 2008. New content included the image loader,
user-mode debugging facility, and Hyper-V.

Sixth Edition Changes

This latest edition has been updated to cover the kernel changes made in Windows 7
and Windows Server 2008 R2. Hands-on experiments have been updated to reflect
changes in tools.

Hands-on Experiments

Even without access to the Windows source code, you can glean much about Windows
internals from tools such as the kernel debugger and tools from Sysinternals and
 Winsider Seminars & Solutions. When a tool can be used to expose or demonstrate
some aspect of the internal behavior of Windows, the steps for trying the tool yourself
are listed in “EXPERIMENT” boxes. These appear throughout the book, and we encour-
age you to try these as you’re reading—seeing visible proof of how Windows works
internally will make much more of an impression on you than just reading about it will.

www.microsoft.com/technet/sysinternals

 Introduction xvii

Topics Not Covered

Windows is a large and complex operating system. This book doesn’t cover everything
relevant to Windows internals but instead focuses on the base system components. For
example, this book doesn’t describe COM+, the Windows distributed object-oriented
programming infrastructure, or the Microsoft .NET Framework, the foundation of man-
aged code applications.

Because this is an internals book and not a user, programming, or system administra-
tion book, it doesn’t describe how to use, program, or configure Windows.

A Warning and a Caveat

Because this book describes undocumented behavior of the internal architecture and
the operation of the Windows operating system (such as internal kernel structures and
functions), this content is subject to change between releases. (External interfaces, such
as the Windows API, are not subject to incompatible changes.)

By “subject to change,” we don’t necessarily mean that details described in this book
will change between releases, but you can’t count on them not changing. Any soft-
ware that uses these undocumented interfaces might not work on future releases of
Windows. Even worse, software that runs in kernel mode (such as device drivers) and
uses these undocumented interfaces might experience a system crash when running on
a newer release of Windows.

Acknowledgments

First, thanks to Jamie Hanrahan and Brian Catlin of Azius, LLC for joining us on this
 project—the book would not have been finished without their help. They did the bulk
of the updates on the “Security” and “Networking” chapters and contributed to the
update of the “Management Mechanisms” and “Processes and Threads” chapters. Azius
provides Windows-internals and device-driver training. See www.azius.com for more
information.

We want to recognize Alex Ionescu, who for this edition is a full coauthor. This is a
reflection of Alex’s extensive work on the fifth edition, as well as his continuing work on
this edition.

www.azius.com

xviii Introduction

Also thanks to Daniel Pearson, who updated the “Crash Dump Analysis” chapter.
His many years of dump analysis experience helped to make the information more
 practical.

Thanks to Eric Traut and Jon DeVaan for continuing to allow David Solomon access
to the Windows source code for his work on this book as well as continued develop-
ment of his Windows Internals courses.

Three key reviewers were not acknowledged for their review and contributions
to the fifth edition: Arun Kishan, Landy Wang, and Aaron Margosis—thanks again to
them! And thanks again to Arun and Landy for their detailed review and helpful input
for this edition.

This book wouldn’t contain the depth of technical detail or the level of accuracy it
has without the review, input, and support of key members of the Microsoft Windows
development team. Therefore, we want to thank the following people, who provided
technical review and input to the book:

 ■ Greg Cottingham

 ■ Joe Hamburg

 ■ Jeff Lambert

 ■ Pavel Lebedinsky

 ■ Joseph East

 ■ Adi Oltean

 ■ Alexey Pakhunov

 ■ Valerie See

 ■ Brad Waters

 ■ Bruce Worthington

 ■ Robin Alexander

 ■ Bernard Ourghanlian

Also thanks to Scott Lee, Tim Shoultz, and Eric Kratzer for their assistance with the
“Crash Dump Analysis” chapter.

For the “Networking” chapter, a special thanks to Gianluigi Nusca and Tom Jolly,
who really went beyond the call of duty: Gianluigi for his extraordinary help with
the BranchCache material and the amount of suggestions (and many paragraphs of

 Introduction xix

 material he wrote), and Tom Jolly not only for his own review and suggestions (which
were excellent), but for getting many other developers to assist with the review. Here
are all those who reviewed and contributed to the “Networking” chapter:

 ■ Roopesh Battepati

 ■ Molly Brown

 ■ Greg Cottingham

 ■ Dotan Elharrar

 ■ Eric Hanson

 ■ Tom Jolly

 ■ Manoj Kadam

 ■ Greg Kramer

 ■ David Kruse

 ■ Jeff Lambert

 ■ Darene Lewis

 ■ Dan Lovinger

 ■ Gianluigi Nusca

 ■ Amos Ortal

 ■ Ivan Pashov

 ■ Ganesh Prasad

 ■ Paul Swan

 ■ Shiva Kumar Thangapandi

Amos Ortal and Dotan Elharrar were extremely helpful on NAP, and Shiva Kumar
Thangapandi helped extensively with EAP.

Thanks to Gerard Murphy for reviewing the shutdown mechanisms in Windows 7
and clarifying Group Policy behaviors.

Thanks to Tristan Brown from the Power Management team at Microsoft for spend-
ing a few late hours at the office with Alex going over core parking’s algorithms and
behaviors, as well as for the invaluable diagram he provided.

xx Introduction

Thanks to Apurva Doshi for sending Alex a detailed document of cache manager
changes in Windows 7, which was used to capture some of the new behaviors and
changes described in the book.

Thanks to Matthieu Suiche for his kernel symbol file database, which allowed Alex to
discover new and removed fields from core kernel data structures and led to the inves-
tigations to discover the underlying functionality changes.

Thanks to Cenk Ergan, Michel Fortin, and Mehmet Iyigun for their review and input
on the Superfetch details.

The detailed checking Christophe Nasarre, overall technical reviewer, performed
contributed greatly to the technical accuracy and consistency in the book.

We would like to again thank Ilfak Guilfanov of Hex-Rays (www.hex-rays.com) for the
IDA Pro Advanced and Hex-Rays licenses they granted to Alex so that he could speed
up his reverse engineering of the Windows kernel.

Finally, the authors would like to thank the great staff at Microsoft Press behind
turning this book into a reality. Devon Musgrave served double duty as acquisitions
editor and developmental editor, while Carol Dillingham oversaw the title as its project
editor. Editorial and production manager Curtis Philips, copy editor John Pierce, proof-
reader Andrea Fox, and indexer Jan Wright also contributed to the quality of this book.

Last but not least, thanks to Ben Ryan, publisher of Microsoft Press, who continues
to believe in the importance of continuing to provide this level of detail about Windows
to their readers!

Errata & Book Support

We’ve made every effort to ensure the accuracy of this book and its companion con-
tent. Any errors that have been reported since this book was published are listed on our
Microsoft Press site at oreilly.com:

http://go.microsoft.com/FWLink/?Linkid=258649

If you find an error that is not already listed, you can report it to us through the
same page.

If you need additional support, email Microsoft Press Book Support at mspinput@
microsoft.com.

www.hex-rays.com
oreilly.com
http://go.microsoft.com/FWLink/?Linkid=258649
mailto:mspinput@microsoft.com
mailto:mspinput@microsoft.com

 Introduction xxi

Please note that product support for Microsoft software is not offered through the
addresses above.

We Want to Hear from You

At Microsoft Press, your satisfaction is our top priority, and your feedback our most
valuable asset. Please tell us what you think of this book at:

http://www.microsoft.com/learning/booksurvey

The survey is short, and we read every one of your comments and ideas. Thanks in
advance for your input!

Stay in Touch

Let’s keep the conversation going! We’re on Twitter: http://twitter.com/MicrosoftPress.

http://www.microsoft.com/learning/booksurvey
http://twitter.com/MicrosoftPress

 1

C H A P T E R 8

I/O System

The Windows I/O system consists of several executive components that together manage hard-
ware devices and provide interfaces to hardware devices for applications and the system. In this

chapter, we’ll first list the design goals of the I/O system, which have influenced its implementation.
We’ll then cover the components that make up the I/O system, including the I/O manager, Plug and
Play (PnP) manager, and power manager. Then we’ll examine the structure and components of the
I/O system and the various types of device drivers. We’ll look at the key data structures that describe
devices, device drivers, and I/O requests, after which we’ll describe the steps necessary to complete
I/O requests as they move through the system. Finally, we’ll present the way device detection, driver
installation, and power management work.

I/O System Components

The design goals for the Windows I/O system are to provide an abstraction of devices, both hardware
(physical) and software (virtual or logical), to applications with the following features:

 ■ Uniform security and naming across devices to protect shareable resources. (See Chapter 6,
“Security,” in Part 1 for a description of the Windows security model.)

 ■ High-performance asynchronous packet-based I/O to allow for the implementation of scalable
applications.

 ■ Services that allow drivers to be written in a high-level language and easily ported between
different machine architectures.

 ■ Layering and extensibility to allow for the addition of drivers that transparently modify the be-
havior of other drivers or devices, without requiring any changes to the driver whose behavior
or device is modified.

 ■ Dynamic loading and unloading of device drivers so that drivers can be loaded on demand
and not consume system resources when unneeded.

 ■ Support for Plug and Play, where the system locates and installs drivers for newly detected
hardware, assigns them hardware resources they require, and also allows applications to dis-
cover and activate device interfaces.

2 Windows Internals, Sixth Edition, Part 2

 ■ Support for power management so that the system or individual devices can enter low power
states.

 ■ Support for multiple installable file systems, including FAT, the CD-ROM file system (CDFS), the
Universal Disk Format (UDF) file system, and the Windows file system (NTFS). (See Chapter 12,
“File Systems,” for more specific information on file system types and architecture.)

 ■ Windows Management Instrumentation (WMI) support and diagnosability so that drivers can
be managed and monitored through WMI applications and scripts. (WMI is described in Chap-
ter 4, “Management Mechanisms,” in Part 1.)

To implement these features the Windows I/O system consists of several executive components as
well as device drivers, which are shown in Figure 8-1.

 ■ The I/O manager is the heart of the I/O system. It connects applications and system compo-
nents to virtual, logical, and physical devices, and it defines the infrastructure that supports
device drivers.

 ■ A device driver typically provides an I/O interface for a particular type of device. A driver is a
software module that interprets high-level commands, such as read or write, and issues low-
level, device-specific commands, such as writing to control registers. Device drivers receive
commands routed to them by the I/O manager that are directed at the devices they manage,
and they inform the I/O manager when those commands are complete. Device drivers often
use the I/O manager to forward I/O commands to other device drivers that share in the imple-
mentation of a device’s interface or control.

 ■ The PnP manager works closely with the I/O manager and a type of device driver called a bus
driver to guide the allocation of hardware resources as well as to detect and respond to the
arrival and removal of hardware devices. The PnP manager and bus drivers are responsible for
loading a device’s driver when the device is detected. When a device is added to a system that
doesn’t have an appropriate device driver, the executive Plug and Play component calls on the
device installation services of a user-mode PnP manager.

 ■ The power manager also works closely with the I/O manager and the PnP manager to guide
the system, as well as individual device drivers, through power-state transitions.

 ■ Windows Management Instrumentation support routines, called the Windows Driver Model
(WDM) WMI provider, allow device drivers to indirectly act as providers, using the WDM WMI
provider as an intermediary to communicate with the WMI service in user mode. (For more
information on WMI, see the section “Windows Management Instrumentation” in Chapter 4 in
Part 1.)

 ■ The registry serves as a database that stores a description of basic hardware devices attached
to the system as well as driver initialization and configuration settings. (See “The Registry” sec-
tion in Chapter 4 in Part 1 for more information.)

 ■ INF files, which are designated by the .inf extension, are driver installation files. INF files are
the link between a particular hardware device and the driver that assumes primary control of

 CHAPTER 8 I/O System 3

the device. They are made up of script-like instructions describing the device they correspond
to, the source and target locations of driver files, required driver-installation registry modifica-
tions, and driver dependency information. Digital signatures that Windows uses to verify that
a driver file has passed testing by the Microsoft Windows Hardware Quality Labs (WHQL) are
stored in .cat files. Digital signatures are also used to prevent tampering of the driver or its
INF file.

 ■ The hardware abstraction layer (HAL) insulates drivers from the specifics of the processor and
interrupt controller by providing APIs that hide differences between platforms. In essence, the
HAL is the bus driver for all the devices soldered onto the computer’s motherboard that aren’t
controlled by other drivers.

Windows
servicesApplications

WMI
service

User-mode
PnP manager

User mode

Kernel mode

.inf files,
.cat files,
registry

I/O
manager

Power
manager

PnP
manager

WDM WMI
routinesI/O system

Drivers

HAL

. . .

Setup com-
ponents library
(Setupapi.dll)

FIGURE 8-1 I/O system components

The I/O Manager
The I/O manager is the core of the I/O system because it defines the orderly framework, or model,
within which I/O requests are delivered to device drivers. The I/O system is packet driven. Most I/O re-
quests are represented by an I/O request packet (IRP), which travels from one I/O system component
to another. (As you’ll discover in the section “Fast I/O,” fast I/O is the exception; it doesn’t use IRPs.)

4 Windows Internals, Sixth Edition, Part 2

The design allows an individual application thread to manage multiple I/O requests concurrently. An
IRP is a data structure that contains information completely describing an I/O request. (You’ll find
more information about IRPs in the section “I/O Request Packets” later in the chapter.)

The I/O manager creates an IRP in memory to represent an I/O operation, passing a pointer to the
IRP to the correct driver and disposing of the packet when the I/O operation is complete. In contrast,
a driver receives an IRP, performs the operation the IRP specifies, and passes the IRP back to the I/O
manager, either because the requested I/O operation has been completed, or because it must be
passed on to another driver for further processing.

In addition to creating and disposing of IRPs, the I/O manager supplies code that is common to
different drivers and that the drivers can call to carry out their I/O processing. By consolidating com-
mon tasks in the I/O manager, individual drivers become simpler and more compact. For example, the
I/O manager provides a function that allows one driver to call other drivers. It also manages buffers
for I/O requests, provides timeout support for drivers, and records which installable file systems are
loaded into the operating system. There are close to one hundred different routines in the I/O man-
ager that can be called by device drivers.

The I/O manager also provides flexible I/O services that allow environment subsystems, such as
Windows and POSIX, to implement their respective I/O functions. These services include sophisti-
cated services for asynchronous I/O that allow developers to build scalable, high-performance server
applications.

The uniform, modular interface that drivers present allows the I/O manager to call any driver with-
out requiring any special knowledge of its structure or internal details. The operating system treats all
I/O requests as if they were directed at a file; the driver converts the requests from requests made to
a virtual file to hardware-specific requests. Drivers can also call each other (using the I/O manager) to
achieve layered, independent processing of an I/O request.

Besides providing the normal open, close, read, and write functions, the Windows I/O system pro-
vides several advanced features, such as asynchronous, direct, buffered, and scatter/gather I/O, which
are described in the “Types of I/O” section later in this chapter.

Typical I/O Processing
Most I/O operations don’t involve all the components of the I/O system. A typical I/O request starts
with an application executing an I/O-related function (for example, reading data from a device) that is
processed by the I/O manager, one or more device drivers, and the HAL.

As just mentioned, in Windows, threads perform I/O on virtual files. A virtual file refers to any
source or destination for I/O that is treated as if it were a file (such as files, directories, pipes, and
mailslots). The operating system abstracts all I/O requests as operations on a virtual file, because the
I/O manager has no knowledge of anything but files, therefore making it the responsibility of the
driver to translate file-oriented comments (open, close, read, write) into device-specific commands.
This abstraction thereby generalizes an application’s interface to devices. User-mode applications

 CHAPTER 8 I/O System 5

(whether Windows or POSIX) call documented functions, which in turn call internal I/O system func-
tions to read from a file, write to a file, and perform other operations. The I/O manager dynamically
directs these virtual file requests to the appropriate device driver. Figure 8-2 illustrates the basic
structure of a typical I/O request flow.

User-mode API

I/O system services API
(Ntxxx)

I/O manager (Ioxxx)

Kernel-mode
device drivers

HAL hardware access routines

Driver
support
routines

(Io, Ex, Ke,
Mm, Hal,

FsRtl,
and so on)

Memory-mapped registers and DMA

FIGURE 8-2 The flow of a typical I/O request

In the following sections, we’ll look at these components more closely, covering the various types
of device drivers, how they are structured, how they load and initialize, and how they process I/O
requests. Then we’ll cover the operation and roles of the PnP manager and the power manager.

Device Drivers

To integrate with the I/O manager and other I/O system components, a device driver must conform to
implementation guidelines specific to the type of device it manages and the role it plays in managing
the device. In this section, we’ll look at the types of device drivers Windows supports as well as the
internal structure of a device driver.

Types of Device Drivers
Windows supports a wide range of device driver types and programming environments. Even within a
type of device driver, programming environments can differ, depending on the specific type of device

6 Windows Internals, Sixth Edition, Part 2

for which a driver is intended. The broadest classification of a driver is whether it is a user-mode or
kernel-mode driver. Windows supports a couple of types of user-mode drivers:

 ■ Windows subsystem printer drivers translate device-independent graphics requests to printer-
specific commands. These commands are then typically forwarded to a kernel-mode port
driver such as the universal serial bus (USB) printer port driver (Usbprint.sys).

 ■ User-Mode Driver Framework (UMDF) drivers are hardware device drivers that run in user
mode. They communicate to the kernel-mode UMDF support library through ALPC. See the
“User-Mode Driver Framework (UMDF)” section later in this chapter for more information.

In this chapter, the focus is on kernel-mode device drivers. There are many types of kernel-mode
drivers, which can be divided into the following basic categories:

 ■ File system drivers accept I/O requests to files and satisfy the requests by issuing their own,
more explicit, requests to mass storage or network device drivers.

 ■ Plug and Play drivers work with hardware and integrate with the Windows power manager and
PnP manager. They include drivers for mass storage devices, video adapters, input devices, and
network adapters.

 ■ Non–Plug and Play drivers, which also include kernel extensions, are drivers or modules that
extend the functionality of the system. They do not typically integrate with the PnP or power
managers because they typically do not manage an actual piece of hardware. Examples
include network API and protocol drivers. Process Monitor’s driver, described in Chapter 4 in
Part 1, is also an example.

Within the category of kernel-mode drivers are further classifications based on the driver model
that the driver adheres to and its role in servicing device requests.

WDM Drivers
WDM drivers are device drivers that adhere to the Windows Driver Model (WDM). WDM includes
support for Windows power management, Plug and Play, and WMI, and most Plug and Play drivers
adhere to WDM. There are three types of WDM drivers:

 ■ Bus drivers manage a logical or physical bus. Examples of buses include PCMCIA, PCI, USB, and
IEEE 1394. A bus driver is responsible for detecting and informing the PnP manager of devices
attached to the bus it controls as well as managing the power setting of the bus.

 ■ Function drivers manage a particular type of device. Bus drivers present devices to function
drivers via the PnP manager. The function driver is the driver that exports the operational
interface of the device to the operating system. In general, it’s the driver with the most knowl-
edge about the operation of the device.

 ■ Filter drivers logically layer either above or below function drivers (these are called func-
tion filters) or above the bus driver (these are called bus filters), augmenting or changing the

 CHAPTER 8 I/O System 7

behavior of a device or another driver. For example, a keyboard capture utility could be imple-
mented with a keyboard filter driver that layers above the keyboard function driver.

In WDM, no one driver is responsible for controlling all aspects of a particular device. The bus
driver is responsible for detecting bus membership changes (device addition or removal), assisting the
PnP manager in enumerating the devices on the bus, accessing bus-specific configuration registers,
and, in some cases, controlling power to devices on the bus. The function driver is generally the only
driver that accesses the device’s hardware.

Layered Drivers
Support for an individual piece of hardware is often divided among several drivers, each provid-
ing a part of the functionality required to make the device work properly. In addition to WDM bus
drivers, function drivers, and filter drivers, hardware support might be split between the following
components:

 ■ Class drivers implement the I/O processing for a particular class of devices, such as disk, key-
board, or CD-ROM, where the hardware interfaces have been standardized, so one driver can
serve devices from a wide variety of manufacturers.

 ■ Miniclass drivers implement I/O processing that is vendor-defined for a particular class of de-
vices. For example, although there is a standardized battery class driver written by Microsoft,
both uninterruptible power supplies (UPS) and laptop batteries have highly specific interfaces
that differ wildly between manufacturers, such that a miniclass is required from the vendor.
Miniclass drivers are essentially kernel-mode DLLs and do not do IRP processing directly—the
class driver calls into them, and they import functions from the class driver.

 ■ Port drivers implement the processing of an I/O request specific to a type of I/O port, such as
SATA, and are implemented as kernel-mode libraries of functions rather than actual device
drivers. Port drivers are almost always written by Microsoft because the interfaces are typically
standardized in such a way that different vendors can still share the same port driver. However,
in certain cases, third parties may need to write their own for specialized hardware. In some
cases, the concept of “I/O port” extends to cover logical ports as well. For example, NDIS is the
network “port” driver, and Dxgport/Videoprt are the DirectX/video “port” drivers.

 ■ Miniport drivers map a generic I/O request to a type of port into an adapter type, such as a
specific network adapter. Miniport drivers are actual device drivers that import the functions
supplied by a port driver. Miniport drivers are written by third parties, and they provide the
interface for the port driver. Like miniclass drivers, they are kernel-mode DLLs and do not do
IRP processing directly.

A simplified example for illustrative purposes will help demonstrate how device drivers work at a
high level. A file system driver accepts a request to write data to a certain location within a particular
file. It translates the request into a request to write a certain number of bytes to the disk at a par-
ticular (that is, the logical) location. It then passes this request (via the I/O manager) to a simple disk
driver. The disk driver, in turn, translates the request into a physical location on the disk and commu-
nicates with the disk to write the data. This layering is illustrated in Figure 8-3.

8 Windows Internals, Sixth Edition, Part 2

Environment
subsystem

or DLL

NtWriteFile(file_handle, char_buffer)

System services

User mode

Kernel mode

Write data at specified
byte offset within a file

Translate file-relative byte
offset into volume-relative
byte offset and call next
driver (via I/O manager)

Call driver to write data
at volume-relative byte offset

I/O
managerFile system

driver

Disk driver

2

3

1

4

Translate volume-relative byte
offset into disk-relative offset
and transfer data

5

FIGURE 8-3 Layering of a file system driver and a disk driver

This figure illustrates the division of labor between two layered drivers. The I/O manager receives a
write request that is relative to the beginning of a particular file. The I/O manager passes the request
to the file system driver, which translates the write operation from a file-relative operation to a start-
ing location (a sector boundary on the disk) and a number of bytes to write. The file system driver
calls the I/O manager to pass the request to the disk driver, which translates the request to a physical
disk location and transfers the data.

Because all drivers—both device drivers and file system drivers—present the same framework to
the operating system, another driver can easily be inserted into the hierarchy without altering the
existing drivers or the I/O system. For example, several disks can be made to seem like a very large
single disk by adding a driver. This logical, volume manager driver is located between the file system
and the disk drivers, as shown in the conceptual, simplified architectural diagram presented in Figure
8-4. (For the actual storage driver stack diagram, see Figure 9-3 in Chapter 9, “Storage Manage-
ment”). Volume manager drivers are described in more detail in Chapter 9.

 CHAPTER 8 I/O System 9

1 2 3

2

3

1

4

5

6

7

File system
driver

Volume
manager disk

driver

Disk driver

I/O
manager

System services

Environment
subsystem

or DLL

User mode

Kernel mode
NtWriteFile(file_handle, char_buffer)

Write data at specified
byte offset within a file

Translate file-relative byte
offset into volume-relative
byte offset and call next
driver (via I/O manager)

Call driver to write data at
volume-relative byte offset

Translate volume-relative
byte offset into disk
number and offset,
and call next driver
(via I/O manager)

Call next driver to write
data to disk 3 at disk-
relative byte offset

Translate disk-relative byte offset into physical
location on disk 3 and transfer data

FIGURE 8-4 Adding a layered driver

10 Windows Internals, Sixth Edition, Part 2

EXPERIMENT: Viewing the Loaded Driver List
You can see a list of registered drivers by executing the Msinfo32.exe utility from the Run dialog
box of the Start menu. Select the System Drivers entry under Software Environment to see the
list of drivers configured on the system. Those that are loaded have the text “Yes” in the Started
column, as shown here:

You can also view the list of loaded kernel-mode drivers with Process Explorer from Windows
Sysinternals (http://www.microsoft.com/technet/sysinternals). Run Process Explorer, select the
System process, and select DLLs from the Lower Pane View menu entry in the View menu:

http://www.microsoft.com/technet/sysinternals

 CHAPTER 8 I/O System 11

Process Explorer lists the loaded drivers, their names, version information (including com-
pany and description), and load address (assuming you have configured Process Explorer to
display the corresponding columns).

Finally, if you’re looking at a crash dump (or live system) with the kernel debugger, you can
get a similar display with the kernel debugger lm kv command:

lkd> lm kv
start end module name
82007000 823c0000 nt (pdb symbols)
c:\programming\symbols\ntkrpamp.pdb\37D328E3BAE5460F8E662756ED80951D2\ntkrpamp.pdb
 Loaded symbol image file: ntkrpamp.exe
 Image path: ntkrpamp.exe
 Image name: ntkrpamp.exe
 Timestamp: Fri Jan 18 21:30:58 2008 (47918B12)
 CheckSum: 00372038
 ImageSize: 003B9000
 File version: 6.0.6001.18000
 Product version: 6.0.6001.18000
 File flags: 0 (Mask 3F)
 File OS: 40004 NT Win32
 File type: 1.0 App
 File date: 00000000.00000000
 Translations: 0409.04b0
 CompanyName: Microsoft Corporation
 ProductName: Microsoft® Windows® Operating System
 InternalName: ntkrpamp.exe
 OriginalFilename: ntkrpamp.exe
 ProductVersion: 6.0.6001.18000
 FileVersion: 6.0.6001.18000 (longhorn_rtm.080118-1840)
 FileDescription: NT Kernel & System
 LegalCopyright: © Microsoft Corporation. All rights reserved.
823c0000 823f3000 hal (deferred)
 Image path: halmacpi.dll
 Image name: halmacpi.dll
 Timestamp: Fri Jan 18 21:27:20 2008 (47918A38)
 CheckSum: 0003859F
 ImageSize: 00033000
 Translations: 0000.04b0 0000.04e0 0409.04b0 0409.04e0
82600000 82671000 ksecdd (deferred)
 Image path: \SystemRoot\System32\Drivers\ksecdd.sys
 Image name: ksecdd.sys
 Timestamp: Fri Jan 18 21:41:20 2008 (47918D80)
 CheckSum: 0006E742
 ImageSize: 00071000
 Translations: 0000.04b0 0000.04e0 0409.04b0 0409.04e0

12 Windows Internals, Sixth Edition, Part 2

Structure of a Driver
The I/O system drives the execution of device drivers. Device drivers consist of a set of routines that
are called to process the various stages of an I/O request. Figure 8-5 illustrates the key driver-function
routines.

Dispatch
routines

Start I/O
routine

Interrupt
service
routine

Add-device
routine

Initialization
routine DPC routine

I/O
system

...

FIGURE 8-5 Primary device driver routines

 ■ An initialization routine The I/O manager executes a driver’s initialization routine, which
is set by the WDK to GSDriverEntry, when it loads the driver into the operating system.
 GSDriverEntry initializes the compiler’s protection against stack-overflow errors (called a
cookie) and then calls DriverEntry, which is what the driver writer must implement. The routine
fills in system data structures to register the rest of the driver’s routines with the I/O manager
and performs any global driver initialization that’s necessary.

 ■ An add-device routine A driver that supports Plug and Play implements an add-device
routine. The PnP manager sends a notification to the driver via this routine whenever a device
for which the driver is responsible is detected. In this routine, a driver typically creates a device
object (described later in this chapter) to represent the device.

 ■ A set of dispatch routines Dispatch routines are the main entry points that a device driver
provides. Some examples are open, close, read, and write and any other capabilities the
device, file system, or network supports. When called on to perform an I/O operation, the I/O
manager generates an IRP and calls a driver through one of the driver’s dispatch routines.

 ■ A start I/O routine A driver can use a start I/O routine to initiate a data transfer to or from
a device. This routine is defined only in drivers that rely on the I/O manager to queue their
incoming I/O requests. The I/O manager serializes IRPs for a driver by ensuring that the driver
processes only one IRP at a time. Drivers can process multiple IRPs concurrently, but serializa-
tion is usually required for most devices because they cannot concurrently handle multiple I/O
requests.

 CHAPTER 8 I/O System 13

 ■ An interrupt service routine (ISR) When a device interrupts, the kernel’s interrupt dis-
patcher transfers control to this routine. In the Windows I/O model, ISRs run at device inter-
rupt request level (DIRQL), so they perform as little work as possible to avoid blocking lower
IRQL interrupts. (See Chapter 3, “System Mechanisms,” in Part 1 for more information on
IRQLs.) An ISR usually queues a deferred procedure call (DPC), which runs at a lower IRQL
(DPC/dispatch level), to execute the remainder of interrupt processing. (Only drivers for
interrupt-driven devices have ISRs; a file system driver, for example, doesn’t have one.)

 ■ An interrupt-servicing DPC routine A DPC routine performs most of the work involved in
handling a device interrupt after the ISR executes. The DPC routine executes at a lower IRQL
(DPC/dispatch level) than that of the ISR, which runs at device level, to avoid blocking other
interrupts. A DPC routine initiates I/O completion and starts the next queued I/O operation on
a device.

Although the following routines aren’t shown in Figure 8-5, they’re found in many types of device
drivers:

 ■ One or more I/O completion routines A layered driver might have I/O completion rou-
tines that will notify it when a lower-level driver finishes processing an IRP. For example, the
I/O manager calls a file system driver’s I/O completion routine after a device driver finishes
transferring data to or from a file. The completion routine notifies the file system driver about
the operation’s success, failure, or cancellation, and it allows the file system driver to perform
cleanup operations.

 ■ A cancel I/O routine If an I/O operation can be canceled, a driver can define one or more
cancel I/O routines. When the driver receives an IRP for an I/O request that can be canceled, it
assigns a cancel routine to the IRP, and as the IRP goes through various stages of processing,
this routine can change, or outright disappear, if the current operation is not cancellable. If a
thread that issues an I/O request exits before the request is completed or cancels the opera-
tion (with the CancelIo Windows function, for example), the I/O manager executes the IRP’s
cancel routine if one is assigned to it. A cancel routine is responsible for performing whatever
steps are necessary to release any resources acquired during the processing that has already
taken place for the IRP as well as for completing the IRP with a canceled status.

 ■ Fast dispatch routines Drivers that make use of the cache manager in Windows (see Chap-
ter 11, “Cache Manager,” for more information on the cache manager), such as file system
drivers, typically provide these routines to allow the kernel to bypass typical I/O processing
when accessing the driver. For example, operations such as reading or writing can be quickly
performed by accessing the cached data directly, instead of taking the I/O manager’s usual
path that generates discrete I/O operations. Fast dispatch routines are also used as a mecha-
nism for callbacks from the memory manager and cache manager to file system drivers. For
instance, when creating a section, the memory manager calls back into the file system driver
to acquire the file exclusively.

 ■ An unload routine An unload routine releases any system resources a driver is using so
that the I/O manager can remove the driver from memory. Any resources acquired in the

14 Windows Internals, Sixth Edition, Part 2

initialization routine (DriverEntry) are usually released in the unload routine. A driver can be
loaded and unloaded while the system is running if the driver supports it, but the unload rou-
tine will be called only after all file handles to the device are closed.

 ■ A system shutdown notification routine This routine allows driver cleanup on system
shutdown.

 ■ Error-logging routines When unexpected errors occur (for example, when a disk block
goes bad), a driver’s error-logging routines note the occurrence and notify the I/O manager.
The I/O manager writes this information to an error log file.

Note Most kernel-mode device drivers are written in C. Starting with the Windows Driver
Kit 8.0, drivers can also be safely written in C++ due to specific support for kernel-mode
C++ in the new compilers. Use of assembly language is highly discouraged because of the
complexity it introduces and its effect of making a driver difficult to port between hard-
ware architectures such as the x86, x64, and IA64.

Driver Objects and Device Objects
When a thread opens a handle to a file object (described in the “I/O Processing” section later in this
chapter), the I/O manager must determine from the file object’s name which driver it should call to
process the request. Furthermore, the I/O manager must be able to locate this information the next
time a thread uses the same file handle. The following system objects fill this need:

 ■ A driver object represents an individual driver in the system. The I/O manager obtains the ad-
dress of each of the driver’s dispatch routines (entry points) from the driver object.

 ■ A device object represents a physical or logical device on the system and describes its charac-
teristics, such as the alignment it requires for buffers and the location of its device queue to
hold incoming IRPs. It is the target for all I/O operations because this object is what the handle
communicates with.

The I/O manager creates a driver object when a driver is loaded into the system, and it then calls
the driver’s initialization routine (DriverEntry), which fills in the object attributes with the driver’s entry
points.

At any time after loading, a driver creates device objects to represent logical or physical devices, or
even a logical interface or endpoint to the driver, by calling IoCreateDevice or IoCreateDevice Secure.
However, most Plug and Play drivers create devices with their add-device routine when the PnP man-
ager informs them of the presence of a device for them to manage. Non–Plug and Play drivers, on the
other hand, usually create device objects when the I/O manager invokes their initialization routine.
The I/O manager unloads a driver when the driver’s last device object has been deleted and no refer-
ences to the driver remain.

 CHAPTER 8 I/O System 15

When a driver creates a device object, the driver can optionally assign the device a name. A name
places the device object in the object manager namespace, and a driver can either explicitly define
a name or let the I/O manager autogenerate one. (The object manager namespace is described
in Chapter 3 in Part 1.) By convention, device objects are placed in the \Device directory in the
namespace, which is inaccessible by applications using the Windows API.

Note Some drivers place device objects in directories other than \Device. For example, the
IDE driver creates the device objects that represent IDE ports and channels in the \Device\
Ide directory. See Chapter 9 for a description of storage architecture, including the way
storage drivers use device objects.

If a driver needs to make it possible for applications to open the device object, it must create a
symbolic link in the \Global?? directory to the device object’s name in the \Device directory. (See
Chapter 3 in Part 1 for more information on \??.) Non–Plug and Play and file system drivers typically
create a symbolic link with a well-known name (for example, \Device\Hardware2). Because well-
known names don’t work well in an environment in which hardware appears and disappears dynami-
cally, PnP drivers expose one or more interfaces by calling the IoRegisterDeviceInterface function,
specifying a GUID (globally unique identifier) that represents the type of functionality exposed. GUIDs
are 128-bit values that you can generate by using a tool called Uuidgen, which is included with the
WDK and the Windows SDK. Given the range of values that 128 bits represents, it’s statistically almost
certain that each GUID that Uuidgen creates will be forever and globally unique.

IoRegisterDeviceInterface generates the symbolic link associated with a device instance; however, a
driver must call IoSetDeviceInterfaceState to enable the interface to the device before the I/O man-
ager actually creates the link. Drivers usually do this when the PnP manager starts the device by send-
ing the driver a start-device IRP—in this case, IRP_MJ_PNP, IRP_MN_START_DEVICE.

An application wanting to open a device object whose interfaces are represented with a GUID can
call Plug and Play setup functions in user space, such as SetupDiEnumDeviceInterfaces, to enumerate
the interfaces present for a particular GUID and to obtain the names of the symbolic links it can use
to open the device objects. For each device reported by SetupDiEnumDeviceInterfaces, an application
executes SetupDiGetDeviceInterfaceDetail to obtain additional information about the device, such as
its autogenerated name. After obtaining a device’s name from SetupDiGetDeviceInterfaceDetail, the
application can execute the Windows function CreateFile to open the device and obtain a handle.

16 Windows Internals, Sixth Edition, Part 2

EXPERIMENT: Looking at Device Objects
You can use the WinObj tool from Sysinternals or the !object kernel debugger command to view
the device names under \Device in the object manager namespace. The following screen shot
shows an I/O manager–assigned symbolic link that points to a device object in \Device with an
autogenerated name:

When you run the !object kernel debugger command and specify the \Device directory, you
should see output similar to the following:

lkd> !object \Device
Object: 8b611b88 Type: (84d10d40) Directory
 ObjectHeader: 8b611b70 (old version)
 HandleCount: 0 PointerCount: 365
 Directory Object: 8b602470 Name: Device

 Hash Address Type Name
 ---- ------- ---- ----
 00 85557a00 Device KsecDD
 855589d8 Device Ndis
 8b6151b0 SymbolicLink {941D252A-0BDA-4772-B3CB-30697579BD4A}
 86859030 Device 0000009b
 88c92da8 Device SrvNet
 886723f0 Device Beep
 8b71fb90 SymbolicLink ScsiPort2
 84d17a98 Device 00000032
 84d15f00 Device 00000025
 84d13030 Device 00000019
 01 86d44030 Device NDMP10
 8d291eb0 SymbolicLink {E85EEE75-32E3-4A94-8905-52709C2C9BCC}
 886da3c8 Device Netbios
 86862030 Device 0000009c
 84d177c8 Device 00000033
 84d15c70 Device 00000026
 02 86de9030 Device NDMP11
 84d19320 Device 00000040

 CHAPTER 8 I/O System 17

 88633ca0 Device NetBT_Tcpip_{033C65A4-C1D6-4824-B420-DDAEADFF873E}
 8b7dcdd0 SymbolicLink Ip
 84d17500 Device 00000034
 84d159a8 Device 00000027
 03 86df3380 Device NDMP12
 8515ede0 Device WMIAdminDevice
 84d1a030 Device 00000041
 8862e040 Device Video0
 86eaec28 Device KeyboardClass0
 84d03b00 Device KMDF0
 84d17230 Device 00000035
 84d156e0 Device 00000028
 04 86e0d030 Device NDMP13
 86e65030 Device NDMP20
 85541030 Device VolMgrControl
 86e6c358 Device Tun0
 84d1ad68 Device 00000042
 8862ec48 Device Video1
 88e15158 Device 0000009f
 9badd848 SymbolicLink MailslotRedirector
 86e1d488 Device KeyboardClass1
 ...

When you enter the !object command and specify an object manager directory object, the
kernel debugger dumps the contents of the directory according to the way the object manager
organizes it internally. For fast lookups, a directory stores objects in a hash table based on a
hash of the object names, so the output shows the objects stored in each bucket of the direc-
tory’s hash table.

As Figure 8-6 illustrates, a device object points back to its driver object, which is how the I/O
manager knows which driver routine to call when it receives an I/O request. It uses the device object
to find the driver object representing the driver that services the device. It then indexes into the driver
object by using the function code supplied in the original request; each function code corresponds to
a driver entry point. (The function codes shown in Figure 8-6 are described in the section “IRP Stack
Locations” later in this chapter.)

A driver object often has multiple device objects associated with it. The list of device objects repre-
sents the physical or logical devices that the driver controls. For example, each partition of a hard disk
has a separate device object that contains partition-specific information. However, the same hard disk
driver is used to access all partitions. When a driver is unloaded from the system, the I/O manager
uses the queue of device objects to determine which devices will be affected by the removal of the
driver.

18 Windows Internals, Sixth Edition, Part 2

Driver object

Function
code 1

Function
code 2

Function
code n

Read

Write

Device control

Start I/O

Unload

Cancel

Device
object

Device
object

Device
object

(Disk) (Disk
partition)

(Disk
partition)

Devices
operated by
this driver

.

.

.

.

.

.

.

.

.

FIGURE 8-6 The driver object

EXPERIMENT: Displaying Driver and Device Objects
You can display driver and device objects with the kernel debugger !drvobj and !devobj com-
mands, respectively. In the following example, the driver object for the keyboard class driver is
examined, and its lone device object viewed:

lkd> !drvobj kbdclass
Driver object (86e379a0) is for:
 \Driver\kbdclass
Driver Extension List: (id , addr)

Device Object list:
86e1d488 86eaec28

lkd> !devobj 86eaec28
Device object (86eaec28) is for:
 KeyboardClass0 \Driver\kbdclass DriverObject 86e379a0
Current Irp 00000000 RefCount 0 Type 0000000b Flags 00002044
DevExt 86eaece0 DevObjExt 86eaedc0
ExtensionFlags (0x00000800)
 Unknown flags 0x00000800
AttachedDevice (Upper) 86e15a40 \Driver\ctrl2cap
AttachedTo (Lower) 86e15020 \Driver\i8042prt
Device queue is not busy

Notice that the !devobj command also shows you the addresses and names of any device
objects that the object you’re viewing is layered over (the AttachedTo line) as well as the device
objects layered on top of the object specified (the AttachedDevice line).

 CHAPTER 8 I/O System 19

Using objects to record information about drivers means that the I/O manager doesn’t need to
know details about individual drivers. The I/O manager merely follows a pointer to locate a driver,
thereby providing a layer of portability and allowing new drivers to be loaded easily.

Opening Devices
A file object is a kernel-mode data structure that represents a handle to a device. File objects clearly
fit the criteria for objects in Windows: they are system resources that two or more user-mode pro-
cesses can share, they can have names, they are protected by object-based security, and they support
synchronization. Shared resources in the I/O system, like those in other components of the Windows
executive, are manipulated as objects. (See Chapter 3 in Part 1 for a description of the object manager
and Chapter 6 in Part 1 for information on object security.)

File objects provide a memory-based representation of resources that conform to an I/O-centric
interface, in which they can be read from or written to. Table 8-1 lists some of the file object’s attri-
butes. For specific field declarations and sizes, see the structure definition for FILE_OBJECT in WDM.h.

TABLE 8-1 File Object Attributes

Attribute Purpose

File name Identifies the physical file that the file object refers to, which was passed in to
the CreateFile API.

Current byte offset Identifies the current location in the file (valid only for synchronous I/O).

Share modes Indicate whether other callers can open the file for read, write, or delete
operations while the current caller is using it.

Open mode flags Indicate whether I/O will be synchronous or asynchronous, cached or
noncached, sequential or random, and so on.

Pointer to device object Indicates the type of device the file resides on.

Pointer to the volume parameter
block (VPB)

Indicates the volume, or partition, that the file resides on.

Pointer to section object pointers Indicates a root structure that describes a mapped/cached file. This structure
also contains the shared cache map, which identifies which parts of the file are
cached (or rather mapped) by the cache manager and where they reside in the
cache.

Pointer to private cache map Used to store per-handle caching information such as the read patterns for
this handle or the page priority for the process. See Chapter 10, “Memory
Management,” for more information on page priority.

List of I/O request packets (IRPs) If thread-agnostic I/O is used (to be described later) and the file object is
associated with a completion port (also described later), this is a list of all the
I/O operations that are associated with this file object.

I/O completion context Context information for the current I/O completion port, if one is active.

File object extension Stores the I/O priority (explained later in this chapter) for the file and whether
share-access checks should be performed on the file object, and contains
optional file object extensions that store context-specific information.

20 Windows Internals, Sixth Edition, Part 2

To maintain some level of opacity toward driver code that uses the file object, as well as to enable
extending the file object functionality without enlarging the structure, the file object also contains an
extension field, which allows for up to six different kinds of additional attributes. These are described
in Table 8-2.

TABLE 8-2 File Object Extensions

Extension Purpose

Transaction parameters Contains the transaction parameter block, which contains information about a
transacted file operation. Returned by IoGetTransactionParameterBlock.

Device object hint Identifies the device object of the filter driver with which this file should be
associated. Set with IoCreateFileEx or IoCreateFileSpecifyDeviceObjectHint.

I/O status block range Allows applications to lock a user-mode buffer into kernel-mode memory
to optimize asynchronous I/Os. See the section on I/O completion port
optimizations later in this chapter. Set with SetFileIoOverlappedRange.

Generic Contains filter-driver-specific information, as well as extended create parameters
(ECP) that were added by the caller. Set with IoCreateFileEx.

Scheduled file I/O Stores a file’s bandwidth reservation information, which is used by the storage
system to optimize and guarantee throughput for multimedia applications.
See the section on bandwidth reservation later in this chapter. Set with
SetFileBandwidthReservation.

Symbolic link Added to the file object upon creation, when a mount point or directory junction
is traversed (or a filter explicitly reparses the path). It stores the caller-supplied
path, including information about any intermediate junctions, so that if a relative
symbolic link is hit, it can walk back through the junctions. See Chapter 12 for
more information on NTFS symbolic links, mount points, and directory junctions.

When a caller opens a file or a simple device, the I/O manager returns a handle to a file object.
Figure 8-7 illustrates what occurs when a file is opened.

In this example, (1) a C program calls the run-time library function fopen, which in turn (2) calls the
Windows CreateFile function. The Windows subsystem DLL (in this case, Kernel32.dll) then (3) calls
the native NtCreateFile function in Ntdll.dll. The routine in Ntdll.dll contains the appropriate instruc-
tion to cause a transition into kernel mode to the system service dispatcher, which then (4) calls the
real NtCreateFile routine in Ntoskrnl.exe. (See Chapter 3 in Part 1 for more information about system
service dispatching.) Finally, this routine wraps the parameters and flags in such a way that the I/O
manager function IoCreateFile can actually perform the operation.

Note File objects represent open instances of files, not files themselves. Unlike UNIX sys-
tems, which use vnodes, Windows does not define the representation of a file; Windows file
system drivers define their own representations.

 CHAPTER 8 I/O System 21

Windows
application

Windows
subsystem

C
run-time

DLL

Windows
DLL

fp = fopen("D:\myfile.dat", r)

CreateFile("D:\myfile.dat", ...)

NtCreateFile("D:\myfile.dat", ...)

User mode

Kernel mode

System services

Create file object

Object
manager

Security
reference
monitor

Return object handle

Local
procedure
call facility

Virtual
memory
manager

I/O manager

Kernel

File systems
Cache manager

Device drivers

Network
drivers

. . .

2

3

1

4
5

Return file handle6

FIGURE 8-7 Opening a file object

Similar to executive objects, files are protected by a security descriptor that contains an access
control list (ACL). The I/O manager consults the security subsystem to determine whether a file’s ACL
allows the process to access the file in the way its thread is requesting. If it does (5, 6), the object
manager grants the access and associates the granted access rights with the file handle that it returns.
If this thread or another thread in the process needs to perform additional operations not specified in
the original request, the thread must open the same file again with a different request to get another
handle, which prompts another security check. (See Chapter 6 in Part 1 for more information about
object protection.)

22 Windows Internals, Sixth Edition, Part 2

EXPERIMENT: Viewing Device Handles
Any process that has an open handle to a device will have a file object in its handle table cor-
responding to the open instance. You can view these handles with Process Explorer by selecting
a process and checking Handles in the Lower Pane View submenu of the View menu. Sort by
the Type column and scroll to where you see the handles that represent file objects, which are
labeled as File.

In this example, the Csrss process has a handle open to a device created by the kernel secu-
rity device driver (Ksecdd.sys). You can look at the specific file object in the kernel debugger by
first identifying the address of the object. The following command reports information on the
highlighted handle (handle value 0xD4) in the preceding screen shot, which is in the Csrss.exe
process that has a process ID of 512 (0x200):

lkd> !handle d4 f 200

Searching for Process with Cid == 200
PROCESS fffffa800bf35b30
 SessionId: 0 Cid: 0200 Peb: 7fffffd8000 ParentCid: 0188
 DirBase: 1dba50000 ObjectTable: fffff8a000f28d80 HandleCount: 630.
 Image: csrss.exe

Handle table at fffff8a000f28d80 with 630 entries in use

00d4: Object: fffffa800c9cc9f0 GrantedAccess: 00100001 Entry: fffff8a001409350
Object: fffffa800c9cc9f0 Type: (fffffa800737a080) File
 ObjectHeader: fffffa800c9cc9c0 (new version)
 HandleCount: 1 PointerCount: 1

 CHAPTER 8 I/O System 23

Because the object is a file object, you can get information about it with the !fileobj command:

lkd> !fileobj fffffa800c9cc9f0

Device Object: 0xfffffa8007da1550 \Driver\KSecDD
Vpb is NULL
Event signalled

Flags: 0x40002
 Synchronous IO
 Handle Created
CurrentByteOffset: 0

Because a file object is a memory-based representation of a shareable resource and not the re-
source itself, it’s different from other executive objects. A file object contains only data that is unique
to an object handle, whereas the file itself contains the data or text to be shared. Each time a thread
opens a file, a new file object is created with a new set of handle-specific attributes. For example, for
files opened synchronously, the current byte offset attribute refers to the location in the file at which
the next read or write operation using that handle will occur. Each handle to a file has a private byte
offset even though the underlying file is shared. A file object is also unique to a process, except when
a process duplicates a file handle to another process (by using the Windows DuplicateHandle func-
tion) or when a child process inherits a file handle from a parent process. In these situations, the two
processes have separate handles that refer to the same file object.

Although a file handle is unique to a process, the underlying physical resource is not. Therefore,
as with any shared resource, threads must synchronize their access to shareable resources such as
files, file directories, and devices. If a thread is writing to a file, for example, it should specify exclusive
write access when opening the file to prevent other threads from writing to the file at the same time.
Alternatively, by using the Windows LockFile function, the thread could lock a portion of the file while
writing to it when exclusive access is required.

When a file is opened, the file name includes the name of the device object on which the file re-
sides. For example, the name \Device\HarddiskVolume1\Myfile.dat refers to the file Myfile.dat on the
C: volume. The substring \Device\HarddiskVolume1 is the name of the internal Windows device object
representing that volume. When opening Myfile.dat, the I/O manager creates a file object and stores
a pointer to the HarddiskVolume1 device object in the file object and then returns a file handle to the
caller. Thereafter, when the caller uses the file handle, the I/O manager can find the HarddiskVolume1
device object directly. Keep in mind that internal Windows device names can’t be used in Windows
applications—instead, the device name must appear in a special directory in the object manager’s
namespace, which is \Global??. This directory contains symbolic links to the real, internal Windows
device names. As was described earlier, device drivers are responsible for creating links in this direc-
tory so that their devices will be accessible to Windows applications. You can examine or even change
these links programmatically with the Windows QueryDosDevice and DefineDosDevice functions.

24 Windows Internals, Sixth Edition, Part 2

EXPERIMENT: Viewing Windows Device Name to Windows Device
Name Mappings
You can examine the symbolic links that define the Windows device namespace with the Win-
Obj utility from Sysinternals. Run WinObj, and click on the \Global?? directory, as shown here:

Notice the symbolic links on the right. Try right-clicking on the device C: and selecting Prop-
erties. You should see something like this:

C: is a symbolic link to the internal device named \Device\HarddiskVolume3, or the first
volume on the first hard drive in the system. The COM1 entry in WinObj is a symbolic link to
\Device\Serial0, and so forth. Try creating your own links with the subst command at a com-
mand prompt.

 CHAPTER 8 I/O System 25

I/O Processing

Now that we’ve covered the structure and types of drivers and the data structures that support them,
let’s look at how I/O requests flow through the system. I/O requests pass through several predict-
able stages of processing. The stages vary depending on whether the request is destined for a device
operated by a single-layered driver or for a device reached through a multilayered driver. Processing
varies further depending on whether the caller specified synchronous or asynchronous I/O, so we’ll
begin our discussion of I/O types with these two and then move on to others.

Types of I/O
Applications have several options for the I/O requests they issue. Furthermore, the I/O manager gives
drivers the choice of implementing a shortcut I/O interface that can often mitigate IRP allocation for
I/O processing. In this section, we’ll explain these options for I/O requests.

Synchronous and Asynchronous I/O
Most I/O operations that applications issue are synchronous (which is the default); that is, the applica-
tion thread waits while the device performs the data operation and returns a status code when the
I/O is complete. The program can then continue and access the transferred data immediately. When
used in their simplest form, the Windows ReadFile and WriteFile functions are executed synchro-
nously. They complete the I/O operation before returning control to the caller.

Asynchronous I/O allows an application to issue multiple I/O requests and continue executing
while the device performs the I/O operation. This type of I/O can improve an application’s through-
put because it allows the application thread to continue with other work while an I/O operation is in
progress. To use asynchronous I/O, you must specify the FILE_FLAG_OVERLAPPED flag when you call
the Windows CreateFile function. Of course, after issuing an asynchronous I/O operation, the thread
must be careful not to access any data from the I/O operation until the device driver has finished the
data operation. The thread must synchronize its execution with the completion of the I/O request by
monitoring a handle of a synchronization object (whether that’s an event object, an I/O completion
port, or the file object itself) that will be signaled when the I/O is complete.

Regardless of the type of I/O request, internally I/O operations issued to a driver on behalf of the
application are performed asynchronously; that is, once an I/O request has been initiated, the device
driver returns to the I/O system. Whether or not the I/O system returns immediately to the caller de-
pends on whether the handle was opened for synchronous or asynchronous I/O. Figure 8-8 illustrates
the flow of control when a read operation is initiated. Notice that if a wait is done, which depends on
the overlapped flag in the file object, it is done in kernel mode by the NtReadFile function.

26 Windows Internals, Sixth Edition, Part 2

You can test the status of a pending asynchronous I/O operation with the Windows
 Has Over lapped Io Completed macro. If you’re using I/O completion ports (described in the “I/O
Completion Ports” section later in this chapter), you can use the GetQueuedCompletionStatus(Ex)
function(s).

User mode

Kernel mode

Call ReadFile()

Call NtReadFile()
Return to caller

SYSENTER (x86)
or SYSCALL (x64)

Return to caller

Call NtReadFile()
Dismiss interrupt

Invoke driver
Wait or return

to caller

Initiate I/O
operation

Return to caller

NtReadFile

KiSystemService

NtReadFile

ReadFile

Application

Kernel32.dll

Ntdll.dll

Ntoskrnl.exe

Ntoskrnl.exe

Driver.sys

Whether to wait depends
on overlapped flag

FIGURE 8-8 Control flow for an I/O operation

Fast I/O
Fast I/O is a special mechanism that allows the I/O system to bypass generating an IRP and instead go
directly to the driver stack to complete an I/O request. (Fast I/O is described in detail in Chapters 11
and 12.) A driver registers its fast I/O entry points by entering them in a structure pointed to by the
PFAST_IO_DISPATCH pointer in its driver object.

 CHAPTER 8 I/O System 27

EXPERIMENT: Looking at a Driver’s Registered Fast I/O Routines
The !drvobj kernel debugger command can list the fast I/O routines that a driver registers in
its driver object. However, typically only file system drivers have any use for fast I/O routines,
although there are exceptions, such as network protocol drivers and bus filter drivers. The fol-
lowing output shows the fast I/O table for the NTFS file system driver object:

lkd> !drvobj \FileSystem\Ntfs 2
Driver object (fffffa8007d9fbe0) is for:
 \FileSystem\Ntfs
DriverEntry: fffff880017d406c Ntfs!GsDriverEntry
DriverStartIo: 00000000
DriverUnload: 00000000
AddDevice: 00000000

Dispatch routines:
...

Fast I/O routines:
FastIoCheckIfPossible fffff88001782230 Ntfs!NtfsFastIoCheckIfPossible
FastIoRead fffff880016efd60 Ntfs!NtfsCopyReadA
FastIoWrite fffff880016f2a10 Ntfs!NtfsCopyWriteA
FastIoQueryBasicInfo fffff880016e42e8 Ntfs!NtfsFastQueryBasicInfo
...
ReleaseForModWrite fffff8800166fee4 Ntfs!NtfsReleaseFileForModWrite
AcquireForCcFlush fffff8800167133c Ntfs!NtfsAcquireFileForCcFlush
ReleaseForCcFlush fffff880016713a0 Ntfs!NtfsReleaseFileForCcFlush

The output shows that NTFS has registered its NtfsCopyReadA routine as the fast I/O table’s
FastIoRead entry. As the name of this fast I/O entry implies, the I/O manager calls this function
when issuing a read I/O request if the file is cached. If the call doesn’t succeed, the standard IRP
path is selected.

Mapped File I/O and File Caching
Mapped file I/O is an important feature of the I/O system, one that the I/O system and the memory
manager produce jointly. (See Chapter 10 for details on how mapped files are implemented.) Mapped
file I/O refers to the ability to view a file residing on disk as part of a process’s virtual memory. A pro-
gram can access the file as a large array without buffering data or performing disk I/O. The program
accesses memory, and the memory manager uses its paging mechanism to load the correct page
from the disk file. If the application writes to its virtual address space, the memory manager writes the
changes back to the file as part of normal paging.

Mapped file I/O is available in user mode through the Windows CreateFileMapping and
MapViewOfFile functions. Within the operating system, mapped file I/O is used for important opera-
tions such as file caching and image activation (loading and running executable programs). The
other major consumer of mapped file I/O is the cache manager. File systems use the cache manager
to map file data in virtual memory to provide better response time for I/O-bound programs. As the
caller uses the file, the memory manager brings accessed pages into memory. Whereas most caching

28 Windows Internals, Sixth Edition, Part 2

systems allocate a fixed number of bytes for caching files in memory, the Windows cache grows or
shrinks depending on how much memory is available. This size variability is possible because the
cache manager relies on the memory manager to automatically expand (or shrink) the size of the
cache, using the normal working set mechanisms explained in Chapter 10, in this case applied to the
system working set. By taking advantage of the memory manager’s paging system, the cache man-
ager avoids duplicating the work that the memory manager already performs. (The workings of the
cache manager are explained in detail in Chapter 11.)

Scatter/Gather I/O
Windows also supports a special kind of high-performance I/O that is called scatter/gather, available
via the Windows ReadFileScatter and WriteFileGather functions. These functions allow an application
to issue a single read or write from more than one buffer in virtual memory to a contiguous area of
a file on disk instead of issuing a separate I/O request for each buffer. To use scatter/gather I/O, the
file must be opened for noncached I/O, the user buffers being used have to be page-aligned, and
the I/Os must be asynchronous (overlapped). Furthermore, if the I/O is directed at a mass storage
device, the I/O must be aligned on a device sector boundary and have a length that is a multiple of
the sector size.

I/O Request Packets
The I/O request packet (IRP) is where the I/O system stores information it needs to process an I/O
request. When a thread calls an I/O API, the I/O manager constructs an IRP to represent the opera-
tion as it progresses through the I/O system. If possible, the I/O manager allocates IRPs from one of
three per-processor IRP nonpaged look-aside lists: the small-IRP look-aside list stores IRPs with one
stack location (IRP stack locations are described shortly), the medium-IRP look-aside list contains IRPs
with 4 stack locations (which can also be used for IRPs that require only 2 or 3 stack locations), and
the large-IRP look-aside list contains IRPs with more than 4 stack locations—by default, the system
stores IRPs with 10 stack locations on the large-IRP look-aside list, but once per minute the system
adjusts the number of stack locations allocated and can increase it up to a maximum of 20, based on
how many stack locations have been recently required. Additionally, these lists are backed by global
look-aside lists as well, allowing efficient cross-CPU IRP flow. If an IRP requires more stack locations
than are contained in the IRPs on the large-IRP look-aside list, the I/O manager allocates IRPs from
nonpaged pool. After allocating and initializing an IRP, the I/O manager stores a pointer to the caller’s
file object in the IRP.

Note If defined, the DWORD registry value HKLM\System\CurrentControlSet\Session
Manager\I/O System\LargeIrpStackLocations specifies how many stack locations are con-
tained in IRPs stored on the large-IRP look-aside list.

Figure 8-9 shows a sample I/O request that demonstrates the relationship between an IRP and the
file, device, and driver objects described in the preceding sections. Although this example shows an
I/O request to a single-layered device driver, most I/O operations aren’t this direct; they involve one
or more layered drivers. (This case will be shown later in this section.)

 CHAPTER 8 I/O System 29

Environment
subsystem or

DLL
1

Kernel mode

User mode

An application writes a
file to the printer, passing
a handle to the file object.

2 The I/O manager creates an
IRP and initializes the first
stack location.

3 The I/O manager uses the
driver object to locate the
WRITE dispatch routine and
calls it, passing the IRP.

I/O system services

I/O manager

IRP stack location WRITE
parameters

IRP header
File

object
Device
object

Driver
object

IRP

Dispatch
routine(s) Start I/O ISR DPC

routine

Device driver

FIGURE 8-9 Data structures involved in a single-layered driver I/O request

IRP Stack Locations
An IRP consists of two parts: a fixed header (often referred to as the IRP’s body) and one or more
stack locations. The fixed portion contains information such as the type and size of the request,
whether the request is synchronous or asynchronous, a pointer to a buffer for buffered I/O, and
state information that changes as the request progresses. An IRP stack location contains a function
code (consisting of a major code and a minor code), function-specific parameters, and a pointer to
the caller’s file object. The major function code identifies which of a driver’s dispatch routines the I/O
manager invokes when passing an IRP to a driver. An optional minor function code sometimes serves
as a modifier of the major function code. Power and Plug and Play commands always have minor
function codes.

Most drivers specify dispatch routines to handle only a subset of possible major function codes,
including create (open), read, write, device I/O control, power, Plug and Play, system control (for WMI
commands), cleanup, and close. (See the following experiment for a complete listing of major function
codes.) File system drivers are an example of a driver type that often fills in most or all of its dispatch
entry points with functions. In contrast, a driver for a simple USB device would probably fill in only

30 Windows Internals, Sixth Edition, Part 2

the routines needed for open, close, read, write, and sending I/O control codes. The I/O manager sets
any dispatch entry points that a driver doesn’t fill to point to its own IopInvalidDeviceRequest, which
completes the IRP with an error status indicating that the major function specified in the IRP is invalid
for that device.

EXPERIMENT: Looking at Driver Dispatch Routines
You can obtain a listing of the functions a driver has defined for its dispatch routines by enter-
ing a 7 after the driver object’s name (or address) in the !drvobj kernel debugger command. The
following output shows that drivers support 28 IRP types.

lkd> !drvobj \Driver\kbdclass 7
Driver object (fffffa800adc2e70) is for:
 \Driver\kbdclass
Driver Extension List: (id , addr)

Device Object list:
fffffa800b04fce0 fffffa800abde560

DriverEntry: fffff880071c8ecc kbdclass!GsDriverEntry
DriverStartIo: 00000000
DriverUnload: 00000000
AddDevice: fffff880071c53b4 kbdclass!KeyboardAddDevice

Dispatch routines:
[00] IRP_MJ_CREATE fffff880071bedd4 kbdclass!KeyboardClassCreate
[01] IRP_MJ_CREATE_NAMED_PIPE fffff800036abc0c nt!IopInvalidDeviceRequest
[02] IRP_MJ_CLOSE fffff880071bf17c kbdclass!KeyboardClassClose
[03] IRP_MJ_READ fffff880071bf804 kbdclass!KeyboardClassRead
...
[19] IRP_MJ_QUERY_QUOTA fffff800036abc0c nt!IopInvalidDeviceRequest
[1a] IRP_MJ_SET_QUOTA fffff800036abc0c nt!IopInvalidDeviceRequest
[1b] IRP_MJ_PNP fffff880071c0368 kbdclass!KeyboardPnP

While active, each IRP is usually queued in an IRP list associated with the thread that requested the
I/O. (Otherwise, it is stored in the file object when performing thread-agnostic I/O, which is described
earlier in this chapter.) This allows the I/O system to find and cancel any outstanding IRPs if a thread
terminates with I/O requests that have not been completed. Additionally, paging I/O IRPs are also as-
sociated with the faulting thread (although they are not cancellable). This allows Windows to use the
thread-agnostic I/O optimization —when an APC is not used to complete I/O if the current thread is
the initiating thread. This means that page faults occur inline, instead of requiring APC delivery.

 CHAPTER 8 I/O System 31

EXPERIMENT: Looking at a Thread’s Outstanding IRPs
When you use the !thread command, it prints any IRPs associated with the thread. Run
the kernel debugger with live debugging, and locate the service control manager process
(Services.exe) in the output generated by the !process command:

lkd> !process 0 0
**** NT ACTIVE PROCESS DUMP ****
...
PROCESS 8623b840 SessionId: 0 Cid: 0270 Peb: 7ffd6000 ParentCid: 0210
 DirBase: ce21e080 ObjectTable: 964c06a0 HandleCount: 198.
 Image: services.exe
...

Then dump the threads for the process by executing the !process command on the process
object. You should see many threads, with most of them having IRPs reported in the IRP List
area of the thread information (note that the debugger will show only the first 17 IRPs for a
thread that has more than 17 outstanding I/O requests):

lkd> !process 8623b840
PROCESS 8623b840 SessionId: 0 Cid: 0270 Peb: 7ffd6000 ParentCid: 0210
 DirBase: ce21e080 ObjectTable: 964c06a0 HandleCount: 198.
 Image: services.exe
 VadRoot 862b1358 Vads 71 Clone 0 Private 466. Modified 14. Locked 2.
 DeviceMap 8b0087d8
...
 THREAD 86a1d248 Cid 0270.053c Teb: 7ffdc000 Win32Thread: 00000000
 WAIT: (UserRequest) UserMode Alertable
 86a40ca0 NotificationEvent
 86a40490 NotificationEvent
 IRP List:
 86a81190: (0006,0094) Flags: 00060900 Mdl: 00000000
...

Choose an IRP, and examine it with the !irp command:

lkd> !irp 86a81190
Irp is active with 1 stacks 1 is current (= 0x86a81200)
 No Mdl: No System Buffer: Thread 86a1d248: Irp stack trace.
 cmd flg cl Device File Completion-Context
>[3, 0] 0 1 86156328 86a4e7a0 00000000-00000000 pending
 \FileSystem\Npfs
 Args: 00000800 00000000 00000000 00000000

This IRP has a major function of 3, which corresponds to IRP_MJ_READ, which can be found
in WDM.h. It has one stack location and is targeted at a device owned by the Npfs driver (the
Named Pipe File System driver). (Npfs is described in Chapter 7, “Networking,” in Part 1.)

32 Windows Internals, Sixth Edition, Part 2

IRP Buffer Management
When an application or a device driver indirectly creates an IRP by using the NtReadFile, NtWrite-
File, or NtDeviceIoControlFile system services (or the Windows API functions corresponding to these
services, which are ReadFile, WriteFile, and DeviceIoControl), the I/O manager determines whether
it needs to participate in the management of the caller’s input or output buffers. The I/O manager
performs three types of buffer management:

 ■ Buffered I/O The I/O manager allocates a buffer in nonpaged pool of equal size to the
caller’s buffer. For write operations, the I/O manager copies the caller’s buffer data into the
allocated buffer when creating the IRP. For read operations, the I/O manager copies data from
the allocated buffer to the user’s buffer when the IRP completes and then frees the allocated
buffer. The nonpaged pool buffer is pointed to by the IRP’s AssociatedIrp.SystemBuffer field.

 ■ Direct I/O When the I/O manager creates the IRP, it locks the user’s buffer into memory
(that is, makes it nonpaged). When the I/O manager has finished using the IRP, it unlocks the
buffer. The I/O manager stores a description of the memory in the form of a memory descrip-
tor list (MDL). An MDL specifies the physical memory occupied by a buffer. (See the WDK for
more information on MDLs.) Devices that perform direct memory access (DMA) require only
physical descriptions of buffers, so an MDL is sufficient for the operation of such devices. (De-
vices that support DMA transfer data directly between the device and the computer’s memory
by using a DMA controller, not the CPU.) If a driver must access the contents of a buffer, how-
ever, it can map the buffer into the system’s address space.

 ■ Neither I/O The I/O manager doesn’t perform any buffer management. Instead, buffer
management is left to the discretion of the device driver, which can choose to manually per-
form the steps the I/O manager performs with the other buffer management types.

For each type of buffer management, the I/O manager places applicable references in the IRP
to the locations of the input and output buffers. The type of buffer management the I/O manager
performs depends on the type of buffer management a driver requests for each type of operation.
A driver registers the type of buffer management it desires for read and write operations in the
device object that represents the device. Device I/O control operations (those requested by call-
ing NtDeviceIoControlFile) are specified with driver-defined I/O control codes, and a control code
contains bits specifying the buffer management the I/O manager should use when issuing IRPs that
contain that code.

Drivers commonly use buffered I/O when callers transfer requests smaller than one page (4 KB on
x86 processors) or when the device does not support DMA. They use direct I/O for larger requests on
DMA-aware devices. File system drivers commonly use neither I/O because no buffer management
overhead is incurred when data can be copied from the file system cache into the caller’s original buf-
fer. The reason that most drivers don’t use neither I/O is that a pointer to a caller’s buffer is valid only
while a thread of the caller’s process is executing.

 CHAPTER 8 I/O System 33

Drivers that use neither I/O to access buffers that might be located in user space must take special
care to ensure that buffer addresses are both valid and do not reference kernel-mode memory. Scalar
values, however, are perfectly safe to pass, although a few drivers have only a scalar value to pass
around. Failure to do so could result in crashes or in security vulnerabilities, where applications have
access to kernel-mode memory or can inject code into the kernel. The ProbeForRead and ProbeFor-
Write functions that the kernel makes available to drivers verify that a buffer resides entirely in the
user-mode portion of the address space. To avoid a crash from referencing an invalid user-mode
address, drivers can access user-mode buffers from within exception-handling code (called try/except
blocks in C) that catch any invalid memory faults and translate them into error codes to return to the
application. Additionally, drivers should also capture all input data into a kernel buffer instead of rely-
ing on user-mode addresses, since the caller could always modify the data behind the driver’s back,
even if the memory address itself is still valid.

I/O Request to a Single-Layered Driver
This section traces a synchronous I/O request to a single-layered kernel-mode device driver. In its
most simplified form, handling a synchronous I/O to a single-layered driver consists of seven steps:

1. The I/O request passes through a subsystem DLL.

2. The subsystem DLL calls the I/O manager’s NtWriteFile service.

3. The I/O manager allocates an IRP describing the request and sends it to the driver (a device
driver in this case) by calling its own IoCallDriver function.

4. The driver transfers the data in the IRP to the device and starts the I/O operation.

5. The device signals I/O completion by interrupting the CPU.

6. The device driver services the interrupt.

7. The driver calls the I/O manager’s IoCompleteRequest function to inform it that it has finished
processing the IRP’s request, and the I/O manager completes the I/O request.

These seven steps are illustrated in Figure 8-10.

34 Windows Internals, Sixth Edition, Part 2

I/O request passes
through subsystem DLL Environment

subsystem
or DLL

User mode

Kernel mode

Handle interrupt and
return success or
error status

Create IRP and send
it to device driver

IRP

IRP

Transfer data
specified in IRP

Device
driver

Perform I/O and
interrupt

5

6

4

3

NtWriteFile(file_handle, ...,
char_buffer)

2
Complete IRP and return
success or error status

7

1

Services

I/O manager

FIGURE 8-10 Issuing and completing a synchronous I/O request

Now that we’ve seen how an I/O is initiated, let’s take a closer look at interrupt processing and I/O
completion.

Servicing an Interrupt
After an I/O device completes a data transfer, it interrupts for service, and the Windows kernel, I/O
manager, and device driver are called into action. Figure 8-11 illustrates the first phase of the process.
(Chapter 3 in Part 1 describes the interrupt dispatching mechanism, including DPCs. We’ve included a
brief recap here because DPCs are key to I/O processing on interrupt-driven devices.)

 CHAPTER 8 I/O System 35

DPC

DPCDPC

Dispatch
routine(s) Start I/O ISR DPC

routine(s)

The ISR stops the device
interrupt and queues a DPC.

Device driver

The kernel’s interrupt
dispatcher transfers control
to the device’s service routine.

2

3

1 The device
interrupts for
service.

DPC queue

High

Device IRQL

DPC/dispatch

APC

Passive

IRQL

FIGURE 8-11 Servicing a device interrupt (phase 1)

When a device interrupt occurs, the processor transfers control to the kernel trap handler, which
indexes into its interrupt dispatch table to locate the ISR for the device. ISRs in Windows typically
handle device interrupts in two steps. When an ISR is first invoked, it usually remains at device IRQL
only long enough to capture the device status and then stop the device’s interrupt. It then queues
a DPC and exits, dismissing the interrupt. Later, when the DPC routine is called at IRQL 2, the device
finishes processing the interrupt. When that’s done, the device calls the I/O manager to complete the
I/O and dispose of the IRP. It will also start the next I/O request that is waiting in the device queue.

The advantage of using a DPC to perform most of the device servicing is that any blocked inter-
rupt whose IRQL lies between the device IRQL and the DPC/dispatch IRQL (2) is allowed to occur
before the lower-priority DPC processing occurs. Intermediate-level interrupts are thus serviced more
promptly than they otherwise would be, and this reduces latency on the system. This second phase of
an I/O (the DPC processing) is illustrated in Figure 8-12.

36 Windows Internals, Sixth Edition, Part 2

IRP 5IRP 6

DPC

DPC DPC

Dispatch
routine(s) Start I/O ISR DPC

routine(s)

The DPC routine starts the next I/O
request in the device queue and
then completes interrupt servicing.

High

Device IRQL

DPC/dispatch

APC

Passive

IRQL

Device driver

The interrupt dispatcher
transfers control to the
driver’s DPC routine.

2

3

1 The IRQL drops,
and DPC processing
occurs.

Device queue

DPC queue

FIGURE 8-12 Servicing a device interrupt (phase 2)

Completing an I/O Request
After a device driver’s DPC routine has executed, some work still remains before the I/O request can
be considered finished. This third stage of I/O processing is called I/O completion and is initiated when
a driver calls IoCompleteRequest to inform the I/O manager that it has completed processing the
request specified in the IRP (and the stack location that it owns). The steps I/O completion entails vary
with different I/O operations. For example, all the I/O drivers record the outcome of the operation in
an I/O status block, a data structure stored in the IRP and then copied back into a caller- supplied buf-
fer during I/O completion. Similarly, some drivers that perform buffered I/O require the I/O system to
return data to the calling thread.

 CHAPTER 8 I/O System 37

In both cases, the I/O system must copy data that is stored in system memory into the caller’s
virtual address space. If the IRP completed synchronously, the caller’s address space is current and
directly accessible, but if the IRP completed asynchronously, the I/O manager must delay IRP comple-
tion until it can access the caller’s address space. To gain access to the caller’s virtual address space,
the I/O manager must transfer the data “in the context of the caller’s thread”—that is, while the
caller’s thread is executing (which implies that the caller’s process is the current process and its ad-
dress space is mapped on the processor). It does so by queuing a special kernel-mode asynchronous
procedure call (APC) to the thread. This process is illustrated in Figure 8-13.

Thread’s APC queue

IRP

Dispatch
routine(s) Start I/O ISR DPC

routine(s)

The I/O manager queues an
APC to complete the I/O request
in the caller’s context.

Device driver

The DPC routine calls
the I/O manager to complete
the original I/O request.

1

2

APC

IRP

APC

IRP

APC

IRP

I/O manager

FIGURE 8-13 Completing an I/O request (phase 1)

As explained in Chapter 3 in Part 1, APCs execute in the context of a particular thread, whereas a
DPC executes in arbitrary thread context, meaning that the DPC routine can’t touch the user-mode
process address space. Remember too that DPCs have a higher IRQL than APCs.

The next time that the thread begins to execute at low IRQL (below DISPATCH_LEVEL), the pend-
ing APC is delivered. The kernel transfers control to the I/O manager’s APC routine, which copies the
data (for a read request) and the return status into the original caller’s address space, frees the IRP
representing the I/O operation, and either sets the caller’s file handle (and any caller-supplied event)
to the signaled state for synchronous I/O or queues an entry to the caller’s I/O completion port. The
I/O is now considered complete. The original caller or any other threads that are waiting on the file
(or other object) handle are released from their waiting state and readied for execution. Figure 8-14
illustrates the second stage of I/O completion.

38 Windows Internals, Sixth Edition, Part 2

High

Device printer

DPC/dispatch

APC

Passive

IRQLThread’s APC queue

APC

IRP

APC

IRP

The kernel-mode APC
routine writes data to
the thread’s address
space, sets the original
file handle to the
signaled state for
synchronous I/O,
queues any user-mode
APCs for execution,
and disposes of the IRP.

The interrupt
dispatcher transfers
control to the I/O
manager’s APC
routine.

Environment
subsystem or

DLL

APC
routine

The next time the
caller’s thread runs,
an APC interrupt
occurs.

I/O manager

2

3

1

Kernel mode

User mode

FIGURE 8-14 Completing an I/O request (phase 2)

Although this is the normal path through which I/O completion occurs, Windows can take a short-
cut if the I/O happens to be completed in the same thread that issued the I/O request. In this situa-
tion, as long as APC delivery was not disabled (in order to maintain compatibility with legacy versions
of Windows, which always used an APC, even in this situation), the phase 2 I/O completion mechanism
is called inline.

A final note about I/O completion: the asynchronous I/O functions ReadFileEx and WriteFileEx al-
low a caller to supply a user-mode APC as a parameter. If the caller does so, the I/O manager queues
this APC to the caller’s thread APC queue as the last step of I/O completion. This feature allows a
caller to specify a subroutine to be called when an I/O request is completed or canceled. User-mode
APC completion routines execute in the context of the requesting thread and are delivered only when
the thread enters an alertable wait state (such as calling the Windows SleepEx, WaitForSingleObjectEx,
or WaitForMultipleObjectsEx function).

Synchronization
Drivers must synchronize their access to global driver data and hardware registers for two reasons:

 ■ The execution of a driver can be preempted by higher-priority threads and time-slice (or
quantum) expiration or can be interrupted by higher IRQL interrupts.

 CHAPTER 8 I/O System 39

 ■ On multiprocessor systems, Windows can run driver code simultaneously on more than one
processor.

Without synchronization, corruption could occur—for example, because device driver code
running at passive IRQL (0) when a caller initiates an I/O operation can be interrupted by a device
interrupt, causing the device driver’s ISR to execute while its own device driver is already running. If
the device driver was modifying data that its ISR also modifies, such as device registers, heap stor-
age, or static data, the data can become corrupted when the ISR executes. Figure 8-15 illustrates this
problem.

2

3

1

Interrupt
service
routine

(ISR)

Dispatch
routine(s)

Global or
shared data

ISR executes and
writes shared data,
possibly corrupting it

Device IRQL

Passive IRQL

Interrupt occurs

Device driver is
writing shared data

FIGURE 8-15 Concurrent access to shared data by a device driver dispatch routine and ISR

To avoid this situation, a device driver written for Windows must synchronize its access to any data
that can be accessed at more than one IRQL. Before attempting to update shared data, the device
driver must lock out all other threads (or CPUs, in the case of a multiprocessor system) to prevent
them from updating the same data structure.

The Windows kernel provides a special synchronization routine called KeSynchronizeExecution
that device drivers call when they access data that their ISRs also access. This kernel synchronization
routine keeps the ISR from executing while the shared data is being accessed. A driver can also use
KeAcquireInterruptSpinLock to access an interrupt object’s spinlock directly, although drivers can gen-
erally behave better by relying on KeSynchronizeExecution for synchronization with an ISR because
calling this function at PASSIVE_LEVEL will synchronize with a KEVENT in the interrupt object structure
instead of raising IRQL.

By now, you should realize that although ISRs require special attention, any data that a device
driver uses is subject to being accessed by the same device driver running on another proces-
sor. Therefore, it’s critical for device driver code to synchronize its use of any global or shared data
(or any accesses to the physical device itself). If the ISR uses that data, the device driver must use
 KeSynchronizeExecution or KeAcquireInterruptSpinLock; otherwise, the device driver can use standard
kernel spinlocks (which are acquired at DISPATCH_LEVEL (IRQL 2).

40 Windows Internals, Sixth Edition, Part 2

I/O Requests to Layered Drivers
The preceding section showed how an I/O request to a simple device controlled by a single device
driver is handled. I/O processing for file-based devices or for requests to other layered drivers hap-
pens in much the same way. The major difference is, obviously, that one or more additional layers of
processing are added to the model.

Figure 8-16 shows a very simplified, illustrative example of how an asynchronous I/O request might
travel through layered drivers. It uses as an example a disk controlled by a file system.

I/O manager creates IRP, fills
in first stack location, and
calls a file system driver.

Environment
subsystem

or DLL

User mode

Kernel mode

Send IRP data to disk driver
(or queue IRP) and return

File
system
driver

Volume
manager

Return I/O pending status5

Return I/O pending status6

4

File system driver fills in a
second IRP stack location and
calls the volume manager.

3

2

Return I/O pending status7Call I/O service1

Services

I/O manager

IRP
Current

IRP

Current

FIGURE 8-16 Queuing an asynchronous request to layered drivers

 CHAPTER 8 I/O System 41

Once again, the I/O manager receives the request and creates an I/O request packet to represent
it. This time, however, it delivers the packet to a file system driver. The file system driver exercises
great control over the I/O operation at that point. Depending on the type of request the caller made,
the file system can send the same IRP to the disk driver or it can generate additional IRPs and send
them separately to the disk driver.

EXPERIMENT: Viewing a Device Stack
The kernel debugger command !devstack shows you the device stack of layered device objects
associated with a specified device object. This example shows the device stack associated with a
device object, \device\keyboardclass0, which is owned by the keyboard class driver:

lkd> !devstack keyboardclass0
 !DevObj !DrvObj !DevExt ObjectName
 fffffa800a5e2040 \Driver\Ctrl2cap fffffa800a5e2190
> fffffa800a612ce0 \Driver\kbdclass fffffa800a612e30 KeyboardClass0
 fffffa800a612040 \Driver\i8042prt fffffa800a612190
 fffffa80076e0a00 \Driver\ACPI fffffa80076f3a90 0000005c
!DevNode fffffa800770f750 :
 DeviceInst is "ACPI\PNP0303\4&b0a2531&0"
 ServiceName is "i8042prt"

The output highlights the entry associated with KeyboardClass0 with the “>“ character in
column one. The entries above that line are drivers layered above the keyboard class driver,
and those below are layered beneath it. In general, IRPs flow from the top of the stack to the
bottom.

The file system is most likely to reuse an IRP if the request it receives translates into a single
straightforward request to a device. For example, if an application issues a read request for the first
512 bytes in a file stored on a volume, the NTFS file system would simply call the volume manager
driver, asking it to read one sector from the volume, beginning at the file’s starting location.

To accommodate its reuse by multiple drivers in a request to layered drivers, an IRP contains a
series of IRP stack locations (not to be confused with the CPU stack used by threads to store function
parameters and return addresses). These data areas, one for every driver that will be called, contain
the information that each driver needs to execute its part of the request—for example, function code,
parameters, and driver context information. As Figure 8-16 illustrates, additional stack locations are
filled in as the IRP passes from one driver to the next. You can think of an IRP as being similar to a
stack in the way data is added to it and removed from it during its lifetime. However, an IRP isn’t as-
sociated with any particular process, and its allocated size doesn’t grow or shrink. The I/O manager
allocates an IRP from one of its IRP look-aside lists or nonpaged system memory at the beginning of
the I/O operation.

42 Windows Internals, Sixth Edition, Part 2

Note Since the number of devices on a given stack is known in advance, the I/O manager
allocates one stack location per device driver on the stack. However, there are situations in
which an IRP might be directed into a new driver stack, as can happen in scenarios involv-
ing the Filter Manager, which allows one filter to redirect an IRP to another filter (going
from a local file system to a network file system, for example). The I/O manager exposes an
API, IoAdjustStackSizeForRedirection, that enables this functionality by adding the required
stack locations because of devices present on the redirected stack.

EXPERIMENT: Examining IRPs
In this experiment, you’ll find an uncompleted IRP on the system, and you’ll determine the IRP
type, the device at which it’s directed, the driver that manages the device, the thread that is-
sued the IRP, and what process the thread belongs to.

At any point in time, there are at least a few uncompleted IRPs on a system. This occurs
because there are many devices to which applications can issue IRPs that a driver will com-
plete only when a particular event occurs, such as data becoming available. One example is a
blocking read from a network endpoint. You can see the outstanding IRPs on a system with the
!irpfind kernel debugger command:

lkd> !irpfind

Scanning large pool allocation table for Tag: Irp? (86c16000 : 86d16000)
Searching NonPaged pool (80000000 : ffc00000) for Tag: Irp?

 Irp [Thread] irpStack: (Mj,Mn) DevObj [Driver] MDL Process
862d2380 [8666dc68] irpStack: (c, 2) 84a6f020 [\FileSystem\Ntfs]
862d2bb0 [864e3d78] irpStack: (e,20) 86171348 [\Driver\AFD] 0x864dbd90
862d4518 [865f7600] irpStack: (d, 0) 86156328 [\FileSystem\Npfs]
862d4688 [867133f0] irpStack: (3, 0) 86156328 [\FileSystem\Npfs]
862dd008 [00000000] Irp is complete (CurrentLocation 4 > StackCount 3) 0x00420000
862dee28 [864fc030] irpStack: (3, 0) 84baf030 [\Driver\kbdclass]

The entry in bold in the output describes an IRP that is directed at the Kbdclass driver, so it is
likely that the IRP was issued by the Windows subsystem raw input thread that reads keyboard
input. Examining the IRP with the !irp command reveals the following:

lkd> !irp 862dee28
Irp is active with 3 stacks 3 is current (= 0x862deee0)
 No Mdl: System buffer=864f5108: Thread 864fc030: Irp stack trace.
 cmd flg cl Device File Completion-Context
 [0, 0] 0 0 00000000 00000000 00000000-00000000

 Args: 00000000 00000000 00000000 00000000
 [0, 0] 0 0 00000000 00000000 00000000-00000000

 CHAPTER 8 I/O System 43

 Args: 00000000 00000000 00000000 00000000
>[3, 0] 0 1 84baf030 864f52f8 00000000-00000000 pending
 \Driver\kbdclass
 Args: 00000078 00000000 00000000 00000000

The active stack location is at the bottom. (The debugger shows the active location with a
“>“ character in column one.) It has a major function of 3, which corresponds to IRP_MJ_READ.

The next step is to see what device object the IRP is targeting by executing the !devobj com-
mand on the device object address in the active stack location.

lkd> !devobj 84baf030
Device object (84baf030) is for:
 KeyboardClass1 \Driver\kbdclass DriverObject 84b706b8
Current Irp 00000000 RefCount 0 Type 0000000b Flags 00002044
Dacl 8b0538b8 DevExt 84baf0e8 DevObjExt 84baf1c8
ExtensionFlags (0x00000800)
 Unknown flags 0x00000800
AttachedTo (Lower) 84badaa0 \Driver\TermDD
Device queue is not busy.

The device at which the IRP is targeted is KeyboardClass1. The presence of a device object
owned by the Termdd driver attached beneath it reveals that it is the device that represents
keyboard input from a Terminal Server client, not the physical keyboard.

We can see details about the thread and process that issued the IRP by using the !thread and
!process commands:

lkd> !thread 864fc030
THREAD 864fc030 Cid 01d4.0234 Teb: 7ffd9000 Win32Thread: ffac4008
 WAIT: (WrUserRequest) KernelMode Alertable
 8623c620 SynchronizationEvent
 864fc3a8 NotificationTimer
 864fc378 SynchronizationTimer
 864fc360 SynchronizationEvent
IRP List:
 86af0e28: (0006,01d8) Flags: 00060970 Mdl: 00000000
 86503958: (0006,0268) Flags: 00060970 Mdl: 00000000
 862dee28: (0006,01d8) Flags: 00060970 Mdl: 00000000
Not impersonating
DeviceMap 8b0087d8
Owning Process 0 Image: <Unknown>
Attached Process 864d2d90 Image: csrss.exe
Wait Start TickCount 171909 Ticks: 29 (0:00:00:00.452)
Context Switch Count 121222
UserTime 00:00:00.000
KernelTime 00:00:00.717
Win32 Start Address 0x764d9a30
Stack Init 96f46000 Current 96f45c28 Base 96f46000 Limit 96f43000 Call 0
Priority 15 BasePriority 13 PriorityDecrement 0 IoPriority 2 PagePriority 5

lkd> !process 864d2d90
PROCESS 864d2d90 SessionId: 1 Cid: 0208 Peb: 7ffdf000 ParentCid: 0200
 DirBase: ce21e0a0 ObjectTable: 964a6e68 HandleCount: 284.
 Image: csrss.exe

44 Windows Internals, Sixth Edition, Part 2

Locating the thread in Process Explorer by opening the Properties dialog box for Csrss.exe
and going to the Threads tab confirms, through the names of the functions on its stack, the role
of the thread as a raw input thread for the Windows subsystem:

After the disk controller’s DMA adapter finishes a data transfer, the disk controller interrupts the
host, causing the ISR for the disk controller to run, which requests a DPC callback completing the IRP,
as shown in Figure 8-17.

As an alternative to reusing a single IRP, a file system can establish a group of associated IRPs that
work in parallel on a single I/O request. For example, if the data to be read from a file is dispersed
across the disk, the file system driver might create several IRPs, each of which reads some portion of
the request from a different sector. This queuing is illustrated in Figure 8-18.

 CHAPTER 8 I/O System 45

Environment
subsystem

or DLL

User mode

Kernel mode

File
system
driver

Volume
manager

During I/O completion, results are returned
to the caller’s address space.

4

The file system driver performs
any necessary cleanup work.

3

The volume manager performs
any necessary cleanup work.

2

Device-level interrupt occurs. The disk
driver services the interrupt and then
queues a DPC to complete the I/O, which
will “pop” the second stack location off
the IRP stack and call the volume manager.

1

Services

I/O manager

IRP

IRP

Current

Current

Disk
driver

FIGURE 8-17 Completing a layered I/O request

46 Windows Internals, Sixth Edition, Part 2

Call I/O service

I/O manager creates an IRP
and calls a file system driver.

Environment
subsystem

or DLL

Return I/O pending status

User mode

Kernel mode

Return I/O pending status

File system driver creates
associated IRPs and calls
the volume manager
one or more times.

IRP 0

IRP 1 IRP n

IRP 1 IRP n

Send IRPs to the
disk driver and return

File
system
driver

Volume
manager

Return I/O pending status5

6

4

3

2

71

Services

I/O manager

. . .

. . .

FIGURE 8-18 Queuing associated IRPs

The file system driver delivers the associated IRPs to the volume manager, which in turn sends
them to the disk device driver, which queues them to the disk device. They are processed one at a
time, and the file system driver keeps track of the returned data. When all the associated IRPs com-
plete, the I/O system completes the original IRP and returns to the caller, as shown in Figure 8-19.

 CHAPTER 8 I/O System 47

Step 1 repeats, completing IRPs
2 through n, and the volume manager
performs cleanup after each one.

Environment
subsystem

or DLL

User mode

Kernel mode

When all associated IRPs complete, the
original IRP completes, returning status
information or data to the caller.

File
system
driver

Volume
manager

4

Step 2 repeats, completing IRPs
2 through n, and the file system
performs cleanup after each one.

3

2

After transferring data for one IRP,
the device interrupts. The disk driver
services the interrupt and then queues
a DPC, which starts the next IRP on
the device and calls the I/O manager
to complete the first IRP.

1

Services

I/O manager

IRP 0

IRP 1

IRP n

FIGURE 8-19 Completing associated IRPs

Note All Windows file system drivers that manage disk-based file systems are part of a
stack of drivers that is at least three layers deep: the file system driver sits at the top, a vol-
ume manager in the middle, and a disk driver at the bottom. In addition, any number of
filter drivers can be interspersed above and below these drivers. For clarity, the preceding
example of layered I/O requests includes only a file system driver and the volume manager
driver. See Chapter 9, on storage management, for more information.

48 Windows Internals, Sixth Edition, Part 2

Thread Agnostic I/O
In the I/O models described thus far, IRPs are queued to the thread that initiated the I/O and are com-
pleted by the I/O manager issuing an APC to that thread so that process-specific and thread-specific
context is accessible by completion processing. Thread-specific I/O processing is usually sufficient for
the performance and scalability needs of most applications, but Windows also includes support for
thread agnostic I/O via two mechanisms:

 ■ I/O completion ports, which are described at length later in this chapter

 ■ Locking the user buffer into memory and mapping it into the system address space

With I/O completion ports, the application decides when it wants to check for the completion
of I/O, so the thread that happens to have issued an I/O request is not necessarily relevant because
any other thread can perform the completion request. As such, instead of completing the IRP inside
the specific thread’s context, it can be completed in the context of any thread that has access to the
completion port.

Likewise, with a locked and kernel-mapped version of the user buffer, there’s no need to be in the
same memory address space as the issuing thread because the kernel can access the memory from
arbitrary contexts. Applications can enable this mechanism by using SetFileIoOverlappedRange as long
as they have the SE_LOCK_MEMORY privilege.

With both completion port I/O and I/O on file buffers set by SetFileIoOverlappedRange, the I/O
manager associates the IRPs with the file object to which they have been issued instead of with the
issuing thread. The !fileobj extension in WinDbg will show an IRP list for file objects that are used with
these mechanisms.

In the next sections, we’ll see how thread agnostic I/O increases the reliability and performance of
applications on Windows.

I/O Cancellation
While there are many ways in which IRP processing occurs and various methods to complete an I/O
request, a great many I/O processing operations actually end in cancellation rather than comple-
tion. For example, a device may require removal while IRPs are still active, or the user might cancel a
long-running operation to a device—for example, a network operation. Another situation requiring
I/O cancellation support is thread and process termination. When a thread exits, the I/Os associated
with the thread must be cancelled because the I/O operations are no longer relevant, and the thread
cannot be deleted until the outstanding I/Os have completed.

The Windows I/O manager, working with drivers, must deal with these requests efficiently and
reliably to provide a smooth user experience. Drivers manage this need by registering a cancel routine
for their cancellable I/O operations (typically, those operations that are still enqueued and not yet
in progress), which is invoked by the I/O manager to cancel an I/O operation. When drivers fail to
play their role in these scenarios, users may experience unkillable processes, which have disappeared

 CHAPTER 8 I/O System 49

visually but linger and still appear in Task Manager or Process Explorer. (See Chapter 5, “Processes,
Threads, and Jobs” in Part 1 for more information on processes and threads.)

User-Initiated I/O Cancellation
Most software uses one thread to handle user interface (UI) input and one or more threads to per-
form work, including I/O. In some cases, when a user wants to abort an operation that was initiated
in the UI, an application might need to cancel outstanding I/O operations. Operations that complete
quickly might not require cancellation, but for operations that take arbitrary amounts of time—like
large data transfers or network operations— Windows provides support for cancelling both synchro-
nous operations and asynchronous operations. A thread can cancel its own outstanding asynchronous
I/Os by calling CancelIo. It can cancel all asynchronous I/Os issued to a specific file handle, regardless
of by which thread, in the same process with CancelIoEx. CancelIoEx also works on operations associ-
ated with I/O completion ports through the thread-agnostic support in Windows that was mentioned
earlier because the I/O system keeps track of a completion port’s outstanding I/Os by linking them
with the completion port.

For cancelling synchronous I/Os, a thread can call CancelSynchronousIo. CancelSynchronousIo
enables even create (open) operations to be cancelled when supported by a device driver, and several
drivers in Windows support this functionality, including the drivers that manage network file systems
(for example, MUP, DFS, and SMB), which can cancel open operations to network paths. Figures 8-20
and 8-21 show synchronous and asynchronous I/O cancellation. (To a driver, all cancel processing
looks the same.)

CreateFile() CancelSynchronousIo()

I/O manager

Driver Cancel
routine

Application

Status -> app T2 passes T1’s handle

Returns
immediately

I/O manager tries to
cancel T1’s synchronous I/O

Cancel routines invoked
Driver returns with

STATUS_CANCELLED

Thread 1 (T1) waits for
I/O to complete

Another process thread
(T2) requests cancellation

Synchronous I/O Cancellation

FIGURE 8-20 Synchronous I/O cancellation

50 Windows Internals, Sixth Edition, Part 2

ReadFileEx() CancelIoEx()

I/O manager

Application

Status -> app Passes file handle

Returns
immediately

I/O manager tries to cancel
all pending I/O on this handle

Cancel routine(s) invoked
Driver returns with

STATUS_CANCELLED

A thread in the process
requests cancellation for

all pending file I/O on
specified handle

Asynchronous I/O Cancellation

Driver Cancel
routine

FIGURE 8-21 Asynchronous I/O cancellation

I/O Cancellation for Thread Termination
The other scenario in which I/Os must be cancelled is when a thread exits, either directly or as the
result of its process terminating (which causes the threads of the process to terminate). Because every
thread has a list of IRPs associated with it, the I/O manager can walk this list, look for cancellable IRPs,
and cancel them. Unlike CancelIoEx, which does not wait for an IRP to be cancelled before returning,
the process manager will not allow thread termination to proceed until all I/Os have been cancelled.
As a result, if a driver fails to cancel an IRP, the process and thread object will remain allocated until
the system shuts down. Figure 8-22 illustrates the process termination scenario.

 CHAPTER 8 I/O System 51

I/O call(s)

I/O manager

Application

Process cleanup occurs only
after all IRPs complete or cancel

Cancel routine(s) invoked

System cancels all
I/O associated with

the process

Process Termination Example

Process
terminated

Driver(s) Cancel
routine(s)

FIGURE 8-22 Cancellation during process termination

Note Only IRPs for which a driver sets a cancel routine are cancellable. The process man-
ager waits until all I/Os associated with a thread are either cancelled or completed before
deleting the thread.

EXPERIMENT: Debugging an Unkillable Process
In this experiment, we’ll use Notmyfault from Sysinternals (we’ll cover Notmyfault heavily in the
“Crash Dump Analysis” section in Chapter 14, “Crash Dump Analysis”) to force the unkillable
process problem to exhibit itself by causing the Myfault.sys driver (which Notmyfault.exe uses)
to indefinitely hold an IRP without having registered a cancel routine for it.

To start, run Notmyfault.exe, select Hang With IRP from the list of options on the Hang tab,
and then click the Hang button. The dialog box should look like the following when properly
configured.

52 Windows Internals, Sixth Edition, Part 2

You shouldn’t see anything happen, and you should be able to click the Cancel button to
quit the application. However, you should still see the Notmyfault process in Task Manager or
Process Explorer. Attempts to terminate the process will fail because Windows will wait forever
for the IRP to complete given that the Myfault driver doesn’t register a cancel routine.

To debug an issue such as this, you can use WinDbg to look at what the thread is currently
doing. Open a local kernel debugger session, and start by listing the information about the
Notmyfault.exe process with the !process command:

lkd> !process 0 7 notmyfault.exe
PROCESS 86843ab0 SessionId: 1 Cid: 0594 Peb: 7ffd8000 ParentCid: 05c8
 DirBase: ce21f380 ObjectTable: 9cfb5070 HandleCount: 33.
 Image: NotMyfault.exe
 VadRoot 86658138 Vads 44 Clone 0 Private 210. Modified 5. Locked 0.
 DeviceMap 987545a8
...
 THREAD 868139b8 Cid 0594.0230 Teb: 7ffde000 Win32Thread: 00000000
 WAIT: (Executive) KernelMode Non-Alertable
 86797c64 NotificationEvent
 IRP List:
 86a51228: (0006,0094) Flags: 00060000 Mdl: 00000000

...
 ChildEBP RetAddr Args to Child
 88ae4b78 81cf23bf 868139b8 86813a40 00000000 nt!KiSwapContext+0x26
 88ae4bbc 81c8fcf8 868139b8 86797c08 86797c64 nt!KiSwapThread+0x44f
 88ae4c14 81e8a356 86797c64 00000000 00000000 nt!KeWaitForSingleObject+0x492
 88ae4c40 81e875a3 86a51228 86797c08 86a51228 nt!IopCancelAlertedRequest+0x6d
 88ae4c64 81e87cba 00000103 86797c08 00000000 nt!IopSynchronousServiceTail+0x267
 88ae4d00 81e7198e 86727920 86a51228 00000000 nt!IopXxxControlFile+0x6b7
 88ae4d34 81c92a7a 0000007c 00000000 00000000 nt!NtDeviceIoControlFile+0x2a

 CHAPTER 8 I/O System 53

 88ae4d34 77139a94 0000007c 00000000 00000000 nt!KiFastCallEntry+0x12a
 01d5fecc 00000000 00000000 00000000 00000000 ntdll!KiFastSystemCallRet
...

From the stack trace, you can see that the thread that initiated the I/O realized that the IRP
had been cancelled (IopSynchronousServiceTail called IopCancelAlertedRequest) and is now
waiting for the cancellation or completion. The next step is to use the same debugger extension
command used in the previous experiments, !irp, and attempt to analyze the problem. Copy the
IRP pointer, and examine it with !irp:

lkd> !irp 86a51228
Irp is active with 1 stacks 1 is current (= 0x86a51298)
 No Mdl: No System Buffer: Thread 868139b8: Irp stack trace.
 cmd flg cl Device File Completion-Context
>[e, 0] 5 0 86727920 86797c08 00000000-00000000
 \Driver\MYFAULT
 Args: 00000000 00000000 83360020 00000000

From this output, it is obvious who the culprit driver is: \Driver\MYFAULT, or Myfault.sys. The
name of the driver emphasizes that the only way this situation can happen is through a driver
problem and not a buggy application. Unfortunately, now that you know which driver caused
this issue, there isn’t much you can do—a system reboot is necessary because Windows can
never safely assume it is okay to ignore the fact that cancellation hasn’t occurred yet. The IRP
could return at any time and cause corruption of system memory. If you encounter this situa-
tion in practice, you should check for a newer version of the driver, which might include a fix for
the bug.

I/O Completion Ports
Writing a high-performance server application requires implementing an efficient threading model.
Having either too few or too many server threads to process client requests can lead to performance
problems. For example, if a server creates a single thread to handle all requests, clients can become
starved because the server will be tied up processing one request at a time. A single thread could si-
multaneously process multiple requests, switching from one to another as I/O operations are started,
but this architecture introduces significant complexity and can’t take advantage of systems with more
than one logical processor. At the other extreme, a server could create a big pool of threads so that
virtually every client request is processed by a dedicated thread. This scenario usually leads to thread-
thrashing, in which lots of threads wake up, perform some CPU processing, block while waiting for
I/O, and then, after request processing is completed, block again waiting for a new request. If nothing
else, having too many threads results in excessive context switching, caused by the scheduler having
to divide processor time among multiple active threads.

The goal of a server is to incur as few context switches as possible by having its threads avoid
unnecessary blocking, while at the same time maximizing parallelism by using multiple threads. The
ideal is for there to be a thread actively servicing a client request on every processor and for those
threads not to block when they complete a request if additional requests are waiting. For this optimal

54 Windows Internals, Sixth Edition, Part 2

process to work correctly, however, the application must have a way to activate another thread when
a thread processing a client request blocks on I/O (such as when it reads from a file as part of the
processing).

The IoCompletion Object
Applications use the IoCompletion executive object, which is exported to the Windows API as a
completion port, as the focal point for the completion of I/O associated with multiple file handles.
Once a file is associated with a completion port, any asynchronous I/O operations that complete on
the file result in a completion packet being queued to the completion port. A thread can wait for
any outstanding I/Os to complete on multiple files simply by waiting for a completion packet to be
queued to the completion port. The Windows API provides similar functionality with the WaitFor-
MultipleObjects API function, but the advantage that completion ports have is that concurrency, or the
number of threads that an application has actively servicing client requests, is controlled with the aid
of the system.

When an application creates a completion port, it specifies a concurrency value. This value indi-
cates the maximum number of threads associated with the port that should be running at any given
time. As stated earlier, the ideal is to have one thread active at any given time for every processor in
the system. Windows uses the concurrency value associated with a port to control how many threads
an application has active. If the number of active threads associated with a port equals the concur-
rency value, a thread that is waiting on the completion port won’t be allowed to run. Instead, it is
expected that one of the active threads will finish processing its current request and check to see
whether another packet is waiting at the port. If one is, the thread simply grabs the packet and goes
off to process it. When this happens, there is no context switch, and the CPUs are utilized nearly to
their full capacity.

Using Completion Ports
Figure 8-23 shows a high-level illustration of completion port operation. A completion port is created
with a call to the Windows API function CreateIoCompletionPort. Threads that block on a completion
port become associated with the port and are awakened in last in, first out (LIFO) order so that the
thread that blocked most recently is the one that is given the next packet. Threads that block for long
periods of time can have their stacks swapped out to disk, so if there are more threads associated
with a port than there is work to process, the in-memory footprints of threads blocked the longest
are minimized.

A server application will usually receive client requests via network endpoints that are identified by
file handles. Examples include Windows Sockets 2 (Winsock2) sockets or named pipes. As the server
creates its communications endpoints, it associates them with a completion port and its threads wait
for incoming requests by calling GetQueuedCompletionStatus on the port. When a thread is given a
packet from the completion port, it will go off and start processing the request, becoming an active
thread. A thread will block many times during its processing, such as when it needs to read or write
data to a file on disk or when it synchronizes with other threads. Windows detects this activity and
recognizes that the completion port has one less active thread. Therefore, when a thread becomes

 CHAPTER 8 I/O System 55

inactive because it blocks, a thread waiting on the completion port will be awakened if there is a
packet in the queue.

Incoming client request

Threads blocked on the completion port

Completion port

Perform CPU
processing (active)

Perform file I/O - Block
(inactive)

Perform CPU processing
(active)

FIGURE 8-23 I/O completion port operation

Microsoft’s guidelines are to set the concurrency value roughly equal to the number of processors
in a system. Keep in mind that it’s possible for the number of active threads for a completion port
to exceed the concurrency limit. Consider a case in which the limit is specified as 1. A client request
comes in, and a thread is dispatched to process the request, becoming active. A second request
arrives, but a second thread waiting on the port isn’t allowed to proceed because the concurrency
limit has been reached. Then the first thread blocks waiting for a file I/O, so it becomes inactive. The
second thread is then released, and while it’s still active, the first thread’s file I/O is completed, making
it active again. At that point—and until one of the threads blocks—the concurrency value is 2, which
is higher than the limit of 1. Most of the time, the count of active threads will remain at or just above
the concurrency limit.

The completion port API also makes it possible for a server application to queue privately defined
completion packets to a completion port by using the PostQueuedCompletionStatus function. A server
typically uses this function to inform its threads of external events, such as the need to shut down
gracefully.

Applications can use thread agnostic I/O, described earlier, with I/O completion ports to avoid
associating threads with their own I/Os and associating them with a completion port object instead.
In addition to the other scalability benefits of I/O completion ports, their use can minimize context
switches. Standard I/O completions must be executed by the thread that initiated the I/O, but when
an I/O associated with an I/O completion port completes, the I/O manager uses any waiting thread to
perform the completion operation.

56 Windows Internals, Sixth Edition, Part 2

I/O Completion Port Operation
Windows applications create completion ports by calling the Windows API CreateIoCompletionPort
and specifying a NULL completion port handle. This results in the execution of the NtCreateIo-
 Com pletion system service. The executive’s IoCompletion object contains a kernel synchronization
object called a kernel queue. Thus, the system service creates a completion port object and initializes
a queue object in the port’s allocated memory. (A pointer to the port also points to the queue object
because the queue is at the start of the port memory.) A kernel queue object has a concurrency value
that is specified when a thread initializes it, and in this case the value that is used is the one that was
passed to CreateIoCompletionPort. KeInitializeQueue is the function that NtCreateIoCompletion calls
to initialize a port’s queue object.

When an application calls CreateIoCompletionPort to associate a file handle with a port, the
NtSetInformationFile system service is executed with the file handle as the primary parameter. The
information class that is set is FileCompletionInformation, and the completion port’s handle and
the CompletionKey parameter from CreateIoCompletionPort are the data values. NtSetInformation-
File dereferences the file handle to obtain the file object and allocates a completion context data
structure.

Finally, NtSetInformationFile sets the CompletionContext field in the file object to point at the
context structure. When an asynchronous I/O operation completes on a file object, the I/O manager
checks to see whether the CompletionContext field in the file object is non-NULL. If it is, the I/O man-
ager allocates a completion packet and queues it to the completion port by calling KeInsertQueue
with the port as the queue on which to insert the packet. (Remember that the completion port object
and queue object have the same address.)

When a server thread invokes GetQueuedCompletionStatus, the system service NtRemoveIo-
Completion is executed. After validating parameters and translating the completion port handle to
a pointer to the port, NtRemoveIoCompletion calls IoRemoveIoCompletion, which eventually calls
KeRemoveQueueEx. For high-performance scenarios, it’s possible that multiple I/Os may have been
completed, and although the thread will not block, it will still call into the kernel each time to get
one item. The GetQueuedCompletionStatus or GetQueuedCompletionStatusEx API allows applica-
tions to retrieve more than one I/O completion status at the same time, reducing the number of
user-to- kernel roundtrips and maintaining peak efficiency. Internally, this is implemented through the
NtRemove IoCompletionEx function, which calls IoRemoveIoCompletion with a count of queued items,
which is passed on to KeRemoveQueueEx.

As you can see, KeRemoveQueueEx and KeInsertQueue are the engines behind completion ports.
They are the functions that determine whether a thread waiting for an I/O completion packet should
be activated. Internally, a queue object maintains a count of the current number of active threads and
the maximum number of active threads. If the current number equals or exceeds the maximum when
a thread calls KeRemoveQueueEx, the thread will be put (in LIFO order) onto a list of threads waiting
for a turn to process a completion packet. The list of threads hangs off the queue object. A thread’s
control block data structure (KTHREAD) has a pointer in it that references the queue object of a
queue that it’s associated with; if the pointer is NULL, the thread isn’t associated with a queue.

 CHAPTER 8 I/O System 57

Windows keeps track of threads that become inactive because they block on something other
than the completion port by relying on the queue pointer in a thread’s control block. The scheduler
routines that possibly result in a thread blocking (such as KeWaitForSingleObject, KeDelayExecution-
Thread, and so on) check the thread’s queue pointer. If the pointer isn’t NULL, the functions call
 KiActivateWaiterQueue, a queue-related function that decrements the count of active threads associ-
ated with the queue. If the resultant number is less than the maximum and at least one completion
packet is in the queue, the thread at the front of the queue’s thread list is awakened and given the
oldest packet. Conversely, whenever a thread that is associated with a queue wakes up after blocking,
the scheduler executes the function KiUnwaitThread, which increments the queue’s active count.

Finally, the PostQueuedCompletionStatus Windows API function results in the execution of the
 NtSetIoCompletion system service. This function simply inserts the specified packet onto the comple-
tion port’s queue by using KeInsertQueue.

Figure 8-24 shows an example of a completion port object in operation. Even though two threads
are ready to process completion packets, the concurrency value of 1 allows only one thread associ-
ated with the completion port to be active, and so the two threads are blocked on the comple-
 tion port.

Waiting threads
Thread object Thread object

I/O completion
port

Queue

Active thread

Thread object

Completion
packet

Completion
packet

File object

Concurrency: 1

FIGURE 8-24 I/O completion port operation

Finally, the exact notification model of the I/O completion port can be fine-tuned through the
 SetFileCompletionNotificationModes API, which allows application developers to take advantage
of additional, specific improvements that usually require code changes but can offer even more
throughput. Three notification-mode optimizations are supported, which are listed in Table 8-3. Note
that these modes are per file handle and permanent.

58 Windows Internals, Sixth Edition, Part 2

TABLE 8-3 I/O Completion Port Notification Modes

Notification Mode Meaning

Skip completion port on success If the following three conditions are true, the I/O manager does not queue a
completion entry to the port when it would ordinarily do so. First, a completion
port must be associated with the file handle; second, the file must be opened
for asynchronous I/O; third, the request must return success immediately
without returning ERROR_PENDING.

Skip set event on handle The I/O manager does not set the event for the file object if a request returns
with a success code or the error returned is ERROR_PENDING and the function
that is called is not a synchronous function. If an explicit event is provided for
the request, it is still signaled.

Skip set user event on fast I/O The I/O manager does not set the explicit event provided for the request
if a request takes the fast I/O path and returns with a success code or the
error returned is ERROR_PENDING and the function that is called is not a
synchronous function.

I/O Prioritization
Without I/O priority, background activities like search indexing, virus scanning, and disk defragment-
ing can severely impact the responsiveness of foreground operations. A user launching an application
or opening a document while another process is performing disk I/O, for example, experiences delays
as the foreground task waits for disk access. The same interference also affects the streaming play-
back of multimedia content like music from a disk.

Windows includes two types of I/O prioritization to help foreground I/O operations get prefer-
ence: priority on individual I/O operations and I/O bandwidth reservations.

I/O Priorities
The Windows I/O manager internally includes support for five I/O priorities, as shown in Table 8-4,
but only three of the priorities are used. (Future versions of Windows may support High and Low.)

TABLE 8-4 I/O Priorities

I/O Priority Usage

Critical Memory manager

High Not used

Normal Normal application I/O

Low Not used

Very Low Scheduled tasks, Superfetch, defragmenting, content indexing, background activities

I/O has a default priority of Normal, and the memory manager uses Critical when it wants to write
dirty memory data out to disk under low-memory situations to make room in RAM for other data and
code. The Windows Task Scheduler sets the I/O priority for tasks that have the default task priority to
Very Low. The priority specified by applications that perform background processing is Very Low. All
of the Windows background operations, including Windows Defender scanning and desktop search
indexing, use Very Low I/O priority.

 CHAPTER 8 I/O System 59

Prioritization Strategies
Internally, these five I/O priorities are divided into two I/O prioritization modes, called strategies.
These are the hierarchy prioritization and the idle prioritization strategies. Hierarchy prioritization
deals with all the I/O priorities except Very Low. It implements the following strategy:

 ■ All critical-priority I/O must be processed before any high-priority I/O.

 ■ All high-priority I/O must be processed before any normal-priority I/O.

 ■ All normal-priority I/O must be processed before any low-priority I/O.

 ■ All low-priority I/O is processed after any higher-priority I/O.

As each application generates I/Os, IRPs are put on different I/O queues based on their priority,
and the hierarchy strategy decides the ordering of the operations.

The idle prioritization strategy, on the other hand, uses a separate queue for non-idle priority I/O.
Because the system processes all hierarchy prioritized I/O before idle I/O, it’s possible for the I/Os in
this queue to be starved, as long as there’s even a single non-idle I/O on the system in the hierarchy
priority strategy queue.

To avoid this situation, as well as to control backoff (the sending rate of I/O transfers), the idle
strategy uses a timer to monitor the queue and guarantee that at least one I/O is processed per unit
of time (typically, half a second). Data written using non-idle I/O priority also causes the cache man-
ager to write modifications to disk immediately instead of doing it later and to bypass its read-ahead
logic for read operations that would otherwise preemptively read from the file being accessed. The
prioritization strategy also waits for 50 milliseconds after the completion of the last non-idle I/O in
order to issue the next idle I/O. Otherwise, idle I/Os would occur in the middle of non-idle streams,
causing costly seeks.

Combining these strategies into a virtual global I/O queue for demonstration purposes, a snapshot
of this queue might look similar to Figure 8-25. Note that within each queue, the ordering is first-in,
first-out (FIFO). The order in the figure is shown only as an example.

I/O Queue

Hierarchy

Critical High Normal Low Very Low

Idle

MM Prefetch Defrag Indexer AntivirusWindows Media Player Word

FIGURE 8-25 Sample entries in a global I/O queue

User-mode applications can set I/O priority on three different objects. SetPriorityClass and
SetThreadPriority set the priority for all the I/Os that either the entire process or specific threads will
generate (the priority is stored in the IRP of each request). SetFileInformationByHandle can set the

60 Windows Internals, Sixth Edition, Part 2

priority for a specific file object (the priority is stored in the file object). Drivers can also set I/O prior-
ity directly on an IRP by using the IoSetIoPriorityHint API.

Note The I/O priority field in the IRP and/or file object is a hint. There is no guarantee that
the I/O priority will be respected or even supported by the different drivers that are part of
the storage stack.

The two prioritization strategies are implemented by two different types of drivers. The hierarchy
strategy is implemented by the storage port drivers, which are responsible for all I/Os on a specific
port, such as ATA, SCSI, or USB. Only the ATA port driver (%SystemRoot%\System32\Ataport.sys)
and USB port driver (%SystemRoot%\System32\Usbstor.sys) implement this strategy, while the SCSI
and storage port drivers (%SystemRoot%\System32\Scsiport.sys and %SystemRoot%\System32\
Stor port.sys) do not.

Note All port drivers check specifically for Critical priority I/Os and move them ahead of
their queues, even if they do not support the full hierarchy mechanism. This mechanism is
in place to support critical memory manager paging I/Os to ensure system reliability.

This means that consumer mass storage devices such as IDE or SATA hard drives and USB flash
disks will take advantage of I/O prioritization, while devices based on SCSI, Fibre Channel, and iSCSI
will not.

On the other hand, it is the system storage class device driver (%SystemRoot%\System32\
 Class pnp.sys) that enforces the idle strategy, so it automatically applies to I/Os directed at all storage
devices, including SCSI drives. This separation ensures that idle I/Os will be subject to back-off algo-
rithms to ensure a reliable system during operation under high idle I/O usage and so that applications
that use them can make forward progress. Placing support for this strategy in the Microsoft-provided
class driver avoids performance problems that would have been caused by lack of support for it in
legacy third-party port drivers.

Figure 8-26 displays a simplified view of the storage stack and where each strategy is implemented.
See Chapter 9 for more information on the storage stack.

 CHAPTER 8 I/O System 61

User mode Application

File system

Volume/partition

Device class

Command port

Storage

Idle I/O priority queue

Hierarchy priority queue
I/O bandwidth reservation

Kernel mode

FIGURE 8-26 Implementation of I/O prioritization across the storage stack

I/O Priority Inversion Avoidance (I/O Priority Inheritance)
To avoid I/O priority inversion (in which a high-I/O-priority thread can be starved by a low-I/O-
priority thread), the executive resource (ERESOURCE) locking functionality utilizes several strategies.
The ERESOURCE was picked for the implementation of I/O priority inheritance particularly because of
its heavy use in file system and storage drivers, where most I/O priority inversion issues can appear.

If an ERESOURCE is being acquired by a thread with low I/O priority, and there are currently
waiters on the ERESOURCE with normal or higher priority, the current thread is temporarily boosted
to normal I/O priority by using the PsBoostThreadIo API, which increments the IoBoostCount in the
ETHREAD structure.

It then calls the IoBoostThreadIoPriority API, which enumerates all the IRPs queued to the target
thread (recall that each thread has a list of pending IRPs) and checks which ones have a lower priority
than the target priority (normal in this case), thus identifying pending idle I/O priority IRPs. In turn,
the device object responsible for each of those IRPs is identified, and the I/O manager checks whether
a priority callback has been registered, which driver developers can do through the IoRegister-
PriorityCallback API and by setting the DO_PRIORITY_CALLBACK_ENABLED flag on their device
object. Depending on whether the IRP was a paging I/O, this mechanism is called the threaded boost
or the paging boost.

Finally, if no matching IRPs were found, but the thread has at least some pending IRPs, all are
boosted regardless of device object or priority, which is called blanket boosting.

62 Windows Internals, Sixth Edition, Part 2

I/O Priority Boosts and Bumps
A few other subtle modifications to normal I/O paths are used by Windows to avoid starvation,
 inversion, or otherwise unwanted scenarios when I/O priority is being used. Typically, these modifica-
tions are done by boosting I/O priority when needed. The following scenarios exhibit this behavior.

 ■ When a driver is being called with an IRP targeted to a particular file object, Windows makes
sure that if the request comes from kernel mode, the IRP uses normal priority even if the file
object has a lower I/O priority hint. This is called the kernel bump.

 ■ When reads or writes to the paging file are occurring (through IoPageRead and IoPageWrite),
Windows checks whether the request comes from kernel mode and is not being performed on
behalf of Superfetch (which always uses idle I/O). In this case, the IRP uses normal priority even
if the current thread has a lower I/O priority. This is called the paging bump.

The following experiment will show you an example of Very Low I/O priority and how you can use
Process Monitor to look at I/O priorities on different requests.

EXPERIMENT: Very Low vs. Normal I/O Throughput
You can use the IO Priority sample application (included in the book’s utilities) to look at the
throughput difference between two threads with different I/O priorities. Launch IoPriority.exe,
make sure Thread 1 is checked to use Low priority, and then click the Start IO button. You
should notice a significant difference in speed between the two threads, as shown in the follow-
ing screen.

You should also notice that Thread 1’s throughput remains fairly constant, around 2 KB/s.
This can easily be explained by the fact that IO Priority performs its I/Os at 2 KB/s, which means
that the idle prioritization strategy is kicking in and guaranteeing at least one I/O each half-
second. Otherwise, Thread 2 would starve any I/O that Thread 1 is attempting to make.

Note that if both threads run at low priority and the system is relatively idle, their through-
put will be roughly equal to the throughput of a single normal I/O priority in the example. This
is because low priority I/Os are not artificially throttled or otherwise hindered if there isn’t any
competition from higher priority I/O.

You can also use Process Monitor to trace IO Priority’s I/Os and look at their I/O priority hint.
Launch Process Monitor, configure a filter for IoPriority.exe, and repeat the experiment. In this
application, Thread 1 writes to File_1, and Thread 2 writes to File_2. Scroll down until you see a
write to File_1, and you should see output similar to that shown next.

 CHAPTER 8 I/O System 63

You can see that I/Os directed at File_1 have a priority of Very Low. By looking at the Time
Of Day column, you’ll also notice that the I/Os are spaced 0.5 second from each other—another
sign of the idle strategy in action.

Finally, by using Process Explorer, you can identify Thread 1 in the IoPriority process by look-
ing at the I/O priority for each of its threads on the Threads tab of its process Properties dialog
box. You can also see that the priority for the thread is lower than the default of 8 (normal),
which indicates that the thread is probably running in background priority mode. The following
screen shot shows what you should expect to see.

Note that if IO Priority sets the priority on File_1 instead of on the issuing thread, both
threads would look the same. Only Process Monitor could show you the difference in I/O
priorities.

64 Windows Internals, Sixth Edition, Part 2

EXPERIMENT: Performance Analysis of I/O Priority Boosting/Bumping
The kernel exposes several internal variables that can be queried through the undocumented
SystemLowPriorityIoInformation system class available in NtQuerySystemInformation. However,
even without writing or relying on such an application, you can use the local kernel debugger
for viewing these numbers on your system. The following variables are available:

 ■ IoLowPriorityReadOperationCount and IoLowPriorityWriteOperationCount

 ■ IoKernelIssuedIoBoostedCount

 ■ IoPagingReadLowPriorityCount and IoPagingWriteLowPriorityCount

 ■ IoPagingReadLowPriorityBumpedCount and IoPagingWriteHighPriorityBumpedCount

 ■ IoBoostedThreadedIrpCount and IoBoostedPagingIrpCount

 ■ IoBlanketBoostCount

You can use the dd memory-dumping command in the kernel debugger to see the values of
these variables.

Bandwidth Reservation (Scheduled File I/O)
Windows I/O bandwidth reservation support is useful for applications that desire consistent I/O
throughput. Using the SetFileBandwidthReservation call, a media player application asks the I/O sys-
tem to guarantee it the ability to read data from a device at a specified rate. If the device can deliver
data at the requested rate and existing reservations allow it, the I/O system gives the application
guidance as to how fast it should issue I/Os and how large the I/Os should be.

The I/O system won’t service other I/Os unless it can satisfy the requirements of applications that
have made reservations on the target storage device. Figure 8-27 shows a conceptual timeline of I/Os
issued on the same file. The shaded regions are the only ones that will be available to other applica-
tions. If I/O bandwidth is already taken, new I/Os will have to wait until the next cycle.

Reserved
I/O

Windows
Media Player

Walk-in
I/O

Windows
Media Player

Windows
Media Player

Windows
Media Player

Walk-in
I/O

Reserved
I/O

Reserved
I/O

Reserved
I/O

FIGURE 8-27 Effect of I/O requests during bandwidth reservation

Like the hierarchy prioritization strategy, bandwidth reservation is implemented at the port driver
level, which means it is available only for IDE, SATA, or USB-based mass-storage devices.

 CHAPTER 8 I/O System 65

Container Notifications
Container notifications are specific classes of events that drivers can register for through an asynchro-
nous callback mechanism by using the IoRegisterContainerNotification API and selecting the notifica-
tion class that interests them. Thus far, one class is implemented in Windows, which is the IoSession-
StateNotification class. This class allows drivers to have their registered callback invoked whenever a
change in the state of a given session is registered. The following changes are supported:

 ■ A session is created or terminated

 ■ A user connects to or disconnects from a session

 ■ A user logs on to or logs off from a session

By specifying a device object that belongs to a specific session, the driver callback will be active
only for that session, while by specifying a global device object (or no device object at all), the driver
will receive notifications for all events on a system. This feature is particularly useful for devices that
participate in the Plug and Play device redirection functionality that is provided through Terminal
Services, which allows a remote device to be visible on the connecting host’s Plug and Play manager
bus as well (such as audio or printer device redirection). Once the user disconnects from a session with
audio playback, for example, the device driver needs a notification in order to stop redirecting the
source audio stream.

Driver Verifier
Driver Verifier is a mechanism that can be used to help find and isolate common bugs in device driv-
ers or other kernel-mode system code. Microsoft uses Driver Verifier to check its own device drivers
as well as all device drivers that vendors submit for Windows Hardware Quality Labs (WHQL) testing.
Doing so ensures that the drivers submitted are compatible with Windows and free from common
driver errors. (Although not described in this book, there is also a corresponding Application Verifier
tool that has resulted in quality improvements for user-mode code in Windows.)

Also, although Driver Verifier serves primarily as a tool to help device driver developers discover
bugs in their code, it is also a powerful tool for system administrators experiencing crashes. Chapter
14 describes its role in crash analysis troubleshooting.

Driver Verifier consists of support in several system components: the memory manager, I/O man-
ager, and HAL all have driver verification options that can be enabled. These options are configured
using the Driver Verifier Manager (%SystemRoot%\System32\Verifier.exe). When you run Driver Veri-
fier with no command-line arguments, it presents a wizard-style interface, as shown in Figure 8-28.

66 Windows Internals, Sixth Edition, Part 2

FIGURE 8-28 Driver Verifier Manager

You can also enable and disable Driver Verifier, as well as display current settings, by using its
command-line interface. From a command prompt, type verifier /? to see the switches.

Even when you don’t select any options, Driver Verifier monitors drivers selected for verification,
looking for a number of illegal and boundary operations, including calling kernel-memory pool func-
tions at invalid IRQL, double-freeing memory, allocating synchronization objects from NonPaged-
PoolSession memory, referencing a freed object, delaying shutdown for longer than 20 minutes, and
requesting a zero-size memory allocation.

What follows is a description of the I/O-related verification options (shown in Figure 8-29). The
options related to memory management are described in Chapter 10, along with how the memory
manager redirects a driver’s operating system calls to special verifier versions.

 CHAPTER 8 I/O System 67

FIGURE 8-29 Driver Verifier I/O-related options

These options have the following effects:

 ■ I/O Verification When this option is selected, the I/O manager allocates IRPs for verified
drivers from a special pool and their usage is tracked. In addition, the Verifier crashes the
system when an IRP is completed that contains an invalid status or when an invalid device
object is passed to the I/O manager. This option also monitors all IRPs to ensure that drivers
mark them correctly when completing them asynchronously, that they manage device-stack
locations correctly, and that they delete device objects only once. In addition, the Verifier
randomly stresses drivers by sending them fake power management and WMI IRPs, changing
the order in which devices are enumerated, and adjusting the status of PnP and power IRPs
when they complete to test for drivers that return incorrect status from their dispatch routines.
Finally, Verifier also detects incorrect re-initialization of remove locks while they are still being
held due to pending device removal.

 ■ DMA Checking DMA (direct access memory) is a hardware-supported mechanism that al-
lows devices to transfer data to or from physical memory without involving the CPU. The I/O
manager provides a number of functions that drivers use to initiate and control DMA opera-
tions, and this option enables checks for correct use of the functions and buffers that the I/O
manager supplies for DMA operations.

68 Windows Internals, Sixth Edition, Part 2

 ■ Force Pending I/O Requests For many devices, asynchronous I/Os complete immediately,
so drivers may not be coded to properly handle the occasional asynchronous I/O. When this
option is enabled, the I/O manager will randomly return STATUS_PENDING in response to a
driver’s calls to IoCallDriver, which simulates the asynchronous completion of an I/O.

 ■ IRP Logging This option monitors a driver’s use of IRPs and makes a record of IRP usage,
which is stored as WMI information. You can then use the Dc2wmiparser.exe utility in the WDK
to convert these WMI records to a text file. Note that only 20 IRPs for each device will be re-
corded—each subsequent IRP will overwrite the entry added least recently. After a reboot, this
information is discarded, so Dc2wmiparser.exe should be run if the contents of the trace are to
be analyzed later.

Kernel-Mode Driver Framework (KMDF)

We’ve already discussed some details about the Windows Driver Foundation (WDF) in Chapter 2,
“System Architecture,” in Part 1. In this section, we’ll take a deeper look at the components and func-
tionality provided by the kernel-mode part of the framework, KMDF. Note that this section will only
briefly touch on some of the core architecture of KMDF. For a much more complete overview on the
subject, please refer to http://msdn.microsoft.com/en-us/library/windows/hardware/gg463370.aspx.

Structure and Operation of a KMDF Driver
First, let’s take a look at which kinds of drivers or devices are supported by KMDF. In general, any
WDM-conformant driver should be supported by KMDF, as long as it performs standard I/O process-
ing and IRP manipulation. KMDF is not suitable for drivers that don’t use the Windows kernel API
directly but instead perform library calls into existing port and class drivers. These types of drivers
cannot use KMDF because they only provide callbacks for the actual WDM drivers that do the I/O
processing. Additionally, if a driver provides its own dispatch functions instead of relying on a port or
class driver, IEEE 1394 and ISA, PCI, PCMCIA, and SD Client (for Secure Digital storage devices) drivers
can also make use of KMDF.

Although KMDF provides an abstraction on top of WDM, the basic driver structure shown earlier
also generally applies to KMDF drivers. At their core, KMDF drivers must have the following functions:

 ■ An initialization routine Just like any other driver, a KMDF driver has a DriverEntry function
that initializes the driver. KMDF drivers will initiate the framework at this point and perform
any configuration and initialization steps that are part of the driver or part of describing the
driver to the framework. For non–Plug and Play drivers, this is where the first device object
should be created.

http://msdn.microsoft.com/en-us/library/windows/hardware/gg463370.aspx

 CHAPTER 8 I/O System 69

 ■ An add-device routine KMDF driver operation is based on events and callbacks (described
shortly), and the EvtDriverDeviceAdd callback is the single most important one for PnP devices
because it receives notifications when the PnP manager in the kernel enumerates one of the
driver’s devices.

 ■ One or more EvtIo* routines Just like a WDM driver’s dispatch routines, these callback
routines handle specific types of I/O requests from a particular device queue. A driver typically
creates one or more queues in which KMDF places I/O requests for the driver’s devices. These
queues can be configured by request type and dispatching type.

The simplest KMDF driver might need to have only an initialization and add-device routine
because the framework will provide the default, generic functionality that’s required for most types
of I/O processing, including power and Plug and Play events. In the KMDF model, events refer to run-
time states to which a driver can respond or during which a driver can participate. These events are
not related to the synchronization primitives (synchronization is discussed in Chapter 3 in Part 1), but
are internal to the framework.

For events that are critical to a driver’s operation, or which need specialized processing, the driver
registers a given callback routine to handle this event. In other cases, a driver can allow KMDF to
perform a default, generic action instead. For example, during an eject event (EvtDeviceEject), a driver
can choose to support ejection and supply a callback or to fall back to the default KMDF code that
will tell the user that the device is not ejectable. Not all events have a default behavior, however, and
callbacks must be provided by the driver. One notable example is the EvtDriverDeviceAdd event that is
at the core of any Plug and Play driver.

EXPERIMENT: Displaying KMDF Drivers
The Wdfkd.dll extension that ships with the Debugging Tools for Windows package provides
many commands that can be used to debug and analyze KMDF drivers and devices (instead of
using the built-in WDM-style debugging extension that may not offer the same kind of WDF-
specific information). You can display installed KMDF drivers with the !wdfkd.wdfldr debugger
command. In the following example, the output from a typical Windows computer is shown,
displaying the built-in drivers that are installed.

lkd> !wdfkd.wdfldr
 LoadedModuleList 0xfffff880010682d8

LIBRARY_MODULE fffffa8002776120
 Version v1.9 build(7600)
 Service \Registry\Machine\System\CurrentControlSet\Services\Wdf01000
 ImageName Wdf01000.sys
 ImageAddress 0xfffff88000c00000
 ImageSize 0xa4000
 Associated Clients: 16

70 Windows Internals, Sixth Edition, Part 2

ImageName Version WdfGlobals FxGlobals ImageAddress
 ImageSize
peauth.sys v1.7(6001) 0xfffffa8004754210 0xfffffa80047540c0 0xfffff880074cc000
 0x000a6000
scfilter.sys v1.5(6000) 0xfffffa8002ef34e0 0xfffffa8002ef3390 0xfffff880040b3000
 0x0000e000
WinUSB.sys v1.9(7600) 0xfffffa8002eefd20 0xfffffa8002eefbd0 0xfffff88004000000
 0x00011000
monitor.sys v1.9(7600) 0xfffffa8004854a10 0xfffffa80048548c0 0xfffff8800412a000
 0x0000e000
vmswitch.sys v1.5(6000) 0xfffffa8002de5d60 0xfffffa8002de5c10 0xfffff88003e9b000
 0x00068000
vmbus.sys v1.5(6000) 0xfffffa8002d7fcf0 0xfffffa8002d7fba0 0xfffff88003e5f000
 0x0003c000
Vid.sys v1.5(6000) 0xfffffa8002ddacf0 0xfffffa8002ddaba0 0xfffff88002a00000
 0x00033000
umbus.sys v1.9(7600) 0xfffffa8002e57e70 0xfffffa8002e57d20 0xfffff880035db000
 0x00012000
storvsp.sys v1.5(6000) 0xfffffa8002e48b10 0xfffffa8002e489c0 0xfffff88003575000
 0x00023000
CompositeBus.sys v1.9(7600) 0xfffffa8002d79160 0xfffffa8002d79010 0xfffff88002936000
 0x00010000
HDAudBus.sys v1.7(6001) 0xfffffa8002e357f0 0xfffffa8002e356a0 0xfffff880037a9000
 0x00024000
intelppm.sys v1.9(7600) 0xfffffa8002c518f0 0xfffffa8002c517a0 0xfffff880027e7000
 0x00016000
cdrom.sys v1.9(7600) 0xfffffa80028bf8f0 0xfffffa80028bf7a0 0xfffff880011c4000
 0x0002a000
vmstorfl.sys v1.5(6000) 0xfffffa8002b2cdd0 0xfffffa8002b2cc80 0xfffff8800144a000
 0x00010000
vdrvroot.sys v1.9(7600) 0xfffffa80027887c0 0xfffffa8002788670 0xfffff8800139c000
 0x0000d000
msisadrv.sys v1.9(7600) 0xfffffa80029c5430 0xfffffa80029c52e0 0xfffff8800135f000
 0x0000a000

Total: 1 library loaded

KMDF Data Model
The KMDF data model is object-based, much like the model for the kernel, but it does not make use
of the object manager. Instead, KMDF manages its own objects internally, exposing them as handles
to drivers and keeping the actual data structures opaque. For each object type, the framework
provides routines to perform operations on the object, such as WdfDeviceCreate, which creates a
device. Additionally, objects can have specific data fields or members that can be accessed by Get/Set
(used for modifications that should never fail) or Assign/Retrieve APIs (used for modifications that can
fail). For example, the WdfInterruptGetInfo function returns information on a given interrupt object
(WDFINTERRUPT).

 CHAPTER 8 I/O System 71

Also unlike the implementation of kernel objects, which all refer to distinct and isolated object
types, KMDF objects are all part of a hierarchy—most object types are bound to a parent. The root
object is the WDFDRIVER structure, which describes the actual driver. The structure and meaning
is analogous to the DRIVER_OBJECT structure provided by the I/O manager, and all other KMDF
structures are children of it. The next most important object is WDFDEVICE, which refers to a given
instance of a detected device on the system, which must have been created with WdfDeviceCreate.
Again, this is analogous to the DEVICE_OBJECT structure that’s used in the WDM model and by the
I/O manager. Table 8-5 lists the object types supported by KMDF.

TABLE 8-5 KMDF Object Types

Object Type Description

Child List WDFCHILDLIST List of child WDFDEVICE objects associated with the
device. Only used by bus drivers.

Collection WDFCOLLECTION List of objects of a similar type, such as a group of
WDFDEVICE objects being filtered.

Deferred Procedure Call WDFDPC Instance of a DPC object (see Chapter 3 in Part 1 for
more information on DPCs).

Device WDFDEVICE Instance of a device.

DMA Common Buffer WDFCOMMONBUFFER Region of memory that a device and driver can access
for direct memory access (DMA).

DMA Enabler WDFDMAENABLER Enables DMA on a given channel for a driver.

DMA Transaction WDFDMATRANSACTION Instance of a DMA transaction.

Driver WDFDRIVER Root object for the driver; represents the driver, its
parameters, and its callbacks, among other items.

File WDFFILEOBJECT Instance of a file object that can be used as a channel
for communication between an application and the
driver.

Generic Object WDFOBJECT Allows driver-defined custom data to be wrapped inside
the framework’s object data model as an object.

Interrupt WDFINTERRUPT Instance of an interrupt that the driver must handle.

I/O Queue WDFQUEUE Represents a given I/O queue.

I/O Request WDFREQUEST Represents a given request on a WDFQUEUE.

I/O Target WDFIOTARGET Represents the device stack being targeted by a given
WDFREQUEST.

Look-Aside List WDFLOOKASIDE Describes an executive look-aside list.

Memory WDFMEMORY Describes a region of paged or nonpaged pool.

Registry Key WDFKEY Describes a registry key.

Resource List WDFCMRESLIST Identifies the hardware resources assigned to a
WDFDEVICE.

72 Windows Internals, Sixth Edition, Part 2

Object Type Description

Resource Range List WDFIORESLIST Identifies a given possible hardware resource range for
a WDFDEVICE.

Resource Requirements List WDFIORESREQLIST Contains an array of WDFIORESLIST objects describing
all possible resource ranges for a WDFDEVICE.

Spinlock WDFSPINLOCK Describes a spinlock (see Chapter 3 in Part 1 for more
information).

String WDFSTRING Describes a Unicode string structure.

Timer WDFTIMER Describes an executive timer (see Chapter 3 in Part 1 for
more information).

USB Device WDFUSBDEVICE Identifies the one instance of a USB device.

USB Interface WDFUSBINTERFACE Identifies one interface on the given WDFUSBDEVICE.

USB Pipe WDFUSBPIPE Identifies a pipe to an endpoint on a given
WDFUSBINTERFACE.

Wait Lock WDFWAITLOCK Represents a kernel dispatcher event object.

WMI Instance WDFWMIINSTANCE Represents a WMI data block for a given
WDFWMIPROVIDER.

WMI Provider WDFWMIPROVIDER Describes the WMI schema for all the
WDFWMIINSTANCE objects supported by the driver.

Work Item WDFWORKITEM Describes an executive work item.

For each of these objects, other KMDF objects can be attached as children—some objects have
only one or two valid parents, while other objects can be attached to any parent. For example,
a WDFINTERRUPT object must be associated with a given WDFDEVICE, but a WDFSPINLOCK or
 WDFSTRING can have any object as a parent, allowing fine-grained control over their validity and
 usage and reducing global state variables. Figure 8-30 shows the entire KMDF object hierarchy.

Note that the associations mentioned earlier and shown in the figure are not necessarily immedi-
ate. The parent must simply be on the hierarchy chain, meaning one of the ancestor nodes must be
of this type. This relationship is useful to implement because object hierarchies affect not only the
objects’ locality but also their lifetime. Each time a child object is created, a reference count is added
to it by its link to its parent. Therefore, when a parent object is destroyed, all the child objects are also
destroyed, which is why associating objects such as WDFSTRING or WDFMEMORY with a given object,
instead of the default WDFDRIVER object, can automatically free up memory and state information
when the parent object is destroyed.

Closely related to the concept hierarchy is KMDF’s notion of object context. Because KMDF objects
are opaque, as discussed, and are associated with a parent object for locality, it becomes important
to allow drivers to attach their own data to an object in order to track certain specific information
outside the framework’s capabilities or support.

 CHAPTER 8 I/O System 73

WDFCOLLECTION
WDFKEY
WDFLOOKASIDE
WDFMEMORY
WDFOBJECT
WDFREQUEST (driver-created)
WDFSPINLOCK
WDFSTRING
WDFWAITLOCK

WDFUSBDEVICE

WDFUSBINTERFACE

WDFUSBPIPE

WDFCHILDLIST
WDFFILEOBJECT
WDFINTERRUPT
WDFIOTARGET
WDFREQUEST (delivered
 from queue)

WDFCMRESLIST

WDFDRIVER

WDFDEVICE

WDFIORESREQLIST

WDFIORESLIST

WDFQUEUE

WDFDMAENABLER

WDFWMIPROVIDER

WDFWMIINSTANCE

WDFCOMMONBUFFER
WDFTRANSACTION

WDFDPC
WDFTIMER
WDFWORKITEM

Predefined
Default, but driver
can change to
any object
Either can be parent

FIGURE 8-30 KMDF object hierarchy

Object contexts allow all KMDF objects to contain such information, and they additionally allow
multiple object context areas, which permit multiple layers of code inside the same driver to interact
with the same object in different ways. In the WDM model, the device extension data structure allows
such information to be associated with a given device, but with KMDF even a spinlock or string can
contain context areas. This extensibility allows each library or layer of code responsible for process-
ing an I/O to interact independently of other code, based on the context area that it works with, and
allows a mechanism similar to inheritance.

Finally, KMDF objects are also associated with a set of attributes that are shown in Table 8-6. These
attributes are usually configured to their defaults, but the values can be overridden by the driver
when creating the object by specifying a WDF_OBJECT_ATTRIBUTES structure (similar to the object
manager’s OBJECT_ATTRIBUTES structure that’s used when creating a kernel object).

74 Windows Internals, Sixth Edition, Part 2

TABLE 8-6 KMDF Object Attributes

Attribute Description

ContextSizeOverride Size of the object context area.

ContextTypeInfo Type of the object context area.

EvtCleanupCallback Callback to notify the driver of the object’s cleanup before deletion (references may still
exist).

EvtDestroyCallback Callback to notify the driver of the object’s imminent deletion (reference count will be 0).

ExecutionLevel Describes the maximum IRQL at which the callbacks may be invoked by KMDF.

ParentObject Identifies the parent of this object.

Size Size of the object.

SynchronizationScope Specifies whether callbacks should be synchronized with the parent, a queue or device,
or nothing.

KMDF I/O Model
The KMDF I/O model follows the WDM mechanisms discussed earlier in the chapter. In fact, one can
even think of the framework itself as a WDM driver, since it uses kernel APIs and WDM behavior to
abstract KMDF and make it functional. Under KMDF, the framework driver sets its own WDM-style
IRP dispatch routines and takes control over all IRPs sent to the driver. After being handled by one of
three KMDF I/O handlers (which we’ll describe shortly), it then packages these requests in the appro-
priate KMDF objects, inserts them in the appropriate queues if required, and performs driver callback
if the driver is interested in those events. Figure 8-31 describes the flow of I/O in the framework.

Based on the IRP processing discussed for WDM drivers earlier, KMDF performs one of the follow-
ing three actions:

 ■ Sends the IRP to the I/O handler, which processes standard device operations

 ■ Sends the IRP to the PnP and power handler that processes these kinds of events and notifies
other drivers if the state has changed

 ■ Sends the IRP to the WMI handler, which handles tracing and logging.

These components will then notify the driver of any events it registered for, potentially forward
the request to another handler for further processing, and then complete the request based on an
internal handler action or as the result of a driver call. If KMDF has finished processing the IRP but the
request itself has still not been fully processed, KMDF will take one of the following actions:

 ■ For bus drivers and function drivers, complete the IRP with STATUS_INVALID_DEVICE_REQUEST

 ■ For filter drivers, forward the request to the next lower driver

 CHAPTER 8 I/O System 75

I/O request
handler

IRPs

WMI request
handler

Plug and Play/
power request

handler

I/O target

Dispatcher

Driver
callbacks

Driver
callbacks

Driver
callbacks

Nonpower-
managed

I/O queues

Power-
managed

I/O queues

FIGURE 8-31 KMDF I/O flow and IRP processing

I/O processing by KMDF is based on the mechanism of queues (WDFQUEUE, not the KQUEUE
object discussed in the earlier section on I/O completion and in Chapter 3 in Part 1). KMDF queues
are highly scalable containers of I/O requests (packaged as WDFREQUEST objects) and provide a rich
feature set beyond merely sorting the pending I/Os for a given device. For example, queues also track
currently active requests and support I/O cancellation, I/O concurrency (the ability to perform and
complete more than one I/O request at a time), and I/O synchronization (as noted in the list of object
attributes in Table 8-6). A typical KMDF driver creates at least one queue (if not more) and associates
one or more events with each queue, as well as some of the following options:

 ■ The callbacks registered with the events associated with this queue.

 ■ The power management state for the queue. KMDF supports both power-managed and
nonpower-managed queues. For the former, the I/O handler will handle waking up the device
when required (and when possible), arm the idle timer when the device has no I/Os queued
up, and call the driver’s I/O cancellation routines when the system is switching away from a
working state.

76 Windows Internals, Sixth Edition, Part 2

 ■ The dispatch method for the queue. KMDF can deliver I/Os from a queue either in a sequen-
tial, parallel, or manual mode. Sequential I/Os are delivered one at a time (KMDF waits for the
driver to complete the previous request), while parallel I/Os are delivered to the driver as soon
as possible. In manual mode, the driver must manually retrieve I/Os from the queue.

 ■ Whether or not the queue can accept zero-length buffers, such as incoming requests that
don’t actually contain any data.

Note The dispatch method affects solely the number of requests that are allowed to
be active inside a driver’s queue at one time. It does not determine whether the event
callbacks themselves will be called concurrently or serially. That behavior is determined
through the synchronization scope object attribute described earlier. Therefore, it is pos-
sible for a parallel queue to have concurrency disabled but still have multiple incoming
requests.

Based on the mechanism of queues, the KMDF I/O handler can perform several possible tasks
upon receiving either a create, close, cleanup, write, read, or device control (IOCTL) request:

 ■ For create requests, the driver can request to be immediately notified through EvtDeviceFile-
Create, or it can create a nonmanual queue to receive create requests. It must then register an
EvtIoDefault callback to receive the notifications. Finally, if none of these methods are used,
KMDF will simply complete the request with a success code, meaning that by default, applica-
tions will be able to open handles to KMDF drivers that don’t supply their own code.

 ■ For cleanup and close requests, the driver will be immediately notified through EvtFileCleanup
and EvtFileClose callbacks, if registered. Otherwise, the framework will simply complete with a
success code.

 ■ Finally, Figure 8-32 illustrates the flow of an I/O request to a KMDF driver for the most com-
mon driver operations (read, write, and I/O control codes).

 CHAPTER 8 I/O System 77

Pass the request
to the next

lower driver.

NO YES

Create a
WDFREQUEST

object to represent
the request.

Notify the Plug
and Play/power

handler to power
up the device.

Fail the request.

Does driver have
a queue for this
request type?

Is this a filter driver? Is the queue
accepting requests?

Is the queue
power-managed?

Is the device in
the working state?

Queue the
request.

NO YES

NO YES

NO YES NO YES

FIGURE 8-32 Handling read, write, and IOCTL I/O requests by KMDF

78 Windows Internals, Sixth Edition, Part 2

User-Mode Driver Framework (UMDF)

Although this chapter focuses on kernel-mode drivers, Windows includes a growing number of driv-
ers that actually run in user mode, as previously described, using the User-Mode Driver Framework
(UMDF) that is part of the WDF. Before finishing our discussion on drivers, we’ll take a quick look at
the architecture of UMDF and what it offers. Once again, for a much more complete overview on the
subject, please refer to http://msdn.microsoft.com/en-us/library/windows/hardware/gg463370.aspx.

UMDF is designed specifically to support what are called protocol device classes, which refers to de-
vices that all use the same standardized, generic protocol and offer specialized functionality on top of
it. These protocols currently include IEEE 1394 (FireWire), USB, Bluetooth, and TCP/IP. Any device run-
ning on top of these buses (or connected to a network) is a potential candidate for UMDF—examples
include portable music players, PDAs, cell phones, cameras and webcams, and so on. Two other large
users of UMDF are SideShow-compatible devices (auxiliary displays) and the Windows Portable Device
(WPD) Framework, which supports USB removable storage (USB bulk transfer devices). Finally, as with
KMDF, it’s possible to implement software-only drivers, such as for a virtual device, in UMDF.

To make porting code easier from kernel mode to user mode, and to keep a consistent archi-
tecture, UMDF uses the same conceptual driver programming model as KMDF, but it uses different
components, interfaces, and data structures. For example, KMDF includes objects unique to kernel
mode, while UMDF includes some objects unique to user mode. Objects and functionality that can’t
be accessed through UMDF include direct handling of interrupts, DMA, nonpaged pool, and strict
timing requirements. Furthermore, a UMDF driver can’t be on any kernel driver stack or be a client of
another driver or the kernel itself.

Unlike KMDF drivers, which run as driver objects representing a .sys image file, UMDF drivers run
in a driver host process, similar to a service-hosting process. The host process contains the driver itself
(which is implemented as an in-process COM component), the user-mode driver framework (imple-
mented as a DLL containing COM-like components for each UMDF object), and a run-time environ-
ment (responsible for I/O dispatching, driver loading, device-stack management, communication with
the kernel, and a thread pool).

Just like in the kernel, each UMDF driver runs as part of a stack, which can contain multiple driv-
ers that are responsible for managing a device. Naturally, since user-mode code can’t access the
kernel address space, UMDF also includes some components that allow this access to occur through
a specialized interface to the kernel. This is implemented by a kernel-mode side of UMDF that uses
ALPC (see Chapter 3 in Part 1 for more information on advanced local procedure call) to talk to the
run-time environment in the user-mode driver host processes. Figure 8-33 displays the architecture of
the UMDF driver model.

http://msdn.microsoft.com/en-us/library/windows/hardware/gg463370.aspx

 CHAPTER 8 I/O System 79

User-mode driver

Host process

Framework

Run-time environment

Reflector (filter)

Kernel-mode driver

User-mode driver

Host process

Framework

Run-time environment

Reflector (filter)

Kernel-mode driver

Kernel-mode driver

Applications

Driver manager

Windows kernel

User mode

Kernel mode

Provided by:
IHV

Microsoft
ISV Device stackDevice stack

Win32 API

FIGURE 8-33 UMDF architecture

Figure 8-33 shows two different device stacks that manage two different hardware devices, each
with a UMDF driver running inside its own driver host process. From the diagram, you can see that the
following components take part in the architecture:

 ■ Applications Applications are the clients of the drivers. These are standard Windows ap-
plications that use the same APIs to perform I/Os as they would with a KMDF-managed or a
WDM-managed device. Applications don’t know that they’re talking to a UMDF-based device,
and the calls are still sent to the kernel’s I/O manager.

 ■ Windows kernel (I/O manager) Based on the application I/O APIs, the I/O manager builds
the IRPs for the operations, just like for any other standard device.

 ■ Reflector The reflector is what makes UMDF “tick.” It is a standard WDM filter driver that sits
at the top of the device stack of each device that is being managed by a UMDF driver. The re-
flector is responsible for managing the communication between the kernel and the user-mode
driver host process. IRPs related to power management, Plug and Play, and standard I/O are
redirected to the host process through ALPC. This lets the UMDF driver respond to the I/Os
and perform work, as well as be involved in the Plug and Play model, by providing enumera-
tion, installation, and management of its devices. The reflector is also responsible for keeping
an eye on the driver host processes by making sure that they remain responsive to requests
within an adequate time to prevent drivers and applications from hanging.

 ■ Driver manager The driver manager is responsible for starting and quitting the driver
host processes, based on which UMDF-managed devices are present, and also for manag-
ing information on them. It is also responsible for responding to messages coming from
the reflector and applying them to the appropriate host process (such as reacting to device

80 Windows Internals, Sixth Edition, Part 2

installation). The driver manager runs as a standard Windows service and is configured for
automatic startup as soon as the first UMDF driver for a device is installed. Only one instance
of the driver manager runs for all driver host processes, and it must always be running to allow
UMDF drivers to work.

 ■ Host process The host process provides the address space and run-time environment for
the actual driver. Although it runs in the local service account, it is not actually a Windows
service and is not managed by the SCM—only by the driver manager. The host process is also
responsible for providing the user-mode device stack for the actual hardware, which is visible
to all applications on the system. In the current UMDF release, each device instance has its
own device stack, which runs in a separate host process. In the future, multiple instances may
share the same host process. Host processes are child processes of the driver manager.

 ■ Kernel-mode drivers If specific kernel support for a device that is managed by a UMDF
driver is needed, it is also possible to write a companion kernel-mode driver that fills that role.
In this way, it is possible for a device to be managed both by a UMDF and a KMDF (or WDM)
driver.

You can easily see UMDF in action on your system by inserting a USB flash drive with some content
on it. Run Process Explorer, and you should see a WUDFHost.exe process that corresponds to a driver
host process. Switch to DLL view and scroll down until you see DLLs similar to the ones shown in
Figure 8-34.

FIGURE 8-34 DLL in UMDF host process

You can identify three main components, which match the architectural overview described earlier:

 ■ WUDFx.dll, the framework itself

 ■ WUDFPlatform.dll, the run-time environment

 CHAPTER 8 I/O System 81

 ■ WpdRapi2.dll, the COM component representing the WPD driver, exposing contents of USB
storage devices to Windows shell and media applications

The Plug and Play (PnP) Manager

The PnP manager is the primary component involved in supporting the ability of Windows to recog-
nize and adapt to changing hardware configurations. A user doesn’t need to understand the intrica-
cies of hardware or manual configuration to install and remove devices. For example, it’s the PnP
manager that enables a running Windows laptop that is placed on a docking station to automatically
detect additional devices located in the docking station and make them available to the user.

Plug and Play support requires cooperation at the hardware, device driver, and operating system
levels. Industry standards for the enumeration and identification of devices attached to buses are the
foundation of Windows Plug and Play support. For example, the USB standard defines the way that
devices on a USB bus identify themselves. With this foundation in place, Windows Plug and Play sup-
port provides the following capabilities:

 ■ The PnP manager automatically recognizes installed devices, a process that includes enumer-
ating devices attached to the system during a boot and detecting the addition and removal of
devices as the system executes.

 ■ Hardware resource allocation is a role the PnP manager fills by gathering the hardware re-
source requirements (interrupts, I/O memory, I/O registers, or bus-specific resources) of the
devices attached to a system and, in a process called resource arbitration, optimally assigning
resources so that each device meets the requirements necessary for its operation. Because
hardware devices can be added to the system after boot-time resource assignment, the PnP
manager must also be able to reassign resources to accommodate the needs of dynamically
added devices.

 ■ Loading appropriate drivers is another responsibility of the PnP manager. The PnP manager
determines, based on the identification of a device, whether a driver capable of managing
the device is installed on the system, and if one is, it instructs the I/O manager to load it. If
a suitable driver isn’t installed, the kernel-mode PnP manager communicates with the user-
mode PnP manager to install the device, possibly requesting the user’s assistance in locating a
suitable set of drivers.

 ■ The PnP manager also implements application and driver mechanisms for the detection of
hardware configuration changes. Applications or drivers sometimes require a specific hard-
ware device to function, so Windows includes a means for them to request notification of the
presence, addition, or removal of devices.

 ■ It also provides a place for storage device state, and it participates in system setup, upgrade,
migration, and offline image management.

 ■ In addition, it supports network connected devices, such as network projectors and printers,
by allowing specialized bus drivers to detect the network as a bus and create device nodes for
the devices running on it.

82 Windows Internals, Sixth Edition, Part 2

Level of Plug and Play Support
Windows aims to provide full support for Plug and Play, but the level of support possible depends on
the attached devices and installed drivers. If a single device or driver doesn’t support Plug and Play,
the extent of Plug and Play support for the system can be compromised. In addition, a driver that
doesn’t support Plug and Play might prevent other devices from being usable by the system. Table
8-7 shows the outcome of various combinations of devices and drivers that can and can’t support
Plug and Play.

TABLE 8-7 Device and Driver Plug and Play Capability

Type of Driver

Type of Device Plug and Play Non–Plug and Play

Plug and Play Full Plug and Play No Plug and Play

Non–Plug and Play Possible partial Plug and Play No Plug and Play

A device that isn’t Plug and Play–compatible is one that doesn’t support automatic detection, such
as a legacy ISA sound card. Because the operating system doesn’t know where the hardware physi-
cally lies, certain operations—such as laptop undocking, sleep, and hibernation—are disallowed.
However, if a Plug and Play driver is manually installed for the device, the driver can at least imple-
ment PnP manager–directed resource assignment for the device.

Drivers that aren’t Plug and Play–compatible include legacy drivers, such as those that ran on
Windows NT 4. Although these drivers might continue to function on later versions of Windows, the
PnP manager can’t reconfigure the resources assigned to such devices in the event that resource
 reallocation is necessary to accommodate the needs of a dynamically added device. For example,
a device might be able to use I/O memory ranges A and B, and during the boot the PnP manager
 assigns it range A. If a device that can use only A is attached to the system later, the PnP manager
can’t direct the first device’s driver to reconfigure itself to use range B. This prevents the second
device from obtaining required resources, which results in the device being unavailable for use by
the system. Legacy drivers also impair a machine’s ability to sleep or hibernate. (See the section “The
Power Manager” later in this chapter for more details.)

Driver Support for Plug and Play
To support Plug and Play, a driver must implement a Plug and Play dispatch routine, a power man-
agement dispatch routine (described in the section “The Power Manager” later in this chapter), and an
add-device routine. Bus drivers must support different types of Plug and Play requests than func-
tion or filter drivers do, however. For example, when the PnP manager is guiding device enumeration
during the system boot (described in detail later in this chapter), it asks bus drivers for a description
of the devices that they find on their respective buses. The description includes data that uniquely
identifies each device as well as the resource requirements of the devices. The PnP manager takes this
information and loads any function or filter drivers that have been installed for the detected devices.
It then calls the add-device routine of each driver for every installed device the drivers are respon-
sible for.

 CHAPTER 8 I/O System 83

Function and filter drivers prepare to begin managing their devices in their add-device routines,
but they don’t actually communicate with the device hardware. Instead, they wait for the PnP man-
ager to send a start-device command for the device to their Plug and Play dispatch routine. Prior to
sending the start-device command the PnP manager performs resource arbitration to decide what
resources to assign the device. The start-device command includes the resource assignment that the
PnP manager determines during resource arbitration. When a driver receives a start-device command,
it can configure its device to use the specified resources. If an application tries to open a device that
hasn’t finished starting, it receives an error indicating that the device does not exist.

After a device has started, the PnP manager can send the driver additional Plug and Play com-
mands, including ones related to a device’s removal from the system or to resource reassignment. For
example, when the user invokes the remove/eject device utility, shown in Figure 8-35 (accessible by
right-clicking on the USB connector icon in the taskbar and selecting Eject USB Mass Storage Device),
to tell Windows to eject a USB flash drive, the PnP manager sends a query-remove notification to any
applications that have registered for Plug and Play notifications for the device. Applications typically
register for notification on their handles, which they close during a query-remove notification. If no
applications veto the query-remove request, the PnP manager sends a query-remove command to the
driver that owns the device being ejected. At that point, the driver has a chance to deny the removal
or to ensure that any pending I/O operations involving the device have completed and to begin
rejecting further I/O requests aimed at the device. If the driver agrees to the remove request and no
open handles to the device remain, the PnP manager next sends a remove command to the driver to
request that the driver discontinue accessing the device and release any resources the driver has al-
located on behalf of the device.

FIGURE 8-35 Remove/eject utility

When the PnP manager needs to reassign a device’s resources, it first asks the driver whether it can
temporarily suspend further activity on the device by sending the driver a query-stop command. The
driver either agrees to the request, if doing so wouldn’t cause data loss or corruption, or denies the
request. As with a query-remove command, if the driver agrees to the request, the driver completes
pending I/O operations and won’t initiate further I/O requests for the device that can’t be aborted
and subsequently restarted. The driver typically queues new I/O requests so that the resource re-
shuffling is transparent to applications currently accessing the device. The PnP manager then sends
the driver a stop command. At that point, the PnP manager can direct the driver to assign different
resources to the device and once again send the driver a start-device command for the device.

The various Plug and Play commands essentially guide a device through an assortment of op-
erational states, forming a well-defined state-transition table, which is shown in simplified form in
Figure 8-36. (Several possible transitions and Plug and Play commands have been omitted for clarity.
Also, the state diagram depicted is that implemented by function drivers. Bus drivers implement a
more complex state diagram.) A state shown in the figure that we haven’t discussed is the one that
results from the PnP manager’s surprise-remove command. This command results when either a user

84 Windows Internals, Sixth Edition, Part 2

removes a device without warning, as when the user ejects a PCMCIA card without using the remove/
eject utility, or the device fails. The surprise-remove command tells the driver to immediately cease all
interaction with the device because the device is no longer attached to the system and to cancel any
pending I/O requests.

Not started Pending remove

remove
command

remove
command

query-remove
command

surprise-remove
command

start-device
command

query-stop
command

stop
command

Stopped

Pending stop

Started Removed

Surprise remove

start-device
command

FIGURE 8-36 Device Plug and Play state transitions

Driver Loading, Initialization, and Installation
Driver loading and initialization on Windows consists of two types of loading: explicit loading and
enumeration-based loading. Explicit loading is guided by the HKLM\SYSTEM\CurrentControlSet\
Services branch of the registry, as described in the section “Service Applications” in Chapter 4 in
Part 1. Enumeration-based loading results when the PnP manager dynamically loads drivers for the
devices that a bus driver reports during bus enumeration.

The Start Value
In Chapter 4 in Part 1, we explained that every driver and Windows service has a registry key under
the Services branch of the current control set. The key includes values that specify the type of the
image (for example, Windows service, driver, and file system), the path to the driver or service’s im-
age file, and values that control the driver or service’s load ordering. There are two main differences
between explicit device driver loading and Windows service loading:

 ■ Only device drivers can specify Start values of boot-start (0) or system-start (1).

 ■ Device drivers can use the Group and Tag values to control the order of loading within a phase
of the boot, but unlike services, they can’t specify DependOnGroup or DependOnService
values.

 CHAPTER 8 I/O System 85

Chapter 13, “Startup and Shutdown,” describes the phases of the boot process and explains that
a driver Start value of 0 means that the operating system loader loads the driver. A Start value of 1
means that the I/O manager loads the driver after the executive subsystems have finished initializing.
The I/O manager calls driver initialization routines in the order that the drivers load within a boot
phase. Like Windows services, drivers use the Group value in their registry key to specify which group
they belong to; the registry value HKLM\SYSTEM\CurrentControlSet\Control\ServiceGroupOrder\List
determines the order that groups are loaded within a boot phase.

A driver can further refine its load order by including a Tag value to control its order within a
group. The I/O manager sorts the drivers within each group according to the Tag values defined in
the drivers’ registry keys. Drivers without a tag go to the end of the list in their group. You might
assume that the I/O manager initializes drivers with lower-number tags before it initializes drivers
with higher-number tags, but such isn’t necessarily the case. The registry key HKLM\SYSTEM\Current-
ControlSet\Control\GroupOrderList defines tag precedence within a group; with this key, Microsoft
and device driver developers can take liberties with redefining the integer number system.

Here are the guidelines by which drivers set their Start value:

 ■ Non–Plug and Play drivers set their Start value to reflect the boot phase they want to load in.

 ■ Drivers, including both Plug and Play and non–Plug and Play drivers, that must be loaded
by the boot loader during the system boot specify a Start value of boot-start (0). Examples
include system bus drivers and the boot file system driver.

 ■ A driver that isn’t required for booting the system and that detects a device that a system bus
driver can’t enumerate specifies a Start value of system-start (1). An example is the serial port
driver, which informs the PnP manager of the presence of standard PC serial ports that were
detected by Setup and recorded in the registry.

 ■ A non–Plug and Play driver or file system driver that doesn’t have to be present when the
system boots specifies a Start value of auto-start (2). An example is the Multiple Universal
Naming Convention (UNC) Provider (MUP) driver, which provides support for UNC-based path
names to remote resources (for example, \\REMOTECOMPUTERNAME\SHARE).

 ■ Plug and Play drivers that aren’t required to boot the system specify a Start value of demand-
start (3). Examples include network adapter drivers.

The only purpose that the Start values for Plug and Play drivers and drivers for enumerable devices
have is to ensure that the operating system loader loads the driver—if the driver is required for the
system to boot successfully. Beyond that, the PnP manager’s device enumeration process, described
next, determines the load order for Plug and Play drivers.

Device Enumeration
The PnP manager begins device enumeration with a virtual bus driver called Root, which represents
the entire computer system and acts as the bus driver for non–Plug and Play drivers and for the
HAL. The HAL acts as a bus driver that enumerates devices directly attached to the motherboard as
well as system components such as batteries. Instead of actually enumerating, the HAL relies on the

86 Windows Internals, Sixth Edition, Part 2

hardware description the Setup process recorded in the registry to detect the primary bus (a PCI bus
in most cases) and devices such as batteries and fans.

The primary bus driver enumerates the devices on its bus, possibly finding other buses, for which
the PnP manager initializes drivers. Those drivers in turn can detect other devices, including other
subsidiary buses. This recursive process of enumeration, driver loading (if the driver isn’t already
loaded), and further enumeration proceeds until all the devices on the system have been detected
and configured.

As the bus drivers report detected devices to the PnP manager, the PnP manager creates an in-
ternal tree called the device tree that represents the relationships between devices. Nodes in the tree
are called devnodes, and a devnode contains information about the device objects that represent the
device as well as other Plug and Play–related information stored in the devnode by the PnP manager.
Figure 8-37 shows an example of a simplified device tree. This system is ACPI-compliant, so an ACPI-
compliant HAL serves as the primary bus enumerator. A PCI bus serves as the system’s primary bus,
which USB, ISA, and SCSI buses are connected to.

Joystick Camera
External

Plug and Play
modem

USB hub
Plug and Play

ISA sound
card

Serial port Keyboard Mouse Disk

USB
controller

PCI to ISA
bridge SCSI adapter

ACPI fan PCI bus ACPI battery

ACPI

Root device

FIGURE 8-37 Example device tree

The Device Manager utility, which is accessible from the Computer Management snap-in in the
Programs/Administrative Tools folder of the Start menu (and also from the Device Manager link of
the System utility in Control Panel), shows a simple list of devices present on a system in its default
configuration. You can also select the Devices By Connection option from the Device Manager’s View

 CHAPTER 8 I/O System 87

menu to see the devices as they relate to the device tree. Figure 8-38 shows an example of the Device
Manager’s Devices By Connection view.

FIGURE 8-38 Device Manager showing the device tree

Taking device enumeration into account, the load and initialization order of drivers is as follows:

1. The I/O manager invokes the driver entry routine of each boot-start driver. If a boot driver has
child devices, the I/O manager enumerates those devices, reporting their presence to the PnP
manager. The child devices are configured and started if their drivers are boot-start drivers. If
a device has a driver that isn’t a boot-start driver, the PnP manager creates a devnode for the
device but doesn’t start it or load its driver.

2. After the boot-start drivers are initialized, the PnP manager walks the device tree, loading the
drivers for devnodes that weren’t loaded in step 1 and starting their devices. As each device
starts, the PnP manager enumerates related child devices, if a device has any, starting those
devices’ drivers and performing enumeration of their children as required. The PnP manager
loads the drivers for detected devices in this step regardless of the driver’s Start value. (The
one exception is if the Start value is set to disabled.) At the end of this step, all Plug and Play
devices have their drivers loaded and are started, except devices that aren’t enumerable and
the children of those devices.

88 Windows Internals, Sixth Edition, Part 2

3. The PnP manager loads any drivers with a Start value of system-start that aren’t yet loaded.
Those drivers detect and report their nonenumerable devices. The PnP manager loads drivers
for those devices until all enumerated devices are configured and started.

4. The service control manager loads drivers marked as auto-start.

The device tree serves to guide both the PnP manager and the power manager as they issue Plug
and Play and power IRPs to devices. In general, IRPs flow from the top of a devnode to the bot-
tom, and in some cases a driver in one devnode creates new IRPs to send to other devnodes, always
moving toward the root. The flow of Plug and Play and power IRPs is further described later in this
chapter.

EXPERIMENT: Dumping the Device Tree
A more detailed way to view the device tree than using Device Manager is to use the !devnode
kernel debugger command. Specifying 0 1 as command options dumps the internal device tree
devnode structures, indenting entries to show their hierarchical relationships, as shown here:

lkd> !devnode 0 1
Dumping IopRootDeviceNode (= 0x85161a98)
DevNode 0x85161a98 for PDO 0x84d10390
 InstancePath is "HTREE\ROOT\0"
 State = DeviceNodeStarted (0x308)
 Previous State = DeviceNodeEnumerateCompletion (0x30d)
 DevNode 0x8515bea8 for PDO 0x8515b030
 DevNode 0x8515c698 for PDO 0x8515c820
 InstancePath is "Root\ACPI_HAL\0000"
 State = DeviceNodeStarted (0x308)
 Previous State = DeviceNodeEnumerateCompletion (0x30d)
 DevNode 0x84d1c5b0 for PDO 0x84d1c738
 InstancePath is "ACPI_HAL\PNP0C08\0"
 ServiceName is "ACPI"
 State = DeviceNodeStarted (0x308)
 Previous State = DeviceNodeEnumerateCompletion (0x30d)
 DevNode 0x85ebf1b0 for PDO 0x85ec0210
 InstancePath is "ACPI\GenuineIntel_-_x86_Family_6_Model_15_0"
 ServiceName is "intelppm"
 State = DeviceNodeStarted (0x308)
 Previous State = DeviceNodeEnumerateCompletion (0x30d)
 DevNode 0x85ed6970 for PDO 0x8515e618
 InstancePath is "ACPI\GenuineIntel_-_x86_Family_6_Model_15_1"
 ServiceName is "intelppm"
 State = DeviceNodeStarted (0x308)
 Previous State = DeviceNodeEnumerateCompletion (0x30d)
 DevNode 0x85ed75c8 for PDO 0x85ed79e8
 InstancePath is "ACPI\ThermalZone\THM_"
 State = DeviceNodeStarted (0x308)
 Previous State = DeviceNodeEnumerateCompletion (0x30d)
 DevNode 0x85ed6cd8 for PDO 0x85ed6858
 InstancePath is "ACPI\pnp0c14\0"
 ServiceName is "WmiAcpi"
 State = DeviceNodeStarted (0x308)
 Previous State = DeviceNodeEnumerateCompletion (0x30d)

 CHAPTER 8 I/O System 89

 DevNode 0x85ed7008 for PDO 0x85ed6730
 InstancePath is "ACPI\ACPI0003\2&daba3ff&2"
 ServiceName is "CmBatt"
 State = DeviceNodeStarted (0x308)
 Previous State = DeviceNodeEnumerateCompletion (0x30d)
 DevNode 0x85ed7e60 for PDO 0x84d2e030
 InstancePath is "ACPI\PNP0C0A\1"
 ServiceName is "CmBatt"
...

Information shown for each devnode includes the InstancePath, which is the name of the
 device’s enumeration registry key stored under HKLM\SYSTEM\CurrentControlSet\Enum, and
the ServiceName, which corresponds to the device’s driver registry key under HKLM\SYSTEM\
CurrentControlSet\Services. To see the resources, such as interrupts, ports, and memory, as-
signed to each devnode, specify 0 3 as the command options for the !devnode command.

A record of all the devices detected since the system was installed is recorded under the HKLM\
SYSTEM\CurrentControlSet\Enum registry key. Subkeys are in the form <Enumerator>\<Device ID>\
<Instance ID>, where the enumerator is a bus driver, the device ID is a unique identifier for a type of
device, and the instance ID uniquely identifies different instances of the same hardware.

Device Stacks
As the devnodes are created by the PnP manager, driver objects and device objects are created to
manage and logically represent the linkage between the devnodes. This linkage is called a device
stack, and it can be thought of as an ordered list of device object/driver pairs. Each device stack has a
bottom and top, and Figure 8-39 shows that a device stack is made up of at least two, and sometimes
more, device objects:

 ■ A physical device object (PDO) that the PnP manager instructs a bus driver to create when the
bus driver reports the presence of a device on its bus during enumeration. The PDO represents
the physical interface to the device and is always on the bottom of the device stack.

 ■ One or more optional filter device objects (FiDOs) that layer between the PDO and the func-
tional device object (FDO; described later in this list) and that are created by bus filter drivers.

 ■ One or more optional FiDOs that layer between the PDO and the FDO (and that layer above
any FiDOs created by bus filter drivers) that are created by lower-level filter drivers.

 ■ One (and only one) functional device object (FDO) that is created by the driver, which is called
a function driver, that the PnP manager loads to manage a detected device. An FDO repre-
sents the logical interface to a device. A function driver can also act as a bus driver if devices
are attached to the device represented by the FDO. The function driver often creates an
interface (described earlier) to the FDO’s corresponding PDO so that applications and other
drivers can open the device and interact with it. Sometimes function drivers are divided into a
separate class/port driver and miniport driver that work together to manage I/O for the FDO.

90 Windows Internals, Sixth Edition, Part 2

 ■ One or more optional FiDOs that layer above the FDO and that are created by upper-level
filter drivers.

Filter device object
(FiDO)

Functional
device object

(FDO)

Filter device object
(FiDO)

Filter device object
(FiDO)

Physical
device object

(PDO)

Upper-level
filter driver

Function
driver

Lower-level
filter driver

Bus
filter driver

Bus
driver

IRP

Devnode

FIGURE 8-39 Device stack internals

Device stacks are built from the bottom up and rely on the I/O manager’s layering functionality,
so IRPs flow from the top of a device stack toward the bottom. However, any level in the device stack
can choose to complete an IRP. For example, the function driver can handle a read request without
passing the IRP to the bus driver. Only when the function driver requires the help of a bus driver to
perform bus-specific processing does the IRP flow all the way to the bottom and then into the device
stack containing the bus driver.

Device Stack Driver Loading
So far, we’ve avoided answering two important questions: “How does the PnP manager determine
what function driver to load for a particular device?” and “How do filter drivers register their presence
so that they are loaded at appropriate times in the creation of a device stack?”

The answer to both these questions lies in the registry. When a bus driver performs device
enumeration, it reports device identifiers for the devices it detects back to the PnP manager. The
identifiers are bus-specific; for a USB bus, an identifier consists of a vendor ID (VID) for the hardware
vendor that made the device and a product ID (PID) that the vendor assigned to the device. (See the
WDK for more information on device ID formats.) Together these IDs form what Plug and Play calls a
device ID. The PnP manager also queries the bus driver for an instance ID to help it distinguish differ-
ent instances of the same hardware. The instance ID can describe either a bus-relative location (for
example, the USB port) or a globally unique descriptor (for example, a serial number).

 CHAPTER 8 I/O System 91

The device ID and instance ID are combined to form a device instance ID (DIID), which the PnP
manager uses to locate the device’s key in the enumeration branch of the registry (HKLM\SYSTEM\
CurrentControlSet\Enum). Figure 8-40 presents an example of a keyboard’s enumeration subkey. The
device’s key contains descriptive data and includes values named Service and ClassGUID (which are
obtained from a driver’s INF file) that help the PnP manager locate the device’s drivers.

FIGURE 8-40 Keyboard enumeration key

To deal with multifunction devices (such as all-in-one printers or cell phones with integrated
camera and music player functionalities), Windows also supports a container ID property that can be
associated with a devnode. The container ID is a globally unique identifier (GUID) that is unique to a
single instance of a physical device and shared between all the function devnodes that belong to it, as
shown in Figure 8-41.

Windows PC

Multifunction device
• Printer
• Scanner
• Fax

Plug and Play devnodes

Multifunction
device
container

Printer devnode properties:
• ContainerID: {a6858a00-5bc9-47ac-896d-ca96a44bc9ad}

Scanner devnode properties:
• ContainerID: {a6858a00-5bc9-47ac-896d-ca96a44bc9ad}

Fax devnode properties:
• ContainerID: {a6858a00-5bc9-47ac-896d-ca96a44bc9ad}

Other devnode:
• ContainerID: {5bdbf3d1-a63e-4fb1-903b-4f0f970c8da5}

Other devnode:
• ContainerID: {3dd3e49d-869d-489c-aad4-255bef9f0043}

FIGURE 8-41: All-in-one printer with a unique ID as seen by the PnP manager

92 Windows Internals, Sixth Edition, Part 2

The container ID is a property that, similar to the instance ID, is reported back by the bus driver
of the corresponding hardware. Then, when the device is being enumerated, all devnodes associated
with the same PDO share the container ID. Because Windows already supports many buses out of
the box—such as PnP-X, Bluetooth, and USB—most device drivers can simply return the bus-specific
ID, from which Windows will generate the corresponding container ID. For other kinds of devices or
buses, the driver can generate its own unique ID through software.

Finally, when device drivers do not supply a container ID, Windows can make educated guesses
by querying the topology for the bus, when that’s available, through mechanisms such as ACPI.
By understanding whether a certain device is a child of another, and whether it is removable, hot-
pluggable, or user-reachable (as opposed to an internal motherboard component), Windows is able
to assign container IDs to device nodes that reflect multifunction devices correctly.

The final end-user benefit of grouping devices by container IDs is visible in the Devices And Print-
ers UI present in modern versions of Windows. This feature is able to display the scanner, printer, and
faxing components of an all-in-one printer as a single graphical element instead of as three distinct
devices. For example, in Figure 8-42, the HP PSC 1500 series is identified as a single device.

FIGURE 8-42 Devices And Printers

 CHAPTER 8 I/O System 93

EXPERIMENT: Viewing Detailed Devnode Information in Device Manager
The Device Manager applet that you can access from the Hardware link of the System Control
Panel application shows detailed information about a device node on its Details tab. The tab
allows you to view an assortment of fields, including the devnode’s device instance ID, hardware
ID, service name, filters, and power capabilities.

The following screen shows the selection combo box of the Details tab expanded to reveal
the types of information you can access:

Using the ClassGUID value, the PnP manager locates the device’s class key under HKLM\SYSTEM\
CurrentControlSet\Control\Class. The keyboard class key is shown in Figure 8-43. The enumeration
key and class key supply the PnP manager with the information it needs to load the drivers necessary
for the device’s devnode. Drivers are loaded in the following order:

1. Any lower-level filter drivers specified in the LowerFilters value of the device’s enumeration
key.

2. Any lower-level filter drivers specified in the LowerFilters value of the device’s class key.

3. The function driver specified by the Service value in the device’s enumeration key. This value is
interpreted as the driver’s key under HKLM\SYSTEM\CurrentControlSet\Services.

4. Any upper-level filter drivers specified in the UpperFilters value of the device’s enumeration
key.

5. Any upper-level filter drivers specified in the UpperFilters value of the device’s class key.

94 Windows Internals, Sixth Edition, Part 2

FIGURE 8-43 Keyboard class key

In all cases, drivers are referenced by the name of their key under HKLM\SYSTEM\Current Control -
 Set\Services.

Note The WDK refers to a device’s enumeration key as its hardware key and to the class
key as the software key.

The keyboard device shown in Figure 8-40 and Figure 8-43 has no lower-level filter drivers. The
function driver is the i8042prt driver, and there are two upper-level filter drivers specified in the key-
board’s class key: kbdclass and vmkbd2.

Driver Installation
If the PnP manager encounters a device for which no driver is installed, it relies on the user-mode
PnP manager to guide the installation process. If the device is detected during the system boot,
a devnode is defined for the device, but the loading process is postponed until the user-mode
PnP manager starts. (The user-mode PnP manager is implemented in %SystemRoot%\System32\
Umpnpmgr.dll and runs in a service hosting process (Svchost.exe).)

The components involved in a driver’s installation are shown in Figure 8-44. Dark-shaded objects
in the figure correspond to components generally supplied by the system, whereas lighter-shaded
objects are those included in a driver’s installation files. First, a bus driver informs the PnP manager
of a device it enumerates using a DIID (1). The PnP manager checks the registry for the presence of a
corresponding function driver, and when it doesn’t find one, it informs the user-mode PnP manager

 CHAPTER 8 I/O System 95

(2) of the new device by its DIID. The user-mode PnP manager first tries to perform an automatic
install without user intervention. If the installation process involves the posting of dialog boxes that
require user interaction and the currently logged-on user has administrator privileges, (3) the user-
mode PnP manager launches the Rundll32.exe application (the same application that hosts Control
Panel utilities) to execute the Hardware Installation Wizard (%SystemRoot%\System32\Newdev.dll).
If the currently logged-on user doesn’t have administrator privileges (or if no user is logged on)
and the installation of the device requires user interaction, the user-mode PnP manager defers the
installation until a privileged user logs on. The Hardware Installation Wizard uses Setupapi.dll and
CfgMgr32.dll (configuration manager) API functions to locate INF files that correspond to drivers that
are compatible with the detected device. This process might involve having the user insert installa-
tion media containing a vendor’s INF files, or the wizard might locate a suitable INF file in the driver
store (%SystemRoot%\System32\DriverStore) that contains drivers that ship with Windows or others
that are downloaded through Windows Update. Installation is performed in two steps. In the first,
the third-party driver developer imports the driver package into the driver store, and in the second
step, the system performs the actual installation, which is always done through the %SystemRoot%\
System32\Drvinst.exe process.

User mode

Kernel mode

Hardware
Installation

Wizard

Setup and
CfgMgr APIs

User-mode
PnP manager

Class installers
and coinstallers

Filter driver

Function driver

Filter driver

Bus driver

PnP
manager

.inf files,

.cat files,
registry

2

3

1

4

5

FIGURE 8-44 Driver installation components

To find drivers for the new device, the installation process gets a list of hardware IDs and compat-
ible IDs from the bus driver. These IDs describe all the various ways the hardware might be identi-
fied in a driver installation file (.inf). The lists are ordered so that the most specific description of the
hardware is listed first. If matches are found in multiple INFs, more precise matches are preferred over
less precise matches, digitally signed INFs are preferred over unsigned ones, and newer signed INFs
are preferred over older signed ones. If a match is found based on a compatible ID, the Hardware

96 Windows Internals, Sixth Edition, Part 2

Installation Wizard can choose to prompt for media in case a more up-to-date driver came with the
hardware.

The INF file locates the function driver’s files and contains commands that fill in the driver’s enu-
meration and class keys, and the INF file might direct the Hardware Installation Wizard to (4) launch
class or device coinstaller DLLs that perform class-specific or device-specific installation steps, such as
displaying configuration dialog boxes that let the user specify settings for a device.

EXPERIMENT: Looking at a Driver’s INF File
When a driver or other software that has an INF file is installed, the system copies its INF file to
the %SystemRoot%\Inf directory. One file that will always be there is Keyboard.inf because it’s
the INF file for the keyboard class driver. View its contents by opening it in Notepad and you
should see something like this:

; Copyright (c) Microsoft Corporation. All rights reserved.

[Version]
Signature="$Windows NT$"
Class=Keyboard
ClassGUID={4D36E96B-E325-11CE-BFC1-08002BE10318}
Provider=%MS%
DriverVer=06/21/2006,6.1.7601.17514

[SourceDisksNames]
3426=windows cd
...

If you search the file for “.sys”, you’ll come across the entry that directs the user-mode PnP
manager to install the i8042prt.sys and kbdclass.sys drivers:

...

[STANDARD_CopyFiles]
i8042prt.sys,,,0x100
kbdclass.sys,,,0x100
...

Before actually installing a driver, the user-mode PnP manager checks the system’s driver-signing
policy. If the settings specify that the system should block or warn of the installation of unsigned driv-
ers, the user-mode PnP manager checks the driver’s INF file for an entry that locates a catalog (a file
that ends with the .cat extension) containing the driver’s digital signature.

Microsoft’s WHQL tests the drivers included with Windows and those submitted by hardware ven-
dors. When a driver passes the WHQL tests, it is “signed” by Microsoft. This means that WHQL obtains
a hash, or unique value representing the driver’s files, including its image file, and then cryptographi-
cally signs it with Microsoft’s private driver-signing key. The signed hash is stored in a catalog file and
included on the Windows installation media or returned to the vendor that submitted the driver for
inclusion with its driver.

 CHAPTER 8 I/O System 97

EXPERIMENT: Viewing Catalog Files
When you install a component such as a driver that includes a catalog file, Windows copies the
catalog file to a directory under %SystemRoot%\System32\Catroot. Navigate to that directory
in Explorer and you find the subdirectory that contains .cat files. Nt5.cat and Nt5ph.cat store
the signatures and page hashes for Windows system files, for example.

If you open one of the catalog files, a dialog box appears with two pages. The page labeled
General shows information about the signature on the catalog file, and the Security Catalog
page has the hashes of the components that are signed with the catalog file. This screen shot of
a catalog file for NVIDIA video drivers shows the hash for the video adapter’s kernel miniport
driver. Other hashes in the catalog are associated with the various support DLLs that ship with
the driver.

As it is installing a driver, the user-mode PnP manager extracts the driver’s signature from its cata-
log file, decrypts the signature using the public half of Microsoft’s driver-signing private/public key
pair, and compares the resulting hash with a hash of the driver file it’s about to install. If the hashes
match, the driver is verified as having passed WHQL testing. If a driver fails the signature verification,
the user-mode PnP manager acts according to the settings of the system driver-signing policy, either
failing the installation attempt, warning the user that the driver is unsigned, or silently installing the
driver.

98 Windows Internals, Sixth Edition, Part 2

Note Drivers installed using setup programs that manually configure the registry and copy
driver files to a system and driver files that are dynamically loaded by applications aren’t
checked for signatures by the PnP manager’s signing policy. Instead, they are checked by
the Kernel Mode Code Signing policy described in Chapter 3 in Part 1. Only drivers in-
stalled using INF files are validated against the PnP manager’s driver-signing policy.

After a driver is installed, the kernel-mode PnP manager (step 5 in Figure 8-44) starts the driver
and calls its add-device routine to inform the driver of the presence of the device it was loaded for.
The construction of the device stack then continues as described earlier.

Note The user-mode PnP manager also checks to see whether the driver it’s about to
install is on the protected driver list maintained by Windows Update and, if so, blocks the
installation with a warning to the user. Drivers that are known to have incompatibilities or
bugs are added to the list and blocked from installation.

The Power Manager

Just as Windows Plug and Play features require support from a system’s hardware, its power-
management capabilities require hardware that complies with the Advanced Configuration and Power
Interface (ACPI) specification (available at http://www.acpi.info).

The ACPI standard defines various power levels for a system and for devices. The six system power
states are described in Table 8-8. They are referred to as S0 (fully on or working) through S5 (fully off).
Each state has the following characteristics:

 ■ Power consumption The amount of power the computer consumes

 ■ Software resumption The software state from which the computer resumes when moving
to a “more on” state

 ■ Hardware latency The length of time it takes to return the computer to the fully on state

States S1 through S4 are sleeping states, in which the computer appears to be off because of re-
duced power consumption. However, the computer retains enough information, either in memory or
on disk, to move to S0. For states S1 through S3, enough power is required to preserve the contents
of the computer’s memory so that when the transition is made to S0 (when the user or a device wakes
up the computer), the power manager continues executing where it left off before the suspend.

http://www.acpi.info

 CHAPTER 8 I/O System 99

TABLE 8-8 System Power-State Definitions

State Power Consumption Software Resumption Hardware Latency

S0 (fully on) Maximum Not applicable None

S1 (sleeping) Less than S0, more than S2 System resumes where it left off
(returns to S0)

Less than 2 seconds

S2 (sleeping) Less than S1, more than S3 System resumes where it left off
(returns to S0)

2 or more seconds

S3 (sleeping) Less than S2; processor is off System resumes where it left off
(returns to S0)

Same as S2

S4 (hibernating) Trickle current to power
button and wake circuitry

System restarts from saved
hibernatation file and resumes where
it left off prior to hibernation (returns
to S0)

Long and undefined

S5 (fully off) Trickle current to power
button

System boot Long and undefined

When the system moves to S4, the power manager saves the compressed contents of memory to
a hibernation file named Hiberfil.sys, which is large enough to hold the uncompressed contents of
memory, in the root directory of the system volume. (Compression is used to minimize disk I/O and to
improve hibernation and resume-from-hibernation performance.) After it finishes saving memory, the
power manager shuts off the computer. When a user subsequently turns on the computer, a normal
boot process occurs, except that Bootmgr checks for and detects a valid memory image stored in the
hibernation file. If the hibernation file contains saved system state, Bootmgr launches Winresume,
which reads the contents of the file into memory, and then resumes execution at the point in memory
that is recorded in the hibernation file.

On systems with hybrid sleep enabled (by default, only desktop computers), a user request to put
the computer to sleep will actually be a combination of both the S3 state and the S4 state: while the
computer is put to sleep, an emergency hibernation file will also be written to disk. Unlike typical
hibernation files, which contain almost all active memory, the emergency hibernation file includes
only data that could not be paged in at a later time, making the suspend operation faster than a typi-
cal hibernation (because less data is written to disk). Drivers will then be notified that an S4 transition
is occurring, allowing them to configure themselves and save state just as if an actual hibernation
request had been initiated. After this point, the system is put in the normal sleep state just like during
a standard sleep transition. However, if the power goes out, the system is now essentially in an S4
state—the user can power on the machine, and Windows will resume from the emergency hiberna-
tion file.

The computer never directly transitions between states S1 and S4; instead, it must move to state
S0 first. As illustrated in Figure 8-45, when the system is moving from any of states S1 through S5 to
state S0, it’s said to be waking, and when it’s transitioning from state S0 to any of states S1 through
S5, it’s said to be sleeping.

100 Windows Internals, Sixth Edition, Part 2

S1–S4 (sleeping)
S5 (fully off)

S0 (fully on)

Waking

Sleeping

FIGURE 8-45 System power-state transitions

Although the system can be in one of six power states, ACPI defines devices as being in one of four
power states, D0 through D3. State D0 is fully on, and state D3 is fully off. The ACPI standard leaves
it to individual drivers and devices to define the meanings of states D1 and D2, except that state D1
must consume an amount of power less than or equal to that consumed in state D0, and when the
device is in state D2, it must consume power less than or equal to that consumed in D1. Microsoft,
in conjunction with the major hardware OEMs, has defined a series of power management reference
specifications that specify the device power states that are required for all devices in a particular class
(for the major device classes: display, network, SCSI, and so on). For some devices, there’s no interme-
diate power state between fully on and fully off, which results in these states being undefined.

Power Manager Operation
Power management policy in Windows is split between the power manager and the individual device
drivers. The power manager is the owner of the system power policy. This ownership means that the
power manager decides which system power state is appropriate at any given point, and when a
sleep, hibernation, or shutdown is required, the power manager instructs the power-capable devices
in the system to perform appropriate system power-state transitions. The power manager decides
when a system power-state transition is necessary by considering a number of factors:

 ■ System activity level

 ■ System battery level

 ■ Shutdown, hibernate, or sleep requests from applications

 ■ User actions, such as pressing the power button

 ■ Control Panel power settings

When the PnP manager performs device enumeration, part of the information it receives about
a device is its power-management capabilities. A driver reports whether or not its devices support
device states D1 and D2 and, optionally, the latencies, or times required, to move from states D1

 CHAPTER 8 I/O System 101

through D3 to D0. To help the power manager determine when to make system power-state transi-
tions, bus drivers also return a table that implements a mapping between each of the system power
states (S0 through S5) and the device power states that a device supports.

The table lists the lowest possible device power state for each system state and directly reflects
the state of various power planes when the machine sleeps or hibernates. For example, a bus that
supports all four device power states might return the mapping table shown in Table 8-9. Most device
drivers turn their devices completely off (D3) when leaving S0 to minimize power consumption when
the machine isn’t in use. Some devices, however, such as network adapter cards, support the ability
to wake up the system from a sleeping state. This ability, along with the lowest device power state in
which the capability is present, is also reported during device enumeration.

TABLE 8-9 Example System-to-Device Power Mappings

System Power State Device Power State

S0 (fully on) D0 (fully on)

S1 (sleeping) D1

S2 (sleeping) D2

S3 (sleeping) D2

S4 (hibernating) D3 (fully off)

S5 (fully off) D3 (fully off)

Driver Power Operation
When the power manager decides to make a transition between system power states, it sends power
commands to a driver’s power dispatch routine. More than one driver can be responsible for manag-
ing a device, but only one of the drivers is designated as the device power-policy owner. This driver
determines, based on the system state, a device’s power state. For example, if the system transitions
between state S0 and S1, a driver might decide to move a device’s power state from D0 to D1.

Instead of directly informing the other drivers that share the management of the device of its
decision, the device power-policy owner asks the power manager, via the PoRequestPowerIrp func-
tion, to tell the other drivers by issuing a device power command to their power dispatch routines.
This behavior allows the power manager to control the number of power commands that are active
on a system at any given time. For example, some devices in the system might require a significant
amount of current to power up. The power manager ensures that such devices aren’t powered up
simultaneously.

102 Windows Internals, Sixth Edition, Part 2

EXPERIMENT: Viewing a Driver’s Power Mappings
You can see a driver’s system power state to driver power state mappings with Device Manager.
Open the Properties dialog box for a device, and choose the Power Data entry in the drop-
down list on the Details tab to see the mappings.

The dialog box also displays the current power state of the device, the device-specific power
capabilities that it provides, and the power states from which it is able to wake the system.

Many power commands have corresponding query commands. For example, when the sys-
tem is moving to a sleep state, the power manager will first ask the devices on the system
whether the transition is acceptable. A device that is busy performing time-critical operations or
interacting with device hardware might reject the command, which results in the system main-
taining its current system power-state setting.

 CHAPTER 8 I/O System 103

EXPERIMENT: Viewing the System Power Capabilities and Policy
You can view a computer’s system power capabilities by using the !pocaps kernel debugger
command. Here’s the output of the command when run on an ACPI-compliant laptop:

lkd> !pocaps
PopCapabilities @ 0x82114d80
 Misc Supported Features: PwrButton SlpButton Lid S3 S4 S5 HiberFile FullWake
 VideoDim
 Processor Features: Thermal
 Disk Features: SpinDown
 Battery Features: BatteriesPresent
 Battery 0 - Capacity: 0 Granularity: 0
 Battery 1 - Capacity: 0 Granularity: 0
 Battery 2 - Capacity: 0 Granularity: 0
 Wake Caps
 Ac OnLine Wake: Sx
 Soft Lid Wake: Sx
 RTC Wake: S4
 Min Device Wake: Sx
 Default Wake: Sx

The Misc Supported Features line reports that, in addition to S0 (fully on), the system sup-
ports system power states S1, S3, S4, and S5 (it doesn’t implement S2) and has a valid hiberna-
tion file to which it can save system memory when it hibernates (state S4).

The Power Options page, shown here (available by selecting Power Options in Control
Panel), lets you configure various aspects of the system’s power policy. The exact properties you
can configure depend on the system’s power capabilities, which we just examined.

By changing any of the preconfigured plan settings, you can set the idle detection timeouts
that control when the system turns off the monitor, spins down hard disks, goes to standby
mode (moves to system power state S1), and hibernates (moves the system to power state S4).
In addition, selecting the Change Plan Settings option lets you specify the power-related be-
havior of the system when you press the power or sleep buttons or close a laptop’s lid.

104 Windows Internals, Sixth Edition, Part 2

The settings you configure by clicking the Change Advanced Power Settings link directly
affect values in the system’s power policy, which you can display with the !popolicy debugger
command. Here’s the output of the command on the same system:

lkd> !popolicy
SYSTEM_POWER_POLICY (R.1) @ 0x82107994
 PowerButton: Sleep Flags: 00000000 Event: 00000000
 SleepButton: Sleep Flags: 00000000 Event: 00000000
 LidClose: Sleep Flags: 00000000 Event: 00000000
 Idle: Sleep Flags: 00000000 Event: 00000000
 OverThrottled: None Flags: 00000000 Event: 00000000
 IdleTimeout: 384 IdleSensitivity: 90%
 MinSleep: S3 MaxSleep: S3
 LidOpenWake: S0 FastSleep: S0
 WinLogonFlags: 1 S4Timeout: fd20
 VideoTimeout: 300 VideoDim: 0
 SpinTimeout: 258 OptForPower: 0
 FanTolerance: 0% ForcedThrottle: 0%

 SpinTimeout: 258 OptForPower: 0
 MinThrottle: 0% DyanmicThrottle: None

The first lines of the display correspond to the button behaviors specified on the Advanced
Settings tab of Power Options, and on this system both the power and the sleep buttons put
the computer in a sleep state, just as closing the lid does.

The timeout values shown at the end of the output are expressed in seconds and displayed
in hexadecimal notation. The values reported here directly correspond to the settings you can
see configured on the Power Options page. (The laptop is on battery.) For example, the video
timeout is 300, meaning the monitor turns off after 300 seconds, or 5 minutes, and the hard
disk spin-down timeout is 0x258, which corresponds to 600 seconds, or 10 minutes.

 CHAPTER 8 I/O System 105

Driver and Application Control of Device Power
Besides responding to power manager commands related to system power-state transitions, a driver
can unilaterally control the device power state of its devices. In some cases, a driver might want to
reduce the power consumption of a device it controls when the device is left inactive for a period of
time. Examples include monitors that support a dimmed mode and disks that support spin-down.
A driver can either detect an idle device itself or use facilities provided by the power manager. If
the device uses the power manager, it registers the device with the power manager by calling the
 PoRegisterDeviceForIdleDetection function.

This function informs the power manager of the timeout values to use to detect a device as idle
and of the device power state that the power manager should apply when it detects the device as
being idle. The driver specifies two timeouts: one to use when the user has configured the computer
to conserve energy and the other to use when the user has configured the computer for optimum
performance. After calling PoRegisterDeviceForIdleDetection, the driver must inform the power man-
ager, by calling the PoSetDeviceBusy or PoSetDeviceBusyEx functions, whenever the device is active,
and then register for idle detection again to disable and re-enable it as needed. The PoStartDevice-
Busy and PoEndDeviceBusy APIs are available in newer versions of Windows as well, which simplify the
programming logic required to achieve the behavior that’s desired.

Although a device has control over its own power state, it does not have the ability to manipulate
the system power state or to prevent system power transitions from occurring. For example, if a badly
designed driver doesn’t support any low-power states, it can choose to remain on or turn itself com-
pletely off without hindering the system’s overall ability to enter a low-power state—this is because
the power manager only notifies the driver of a transition and doesn’t ask for consent.

Although drivers and the kernel are chiefly responsible for power management, applications are
also allowed to provide their input. User-mode processes can register for a variety of power noti-
fications, such as when the battery is low or critically low, when the laptop has switched from DC
(battery) to AC (adapter/charger) power, or when the system is initiating a power transition. Just like
drivers, however, applications cannot veto these operations, and they can have up to two seconds to
clean up any state necessary before a sleep transition.

Power Availability Requests
Even though applications and drivers cannot veto sleep transitions that are already initiated, certain
scenarios demand a mechanism for disabling the ability to initiate sleep transitions when a user is
interacting with the system in certain ways. For example, if the user is currently watching a movie and
the machine would normally go idle (based on a lack of mouse or keyboard input after 15 minutes),
the media player application should have the capability to temporarily disable idle transitions as long
as the movie is playing. You can probably imagine other power-saving measures that the system
would normally undertake, such as turning off or even just dimming the screen, that would also limit
your enjoyment of visual media. In legacy versions of Windows, SetThreadExecutionState was a user-
mode API capable of controlling system and display idle transitions by informing the power man-
ager that a user was still present on the machine, but this API did not provide any sort of diagnostic

106 Windows Internals, Sixth Edition, Part 2

capabilities, nor did it allow sufficient granularity for defining the availability request. Also, drivers
were not able to issue their own requests, and even user applications had to correctly manage their
threading model, because these requests were at the thread level, not at the process or system level.

Windows now supports power request objects, which are implemented by the kernel and are
bona-fide object manager–defined objects. You can use the WinObj utility that was introduced in
Chapter 3 in Part 1 and see the PowerRequest object type in the \ObjectTypes directory, or use the
!object kernel debugger command on the \ObjectTypes\PowerRequest object type, to validate this.
Power availability requests are generated by user-mode applications through the PowerCreateRequest
API and then enabled or disabled with the PowerSetRequest and PowerClearRequest APIs, respectively.
In the kernel, drivers use PoCreatePowerRequest, PoSetPowerRequest, and PoClearPowerRequest.
Because no handles are used, PoDeletePowerRequest is implemented to remove the reference on the
object (while user mode can simply use CloseHandle).

There are three kinds of requests that can be used through the Power Request API: a system
request, a display request, and an “away-mode” request. The first type requests that the system not
automatically go to sleep due to the idle timer (although the user can still close the lid to enter sleep,
for example), while the second does the same for the display. “Away-mode” is a modification to the
normal sleep (S3 state) behavior of Windows, which is used to keep the computer in full powered-on
mode but with the display and sound card turned off, making it appear to the user as though the
machine is really sleeping. This behavior is normally used only by specialized set-top boxes or media
center devices when media delivery must continue even though the user has pressed a physical sleep
button, for example. In the future, Windows may support other requests as well.

EXPERIMENT: Viewing a Power Availability Request in the Debugger
Because power availability requests are objects managed by the object manager, applications
have handles open to them when calling the PowerCreateRequest API, and Process Explorer is
able to find these handles by using the Search DLL/Handle functionality that was introduced in
previous chapters.

You can search for “PowerRequest” and find certain services and applications on your
machine that have made availability requests. (Drivers will not show up because the kernel
API does not use handles.) For example, the Print Spooler (Spoolsvc.exe) and Windows Media
Player Network Sharing Service (Wmpntwk.exe) are two Windows services that have availability
request objects.

By launching the Poavltst.exe test utility from the Book Tools and searching with Process
 Explorer, you will also find that it too has a handle open. Use the handle lower-pane view to
obtain the kernel address of the object, in this case 0x8544ABF8.

 CHAPTER 8 I/O System 107

You can then use local kernel debugging to dump the power request object as shown next.
Unfortunately, the underlying kernel data structure is not present in the symbol files, so only
a hex dump is possible. Nevertheless, the layout of the object is easy to understand: a doubly
linked list (the first two pointers), some flags, and then a pointer to the actual request informa-
tion that the test application supplied, which is highlighted in bold.

kd> dc 8544ABF8
855d01a8 819586c0 85448ea0 00000001 00000007 D.........
855d01b8 00000000 00000000 00000000 00000000
855d01c8 b13e9b50

By using the same dump command on the pointer, the power request’s diagnostic reason is
visible: “Computation in progress.”

kd> dc b13e9b50
b13e9b50 00000001 8556b030 00000000 00000044 0.V.....D...
b13e9b60 00000001 00000014 00000000 80080001
b13e9b70 00000000 006f0043 0070006d 00740075 C.o.m.p.u.t.
b13e9b80 00740061 006f0069 0020006e 006e0069 a.t.i.o.n. .i.n.
b13e9b90 00700020 006f0072 00720067 00730065 .p.r.o.g.r.e.s

You can also use the dl (dump list) command on the first pointer in the object’s dump
to dump a list of all the power requests on the system, which are linked by the PopPower-
RequestObjectList symbol in the kernel. This will let you see power requests that Process
 Explorer cannot locate, such as those created by drivers.

108 Windows Internals, Sixth Edition, Part 2

EXPERIMENT: Viewing Power Availability Requests with Powercfg
As you saw, dumping power availability requests requires quite a bit of kernel spelunking.
Thankfully, the Powercfg utility provides much of the same capabilities in an easier-to-use
command-line version. Here’s the output of the utility while browsing a Windows laptop’s
share from another machine, while at the same time playing an MP3 file and launching the
Poavltst.exe application:

C:\Users\Administrator>powercfg -requests
DISPLAY:
[PROCESS] \Device\HarddiskVolume1\Users\Administrator\PoAvlTst.exe
Computation in progress
[PROCESS] \Device\HarddiskVolume1\Program Files\Windows Media Player\wmplayer.exe

SYSTEM:
[DRIVER] Parallels Audio Controller (x32) (PCI\VEN_8086&DEV_2445&SUBSYS_04001AB8&REV_02\3&
11583659&0&FC)
An audio stream is currently in use.
[DRIVER] \FileSystem\srvnet
An active remote client has recently sent requests to this machine.
[PROCESS] \Device\HarddiskVolume1\Program Files\Windows Media Player\wmplayer.exe

AWAYMODE:
None.

Note the same “Computation in progress” string, as well as the fact that the SMB driver and
the audio driver are also requesting power availability and have indicated their reason for doing
so. Windows Media Player, on the other hand, continues to use the legacy API, so no informa-
tion about the reason is available.

Processor Power Management (PPM)
So far, this section has only described the power manager’s control over device (D) and system (S)
states, but another important state management must also be performed on a modern operating sys-
tem: that of the processor (P and C states). Windows implements a processor power manager (PPM)
that is responsible for controlling both C states (the idle states of the processor) and P states (the
package states of the processor) and for interacting with ACPI firmware as well as a vendor-supplied
power management driver, as needed (Intelppm.sys for Intel CPUs, for example). Which states are
chosen is usually determined by a combination of internal algorithms and settings that ship in the
Windows registry, most of which are tunable by OEMs and administrators. We will show all these tun-
able policy values later in this section.

Although the exact specifics of PPM are outside the scope of this book and are often hardware-
specific, it is worth going into detail about one particular technology that is unique to Windows: core
parking. At its essence, core parking is a load-based engine running inside the PPM that makes two
sets of decisions:

 CHAPTER 8 I/O System 109

 ■ Which particular P states should be entered for a given processor, and how power should be
managed across a power domain. A domain is the set of functional units associated with a
given processor core (including the core itself), which are all sharing the same clock generator
crystal with the same divider, and thus the same frequency. This could be an entire package,
half a package, or even just one SMT core with multiple logical processors.

 ■ Which particular cores should be made unavailable to the scheduler engine (see Chapter 5
in Part 1 for more information on scheduling) in order to reduce attempts to make those
selected cores busy again. These selected cores are called parked cores. Note that hard affinity
settings will still force the scheduler to pick one of these “unavailable” cores, as described later.

Note In its current implementation, core parking does not rebalance interrupts or shift
software timers away from parked cores, but it may do so in the future.

To summarize, core parking aggressively puts processors in their deepest idle (C) states (not neces-
sarily P states) and tries to keep them that way.

Core Parking Policies
Because the power requirements and usage models of desktop machines vary from those of server
machines, core parking implements two internal policies for managing processor cores. The first
policy, called core parking override, is used by default on client systems. This policy has lower idle
thresholds for when to begin parking (that is, it parks more aggressively) and, most importantly, al-
ways leaves one thread in an SMT package unparked—in other words, it is responsible for essentially
disabling the Hyper-Threading feature found on Intel CPUs until load warrants it. This effect is shown
in Figure 8-46: CPU 1 and CPU 3 are parked because they correspond to the second thread of CPU 0’s
and CPU 2’s SMT sets.

The second core parking policy is the default behavior, which is to say that it does not make any
special considerations for SMT cores. This policy is also paired with less aggressive threshold param-
eters that are more suitable for server workloads, in which load is usually low during the majority of
the time but all processors should be readily available when peaks are hit.

Additionally, the engine is tuned to avoid coalescing processing too much to a single node or
subset of nodes. Although consolidating work has energy benefits because less power is distributed
or wasted across the system, it now adds significant contention to the memory controller(s), which
on a distributed NUMA system would have been less busy because of the scheduler’s ideal node and
process-seed selection algorithms. (See Chapter 5 in Part 1 for more information.) Therefore, core
parking has to walk an interesting tightrope between reducing power, increasing cache and memory
access effectiveness, and reducing contention on node-local resources. An example of this balanc-
ing act is that the core parking engine will always keep at least one core available per NUMA node to
keep the scheduler’s spreading efforts useful and to help support applications that specifically parti-
tion their workloads across nodes through NUMA-aware thread affinity and memory allocation.

110 Windows Internals, Sixth Edition, Part 2

FIGURE 8-46 Resource Monitor showing core parking effects on SMT systems

Utility Function
Decisions taken by the PPM engine as to whether to modify the power state of a core, as well as
which cores to park or unpark, are gated by one primal metric: utility. The utility of a processor
represents, in the engine’s view, the load of a given core and is computed by multiplying the average
frequency of a core (expressed as a percentage of its maximum) by the busy period of the core (ex-
pressed as a percentage of non-idle time). Because two percentages are being multiplied, the maxi-
mum utility is 10,000, and almost all the engine’s calculations are done by comparing utility (actually,
as we show later, a value derived from utility) with some threshold or average.

Note On modern processors, the average frequency is obtained by invoking the feedback
handler associated with the current power domain, which is managed by the vendor-
supplied power management driver (such as Intelppm.sys). If a feedback mechanism is not
available, the current domain’s frequency is used instead.

 CHAPTER 8 I/O System 111

Because the utility of a processor can, obviously, change rapidly over time, the engine builds a
history of the utilities of each core, as well as a core’s average frequency. It also keeps a running sum
of the utilities added up over time, such that the final averaged utility is calculated as the running sum
divided by the number of history entries.

EXPERIMENT: Viewing Utility and Frequency Information
As with most other PPM-related information, the KPRCB stores information on the current util-
ity as well as the utility history. Furthermore, a few debugger extensions are also available to
easily visualize PPM utility information.

When you run the !ppm kernel debugger command, you should see output similar to the
following, which shows information for LP 0:

lkd> !ppm

Processor 0

 Idle States (3)
 0: C1 - intelppm
 1: C2 - intelppm
 2: C3 - intelppm
 Last Used Idle State: 2

 Current Frequency: 100%
 HardwareFeedback: 55%
 Maximum Policy: 100%
 Platform Cap: 100%
 Minimum Policy: 5%
 Minimum Performace: 44%
 Minimum Throttle: 5%

 Utility: 5400

Highlighted in bold are the three values that were described earlier. The utility of this proces-
sor is 5400, and it is currently running at 100 percent of its maximum frequency. The hardware
feedback is the average frequency from the feedback handler described previously, which the
Intelppm.sys vendor-supplied PPM driver has calculated as 55 percent on this processor.

You can also look at the PPM information for other processors while in a remote debugging
session by using the ~ (tilde) command to switch processors. When using the local kernel de-
bugger, you have to dump the KPRCB structure manually and list the .PowerState substructure,
as shown in the following output. In this example, the PPM state for LP 1 is dumped.

lkd> !running -i

System Processors: (0000000f)
 Idle Processors: (0000000a)

 Prcbs Current (pri) Next (pri) Idle
 0 8376cd20 87f0b030 (12) 83776380
 1 8b404120 8b409800 (0) 8b409800

112 Windows Internals, Sixth Edition, Part 2

 2 8b43a120 86e6ed48 (11) 8b43f800
 3 8b470120 8b475800 (0) 8b475800

lkd> dt nt!_KPRCB 8b404120 PowerState.
 +0x33a0 PowerState :
 +0x000 IdleStates : 0x877ff890 _PPM_IDLE_STATES
 +0x008 IdleTimeLast : 0xed
 +0x010 IdleTimeTotal : 0xadae7baa
...

EXPERIMENT: Viewing Utility and Frequency History
If the current core parking policy enables history tracking (which is normally disabled on client
systems), you can also see the utility function over time, as well as the frequency. To do so, a
different kernel extension has to used, !ppmstate.

Here’s the output of !ppmstate on a server system with core parking enabled:

lkd> !ppmstate

Prcb.PowerState - 0x837700c0

 IdleStates: 0x877fe1b0
 IdleTimeLast: 0.000.006us (0x860)
 IdleTimeTotal: 11:35.968.474us (0x6bc4ae5f)
 IdleAccounting: 0x874d8008

 Hypervisor State: 0x0
 LastPerfCheck: 13:20.311.497us (0x7becdf55)
 PerfDomain: 0x874d9c50
 PerfConstraint: 0x874d9cc8
 Utility: 0xf6c

 PerfHistory: 0x88604300
 PerfHistory contents (3 slots, oldest to newest)

 Slot Utility Frequency
 0 3435 82%
 1 10800 108%
 2 10900 109%

 ThermalConstraint: 100%
 PerfActionDPC: 0x83770120
 PerfActionMask: 0x0
 WmiDispatchPtr: nt!PpmWmiDispatch
 WmiInterfaceEnabled: 0x1

 CurrentKernelUserTime: 0xc59e
 CurrentIdleThreadKTime: 0xb556

Unlike with !ppm, you can also easily use !ppmstate during local kernel debugging because
the extension accepts the address of the PowerState field of any KPRCB as a parameter.

 CHAPTER 8 I/O System 113

When parking and unparking cores, the engine also uses a secondary metric called generic utility.
Generic utility is the sum of all the utility functions across all the processors involved in the core park-
ing algorithm. This value is used to gauge the overall activity level of the system and is later converted
into a percentage (this will be described later in the algorithm section). Thus, because administrators
and users set power policies on a systemwide basis and not on a processor basis (while core parking
works at the processor level), generic utility is needed to convert the per-processor utility function
into a systemwide representation of utility.

Algorithm Overrides
Since core parking is decoupled from the scheduler (which is what developers have some control
over), there are a few scenarios in which the scheduler’s goals must override those of the core park-
ing engine. The first scenario is forced affinitization. When discussing the scheduler’s algorithms in
Chapter 5 in Part 1, we noted that the scheduler will sometimes forcefully pick a parked core if it is the
ideal processor of a thread and when no unparked cores are available. When this happens, the core
parking engine is made aware because the affinity count in the KPRCB’s power state is incremented.
Over time, the engine builds a weighted history (as configured by policy) of cores that are repeatedly
targeted by hard-affinitized policy and, past a certain threshold, also configured by policy, will cause
the engine to react appropriately (this will be described in the algorithm outlined later in this section).

A second override occurs whenever a core is parked (which means that a low, or zero, utility func-
tion is expected), yet the calculated utility is past the configured threshold. This override is not con-
trollable through scheduling—in fact, it means that software timer expirations, DPCs, interrupts, and
other similar scenarios have caused a parked core to run code outside the scheduler’s purview. When
such a situation is detected, the engine reacts differently, as described by the algorithm. Addition-
ally, a history of such “overutilization” is kept, weighted according to the current policy, and it too will
cause changes in the algorithm if it reaches a certain policy-configurable threshold.

Look back at Figure 8-46, which showed the Resource Monitor, and notice how CPU 1 and 3, even
though parked, still had accumulated some CPU time. Depending on the current policy, one or more
of those CPUs could have been considered overutilized.

Increase/Decrease Actions
Whenever the PPM engine is in a situation in which it must increase or decrease the amount of parked
cores, or increase or decrease a given core’s performance state, it can apply one of three different
actions:

 ■ Ideal In the ideal model, the engine tries to achieve a performance (frequency) midpoint
between the decrease and increase thresholds when choosing a performance state (PERF-
STATE_POLICY_CHANGE_IDEAL). When parking or unparking cores, it modifies the parked
state of as many cores as needed until the generic utility distribution across unparked cores
reaches a value that is just below or above the increase or decrease threshold, respectively
(CORE_PARKING_POLICY_CHANGE_IDEAL).

 ■ Step In the step model, the engine increases or decreases performance (frequency) by one
frequency step (if specific frequency steps are exposed through ACPI) or by 5 percent as

114 Windows Internals, Sixth Edition, Part 2

needed (PERFSTATE_POLICY_CHANGE_STEP). When parking or unparking cores, it always picks
just one more core to park or unpark (CORE_PARKING_POLICY_CHANGE_STEP).

 ■ Rocket In the rocket model, the engine sets the core to its maximum or minimum perfor-
mance (frequency) state (PERFSTATE_POLICY_CHANGE_ROCKET). When parking, it parks all
cores (except one per node, or whatever the current policy specifies), and when unparking, it
unparks all cores (CORE_PARKING_POLICY_CHANGE_ROCKET).

Later in this section, when we look at the actual core parking algorithm, we’ll see when these
increase and decrease actions are taken.

Thresholds and Policy Settings
Ultimately, what determines whether performance states will be pushed up or down and whether
cores will be parked or unparked depends on the thresholds and policy settings that have been set
in the registry, configured in particular for each processor vendor and type as well as across client
and server systems, AC versus DC power, and different power plans (for example, High Performance,
Balanced, or Low Power). Core parking uses the policy settings and thresholds shown in Table 8-10
through Table 8-14.

TABLE 8-10 Processor Performance Policies (GUID_PROCESSOR_PERF)

Policy GUID Policy Meaning

INCREASE/DECREASE_THRESHOLD Specifies the busy threshold that must be met before changing the
processor’s performance state

INCREASE/DECREASE_POLICY Specifies the algorithm used to select a new performance state when the
ideal performance state does not match the current performance state

INCREASE/DECREASE_TIME Specifies the minimum number of performance check intervals since the last
performance state change before the performance state can be changed

TIME_CHECK Specifies the amount of time that must expire before processor performance
states and parked cores may be reevaluated (in milliseconds)

BOOST_POLICY Specifies how much processors may opportunistically increase frequency
above maximum when allowed by current operating conditions

ALLOW_THROTTLING Allows processors to use throttle states (T states) in addition to performance
states.

HISTORY Specifies the number of processor-performance time-check intervals to use
when calculating the average utility

TABLE 8-11 Idle State Management Policies (GUID_PROCESSOR_IDLE)

Policy GUID Policy Meaning

ALLOW_SCALING Specifies whether the idle state promotion and demotion values should be scaled
based on the current performance state

DISABLE Specifies whether idle states should be disabled

TIME_CHECK Specifies the time that must elapse since the last idle state promotion or demotion
before idle states may be promoted or demoted again (in microseconds)

DEMOTE/PROMOTE_THRESHOLD Specifies the busy threshold that must be met before changing the idle state of
the processor

 CHAPTER 8 I/O System 115

TABLE 8-12 Core Parking Policies (GUID_PROCESSOR_CORE_PARKING)

Policy GUID Policy Meaning

INCREASE/DECREASE_THRESHOLD Specifies the busy threshold that must be met before changing the
number of cores that are unparked

INCREASE/DECREASE_POLICY Specifies the algorithm used to select the number of cores to park or
unpark when required

MAX/MIN_CORES Specifies the number of unparked cores allowed (in a percentage)

INCREASE/DECREASE_TIME Specifies the minimum number of performance-check intervals that must
elapse before more cores can be parked or unparked

CORE_OVERRIDE Ensures that at least one processor remains unparked per core

PERF_STATE Specifies what performance state a processor enters when parked

TABLE 8-13 Affinity History Policies (GUID_PROCESSOR_CORE_PARKING_AFFINITY_HISTORY)

Policy GUID Policy Meaning

DECREASE_FACTOR Specifies the factor by which to decrease affinity history on each core after
the current performance check

THRESHOLD Specifies the threshold above which a core is considered to have had
significant affinitized work scheduled to it while parked

WEIGHTING Specifies the weighting given to each occurrence where affinitized work
was scheduled to a parked core

TABLE 8-14 Overutilization Policies (GUID_PROCESSOR_CORE_PARKING_OVER_UTILIZATION)

Policy GUID Policy Meaning

HISTORY_DECREASE_FACTOR Specifies the factor by which to decrease the overutilization history on each
core after the current performance check

HISTORY_THRESHOLD Specifies the threshold above which a core is considered to have been
recently overutilized while parked

WEIGHTING Specifies the weighting given to each occurrence when a parked core is
found to be overutilized

THRESHOLD Specifies the busy threshold that must be met before a parked core is
considered overutilized

EXPERIMENT: Viewing Current Core Parking Policy
When the !popolicy experiment was used in an earlier part of this chapter, it showed you only
the system power policy, not the entire policy, which also covers PPM. By using the dt command
with the correct structure type, you are also able to see the PPM policy, which covers the policy
GUIDs that were shown in the preceding tables. Because the system power policy starts at off-
set 4, simply subtract 4 from the pointer returned by !popolicy.

lkd> !popolicy
SYSTEM_POWER_POLICY (R.1) @ 0x8377a6c4

lkd> dt nt!_POP_POWER_SETTING_VALUES 8377a6c0
...

116 Windows Internals, Sixth Edition, Part 2

 +0x10c AllowThrottling : 0 ''
 +0x10d PerfHistoryCount : 0x20 ' '
 +0x110 PerfTimeCheck : 0xf
 +0x114 PerfIncreaseTime : 1
 +0x118 PerfDecreaseTime : 1
 +0x11c PerfIncreaseThreshold : 0x1e ''
 +0x11d PerfDecreaseThreshold : 0xa ''
 +0x11e PerfIncreasePolicy : 0x2 ''
 +0x11f PerfDecreasePolicy : 0x1 ''
 +0x120 PerfMinPolicy : 0x5 ''
 +0x121 PerfMaxPolicy : 0x64 'd'
 +0x124 PerfBoostPolicy : 0x64
 +0x128 CoreParkingIncreaseThreshold : 0x55 'U'
 +0x129 CoreParkingDecreaseThreshold : 0x32 '2'
 +0x12a CoreParkingMaxCores : 0x64 'd'
 +0x12b CoreParkingMinCores : 0xa ''
 +0x12c CoreParkingIncreasePolicy : 0 ''
 +0x12d CoreParkingDecreasePolicy : 0 ''
 +0x130 CoreParkingIncreaseTime : 7
 +0x134 CoreParkingDecreaseTime : 0x14
 +0x138 CoreParkingAffinityHistoryDecreaseFactor : 0x2 ''
 +0x13a CoreParkingAffinityHistoryThreshold : 0x96
 +0x13c CoreParkingAffinityWeighting : 0x64
 +0x13e CoreParkingOverUtilizationHistoryDecreaseFactor : 0x2 ''
 +0x140 CoreParkingOverUtilizationHistoryThreshold : 0x28
 +0x142 CoreParkingOverUtilizationWeighting : 0x64
 +0x144 CoreParkingOverUtilizationThreshold : 0x3c '<'
 +0x145 ParkingCoreOverride : 0x1 ''
 +0x146 ParkingPerfState : 0 ''

Another way to see a more limited set of the current policy is to use the !ppmperfpolicy
extension, which displays a few of the core policy settings:

lkd> !ppmperfpolicy

 MaxPerf: 100%
 MinPerf: 5%
 TimeCheck: 15 ms
 IncreaseTime: 1 time check period(s)
 DecreaseTime: 1 time check period(s)
 IncreaseThreshold: 30%
 DecreaseThreshold: 10%
 IncreasePolicy: 2
 DecreasePolicy: 1
 HistoryCount: 1
 BoostPolicy: 100

Performance Check
The algorithm that powers the PPM engine is called the performance check. It is executed by the
 PpmCheckStart timer callback, which runs periodically based on the current policy’s performance-
check interval. The callback acquires the policy lock and sets the initial phase to PpmCheckPhase-
Initiate. It calls PpmCheckRun, which runs the algorithm illustrated in the following diagram.

 CHAPTER 8 I/O System 117

PerfCheckStart DPC

Global PPM
entity (pcc)

Processor
(n instances)

PpmCheck-
Engine

Processor local
DPC (n instances)

PpmCheckPhaseRecordUtility2

PpmCheckPhaseReport-
UnparkedCores

4

PpmCheckPhaseInitiate1

PpmCheckPhaseSelect-
ProcessorState5

PpmCheckPhaseSelect-
DomainState6

PpmCheckPhaseCommit-
DomainState7

PpmCheckPhaseReport-
ParkedCores

8

PpmCheckPhaseEnd9

PpmCheckPhaseCalculate-
CPMask3

ExecuteInitiateFunction

Advance
phase

Advance
phase

Advance
phase

Advance
phase

Select domain state (domain masters only)

Frequency changed?

Apply domain state (domain masters only,
if frequency changed)Advance phase

(only if no processor
DPCs queued) Advance phase (last processor to apply)

ExecuteCommitFunction

Advance
phase (if no commit function)

Unpark core (only cores just parked)

Advance phase
(last proceesor to park only)

Advance phase
(only if no cores

are parked)

Select processor state

Processor state selected

Advance phase
(only if no cores

are unparked) Advance phase (last processor
to unpark only)

Unpark core (only cores just unparked)

Advance phase
(only if no processor

DPCs queued)

RecordUtility (only where remote read failed)

Utility (or remote read failed)

RecordUtility

Advance phase
(if no initiate function)

ApplyProcessorState
(to each domain

member)

Advance phase
(last processor to complete remote read only)

118 Windows Internals, Sixth Edition, Part 2

The steps shown in the diagram line up with the PPM_CHECK_PHASE enumeration described in
Table 8-15.

TABLE 8-15 PPM Check Phases

Phase Name Phase Meaning

PpmCheckPhaseInitiate Notifies the vendor-supplied processor power driver that the
core parking engine is about to start its performance check

PpmCheckPhaseRecordUtility Runs on each processor to calculate the utility function for each
core

PpmCheckPhaseCalculateCoreParkingMask Using the utility function, current core parking status,
affinitization, and overutilization history, organizes all the cores
in different sets that are used to determine the best cores to
unpark or park. It then performs the unparking of cores

PpmCheckPhaseReportUnparkedCores Runs on each unparked processor to notify the scheduler that
the core has been unparked

PpmCheckPhaseSelectProcessorState Computes the new performance state (target frequency) for
each processor based on its parking state and utility

PpmCheckPhaseSelectDomainState Selects the best performance state for all the processors in a
given domain based on the constraints, and switches to the new
processor performance state

PpmCheckPhaseCommitDomainState Calls the vendor-supplied processor power driver to commit the
new processor performance states

PpmCheckPhaseReportParkedCores Runs on each parked processor to notify the scheduler that the
core has been unparked. Any ongoing or queued thread activity
is moved off the core.

PpmCheckPhaseEnd Releases the policy lock and switches the phase to the not-
running phase

PpmCheckPhaseNotRunning Indicates that the performance check is not running

Some of the steps in Table 8-15 require a bit more discussion than just a single line. Here are ex-
tended details.

Step 2: Recording utility PpmCheckRecordAllUtility enumerates all processors that are part of the
core parking engine’s current registered set and determines which ones it will query for utility re-
motely (that is, from the current core running the check algorithm) or whether it will force a targeted
DPC to query utility locally. This determination is made by calling PpmPerfRecordUtility and hinges
on the idleness of the core and its current utility value. Because these numbers end up multiplied
together, the busier a core becomes (higher utility), the greater the inaccuracy of not having precise
frequency measurements becomes, the latter being a side effect of running the check on a remote
instead of a local core.

Additionally, while running locally, the function can also check whether the CPU was throttled
outside the PPM’s purview, usually indicating broken firmware or drivers (or the existence of a power
management strategy that is outside the OS’s view and/or control).

Other than those checks, recording the utility is ultimately about computing the value described
earlier in the “Utility Function” section and keeping track of its history, if the policy enables it.

 CHAPTER 8 I/O System 119

Step 4: Choosing which cores to unpark The work in this step is done by two functions. The first,
PpmPerfCalculateCoreParkingMask, computes how many cores should be unparked and builds a
variety of sets that can be used to prioritize unparking:

 ■ Overutilized cores Those whose utility is higher than the policy threshold, as described in
the “Algorithm Overrides” section.

 ■ Previously overutilized cores Cores that were overutilized during the previous perfor-
mance check, as described in the “Algorithms Overrides” section.

 ■ Affinitized cores Cores that have been forcefully chosen by the scheduler because of af-
finitization overrides, also described in the “Algorithms Overrides” section.

 ■ Unparked cores Cores that are already unparked.

 ■ Highly utilized unparked codes Unparked cores with a high utility function.

The function then computes the generic utility (described in the “Utility Function” section) and
determines whether the generic utility percentage (defined as the generic utility divided by the sum
of busy frequencies across all cores) is above or below the thresholds specified in the policy. Based
on which threshold is crossed, if any, the policy-defined increase/decrease action (described in the
“Increase/Decrease Actions” section earlier) is performed, which results in a count of cores to unpark.

This number, the generic utility, and the sets described earlier are sent to PpmPerfChooseCores-
ToUnpark, which is responsible for picking which processors should be unparked based on how to
spread the generic utility. The algorithm first checks whether the target count is already covered by
the already unparked cores, and if so, exits. Otherwise, it keeps unparking cores until the overutilized
group is enough to handle the remaining unpark requests. In other words, overutilized cores always
become unparked, and the algorithm must pick which other, nonoverutilized cores, should also be
unparked.

To do so, it runs the following elimination round in the specified order. Each step is taken only if it
results in a nonzero intersection (if other candidates exist):

 ■ Remove any processors that are not already overutilized

 ■ Remove any processors that are not already highly utilized

 ■ Remove any processors that are not already unparked

 ■ Remove any processors that were not previously overutilized

 ■ Remove any processors that do not have forced affinitized threads

In the most optimistic scenario, this results in a set of overutilized, highly utilized, previously
overutilized, and forced-affinitized processors. In other words, this set contains the processors least
likely to benefit from parking in the first place. From this set, the core parking engine picks the lowest
processor number and then enters a new round of elimination until the conditions specified earlier
match.

120 Windows Internals, Sixth Edition, Part 2

At the end of the algorithm, after all overutilized cores and noneliminated cores have been un-
parked, the generic utility is balanced (distributed equally) across all the newly unparked processors.

Step 5: Selecting processor state PpmPerfSelectProcessorStates enumerates each processor that’s
part of this run and calls PpmPerfSelectProcessorState for each one. In this case, the algorithm can run
remotely (without requiring a local DPC callback on the core) because all the data is available from
the KPRCB. The purpose of this function is to decide which processor state makes the most sense for
the given processor, based on its expected utility function.

The first check is to verify whether this processor has been selected for parking in step 3. If it was
selected, the target power state for parked cores, based on policy, is selected. Three possibilities exist:

 ■ Lightest The parked processor is targeted to run at 100 percent of its frequency.

 ■ Deepest The parked processor is targeted to run at 1 percent of its frequency.

 ■ No Preference The parked processor will be treated just like any other processor and con-
tinue the regular algorithm.

Assuming that the algorithm does continue, the next step is to compute the busyness of the
processor. Since the utility function is equal to the busyness percentage multiplied by the average
frequency, this means that the busyness of the processor is its utility divided by its average frequency.
This busyness is then compared with the increase and/or decrease thresholds specified by policy,
and one of the three possible actions are taken (ideal, step, or rocket, described earlier in “Increase/
Decrease Actions”).

The domain performance handler callback (owned by the vendor-supplied processor driver) is then
called with the new target frequencies and with whether throttling was allowed by the policy.

Step 6: Selecting domain state As shown in the previous illustration, this step is also composed
of a few substeps. The first, done remotely, is performed by PpmPerfSelectDomainStates, which picks
the domain masters and calls PpmPerfSelectDomainState to run on them. This function iterates over
all the processors in the domain and picks the one with the highest performance state (the highest
desired frequency). It then sets this as the desired frequency for the entire domain.

Now that each domain master has selected its domain state, control returns to PpmPerfSelect-
DomainStates, which queues a local DPC for all of the domain masters that is implemented by
PpmPerfApplyDomainState. This is the second step. This function takes into consideration the valid P
states (and T states, if throttling is enabled by policy) and trims any states outside the current proces-
sor constraints, which include percentage caps and thermal caps. When it has picked the best target
frequency (and consulted with the domain performance handler callback), it queues a DPC to all the
processors in each domain to apply the selected performance state to each core.

In this third step, implemented by the PpmPerfApplyProcessorState DPC routine, the domain’s per-
formance handler callback is called to switch states. Finally, PpmScaleIdleStateValues is called. If idle
scaling is enabled by policy, this function scales the processor’s C states (idle states) according to the
promotion/demotion percentages specified in the policy.

 CHAPTER 8 I/O System 121

EXPERIMENT: Viewing Current PPM Check Information
The kernel debugger includes an extension, !ppmcheck, which you can use to check whether
core parking is enabled and which cores are currently parked, as well as the internal perfor-
mance checking algorithm state. Here’s a sample output of the extension:

lkd> !ppmcheck

 PpmCheckArmed: TRUE
 PpmCheckStartDpc: 0x8377aa58
 PpmCheckDpc: 0x8377aa78
 PpmCheckTimer: 0x8377aa30
 PpmCheckMakeupCount: -
 PpmCheckLastExecutionTime: -
 PpmCheckTime: 08:40.738.783us (0x50a26d3d)
 PpmCheckPhase: 9
 PpmCheckRegistered: 0x8376b408
 {[0000000F]}
 PpmPerfStatesRegistered: 0x8376b390
 {[0000000F]}
 CoreParkingEnabled: TRUE
 CoreParkingMask: 0x8376b35c
 {[0000000A]}

You can also see the complete PPM information for a given processor by looking at the
PRCB’s PowerState field and further drilling down into the Domain and PerfConstraint members.
This will show you the selected domain performance state, the constraints (thermal and fre-
quency caps), and other accounting information. You can use dt nt!_KPRCB @$prcb PowerState
to see this information for the current PRCB:

 +0x33a0 PowerState :
 +0x000 IdleStates : 0x877fe1b0 _PPM_IDLE_STATES
 +0x008 IdleTimeLast : 0xa6
 +0x010 IdleTimeTotal : 0x97789fc9
 +0x018 IdleTimeEntry : 0
 +0x020 IdleAccounting : 0x874d8008 _PROC_IDLE_ACCOUNTING
 +0x024 Hypervisor : 0 (ProcHypervisorNone)
 +0x028 PerfHistoryTotal : 0
 +0x02c ThermalConstraint : 0x64 'd'
 +0x02d PerfHistoryCount : 0x1 ''
 +0x02e PerfHistorySlot : 0 ''
 +0x02f Reserved : 0 ''
 +0x030 LastSysTime : 0xfa86
 +0x034 WmiDispatchPtr : 0x837c5464
 +0x038 WmiInterfaceEnabled : 0n1
 +0x040 FFHThrottleStateInfo : _PPM_FFH_THROTTLE_STATE_INFO
 +0x060 PerfActionDpc : _KDPC
 +0x080 PerfActionMask : 0n0
 +0x088 IdleCheck : _PROC_IDLE_SNAP
 +0x098 PerfCheck : _PROC_IDLE_SNAP
 +0x0a8 Domain : 0x874d9c50 _PROC_PERF_DOMAIN
 +0x0ac PerfConstraint : 0x874d9cc8 _PROC_PERF_CONSTRAINT
 +0x0b0 Load : (null)

122 Windows Internals, Sixth Edition, Part 2

 +0x0b4 PerfHistory : (null)
 +0x0b8 Utility : 0xba8
 +0x0bc OverUtilizedHistory : 0
 +0x0c0 AffinityCount : 0
 +0x0c4 AffinityHistory : 0

lkd> dt 0x874d9c50 _PROC_PERF_DOMAIN
nt!_PROC_PERF_DOMAIN
 +0x000 Link : _LIST_ENTRY [0x8376b39c - 0x8376b39c]
 +0x008 Master : 0x8b470120 _KPRCB
 +0x00c Members : _KAFFINITY_EX
 +0x018 FeedbackHandler : 0x93d19d08 unsigned char +0
 +0x01c GetFFHThrottleState : 0x93d1804e void +0
 +0x020 BoostPolicyHandler : 0x93d18104 void +0
 +0x024 PerfSelectionHandler : 0x93d19bee unsigned long +0
 +0x028 PerfHandler : 0x93d19d40 void +0
 +0x02c Processors : 0x874d9cc8 _PROC_PERF_CONSTRAINT
 +0x030 PerfChangeTime : 0xaa90c1ed
 +0x038 ProcessorCount : 4
 +0x03c PreviousFrequencyMhz : 0x532
 +0x040 CurrentFrequencyMhz : 0xa65
 +0x044 PreviousFrequency : 0x31
 +0x048 CurrentFrequency : 0x64
 +0x04c CurrentPerfContext : 0
 +0x050 DesiredFrequency : 0x64
 +0x054 MaxFrequency : 0xa65
 +0x058 MinPerfPercent : 0x2c
 +0x05c MinThrottlePercent : 5
 +0x060 MaxPercent : 0x64
 +0x064 MinPercent : 5
 +0x068 ConstrainedMaxPercent : 0x64
 +0x06c ConstrainedMinPercent : 0x2c
 +0x070 Coordination : 0x1 ''
 +0x074 PerfChangeIntervalCount : 0n0

lkd> dt 0x874d9cc8 _PROC_PERF_CONSTRAINT
ntdll!_PROC_PERF_CONSTRAINT
 +0x000 Prcb : 0x8376cd20 _KPRCB
 +0x004 PerfContext : 0x877febe0
 +0x008 PercentageCap : 0x64
 +0x00c ThermalCap : 0x64
 +0x010 TargetFrequency : 0x36
 +0x014 AcumulatedFullFrequency : 0x46c3df
 +0x018 AcumulatedZeroFrequency : 0xd51828
 +0x01c FrequencyHistoryTotal : 0
 +0x020 AverageFrequency : 0x36

 CHAPTER 8 I/O System 123

Conclusion

The I/O system defines the model of I/O processing on Windows and performs functions that are
common to or required by more than one driver. Its chief responsibility is to create IRPs representing
I/O requests and to shepherd the packets through various drivers, returning results to the caller when
an I/O is complete. The I/O manager locates various drivers and devices by using I/O system objects,
including driver and device objects. Internally, the Windows I/O system operates asynchronously to
achieve high performance and provides both synchronous and asynchronous I/O capabilities to user-
mode applications.

Device drivers include not only traditional hardware device drivers but also file system, network,
and layered filter drivers. All drivers have a common structure and communicate with one another
and the I/O manager by using common mechanisms. The I/O system interfaces allow drivers to be
written in a high-level language to lessen development time and to enhance their portability. Because
drivers present a common structure to the operating system, they can be layered one on top of an-
other to achieve modularity and reduce duplication between drivers. Also, all Windows device drivers
should be designed to work correctly on multiprocessor systems.

Finally, the role of the PnP manager is to work with device drivers to dynamically detect hardware
devices and to build an internal device tree that guides hardware device enumeration and driver in-
stallation. The power manager works with device drivers to move devices into low-power states when
applicable to conserve energy and prolong battery life.

Three more upcoming chapters will cover additional topics related to the I/O system: storage man-
agement, file systems (including details on the NTFS file system), and the cache manager.

 125

C H A P T E R 9

Storage Management

Storage management defines the way that an operating system interfaces with nonvolatile stor-
age devices and media. The term storage encompasses many different devices, including optical

media, USB flash drives, floppy disks, hard disks, solid state disks (SSDs), network storage such as iSCSI,
storage area networks (SANs), and virtual storage such as VHDs (virtual hard disks). Windows provides
specialized support for each of these classes of storage media. Because our focus in this book is on
the kernel components of Windows, in this chapter we’ll concentrate on just the fundamentals of the
hard disk storage subsystem in Windows, which includes support for external disks and flash drives.
Significant portions of the support Windows provides for removable media and remote storage
 (offline archiving) are implemented in user mode.

In this chapter, we’ll examine how kernel-mode device drivers interface file system drivers to disk
media, discuss how disks are partitioned, describe the way volume managers abstract and manage
volumes, and present the implementation of multipartition disk-management features in Windows,
including replicating and dividing file system data across physical disks for reliability and for perfor-
mance enhancement. We’ll also describe how file system drivers mount volumes they are responsible
for managing, and we’ll conclude by discussing drive encryption technology in Windows and support
for automatic backups and recovery.

Storage Terminology

To fully understand the rest of this chapter, you need to be familiar with some basic terminology:

 ■ Disks are physical storage devices such as a hard disk, CD-ROM, DVD, Blu-ray, solid state disk
(SSD), or flash.

 ■ A disk is divided into sectors, which are addressable blocks of fixed size. Sector sizes are de-
termined by hardware. Most hard disk sectors are 512 bytes (but are moving to 4,096 bytes),
and CD-ROM sectors are typically 2,048 bytes. For more information on moving to 4,096-byte
sectors, see http://support.microsoft.com/kb/2510009.

 ■ Partitions are collections of contiguous sectors on a disk. A partition table or other disk-
management database stores a partition’s starting sector, size, and other characteristics and is
located on the same disk as the partition.

http://support.microsoft.com/kb/2510009

126 Windows Internals, Sixth Edition, Part 2

 ■ Simple volumes are objects that represent sectors from a single partition that file system driv-
ers manage as a single unit.

 ■ Multipartition volumes are objects that represent sectors from multiple partitions and that file
system drivers manage as a single unit. Multipartition volumes offer performance, reliability,
and sizing features that simple volumes do not.

Disk Devices

From the perspective of Windows, a disk is a device that provides addressable long-term storage for
blocks of data, which are accessed using file system drivers. In other words, each byte on the disk
does not have its own address, but each block does have an address. These blocks are known as sec-
tors and are the basic unit of storage and transfer to and from the device (in other words, all transfers
must be a multiple of the sector size). Whether the device is implemented using rotating magnetic
media (hard disk or floppy disk) or solid state memory (flash disk or thumb drive) is irrelevant.

Windows supports a wide variety of interconnect mechanisms for attaching a disk to a system,
including SCSI, SAS (Serial Attached SCSI), SATA (Serial Advanced Technology Attachment), USB,
SD/MMC, and iSCSI.

Rotating Magnetic Disks
The typical disk drive (often referred to as a hard disk) is built using one or more rigid rotating plat-
ters covered in a magnetic material. An arm containing a head moves back and forth across the
surface of the platter reading and writing bits that are stored magnetically.

Disk Sector Format
While the disk interconnect mechanisms have been evolving since IBM introduced hard disks in 1956
and have become faster and more intelligent, the underlying disk format has changed very little,
except for annual increases in areal density (the number of bits per square inch). Since the inception
of disk drives, the data portion of a disk sector has typically been 512 bytes.

Disk storage areal density has increased from 2,000 bits per square inch in 1956 to over 650 billion
bits per square inch in 2011, with most of that gain coming in the last 15 years. Disk manufacturers
are reaching the physical limits of current magnetic disk technology, so they are changing the format
of the disks: increasing the sector size from 512 bytes to 4,096 bytes, and changing the size of the er-
ror correcting code (ECC) from 50 bytes to 100 bytes. This new disk format is known as the advanced
format. The size of the advanced format sector was chosen because it matches the x86 page size and
the NTFS cluster size. The advanced format provides about 10 percent greater capacity by reducing
the amount of overhead per sector (everything except the data area is overhead) and through better
error correcting capabilities. (A single 100-byte ECC is better than eight 50-byte ECCs). The downside
to advanced format disks is potentially wasted space for small files, but as you’ll see in Chapter 12,
“File Systems,” NTFS has a mechanism for efficiently storing small files.

 CHAPTER 9 Storage Management 127

Advanced format disks provide an emulation mechanism (known as 512e) for legacy operating
systems that understand only 512-byte sectors. With 512e, the host does not know that the disk sup-
ports 4,096-byte sectors; it continues to read and write 512-byte sectors (called logical blocks). The
disk’s controller will translate a logical block number into the correct physical sector. For example, if
the host issues a read request for logical block number 6, then the disk controller will read physical
sector number 0 into its internal buffer and return only the 512-byte portion corresponding to logical
block 6 to the host, as shown in Figure 9-1.

7 6 5 4 3 2 1 0

0

Logical block

Physical sector

Host

FIGURE 9-1 Advanced format sector with 512e

Writes are a little more complicated in that they require the disk’s controller to perform a read-
modify-write operation, as shown in Figure 9-2.

1. The host writes logical block 6 to the controller.

2. The controller maps logical block 6 to physical sector 0 and reads the entire sector into the
controller’s memory.

3. The controller copies logical block 6 into its position within the copy of the physical sector in
the controller’s memory.

4. The controller writes the 4,096-byte physical sector from memory back to the disk.

Obviously, there is a performance penalty associated with using 512e, but advanced format disks
will still work with legacy operating systems.

7 6 5 4 3 2 1 0

0

Logical block

Physical sector

Host

Logical
block 6

Logical
block 6

2
3

1

4

Disk controller

Disk

FIGURE 9-2 512e read-modify-write operation

Windows supports native 4,096-byte advance format sectors, so there is no additional read-
modify-write overhead. As you will see in Chapter 12, NTFS was written to support sectors of more

128 Windows Internals, Sixth Edition, Part 2

than 512 bytes and by default issues disk I/Os using a 4,096-byte cluster. The Windows cache man-
ager (see Chapter 11) will attempt to reduce the penalty of applications assuming 512-byte sectors;
however, applications should be upgraded to query the size of a disk’s sectors (by issuing an IOCTL_
STORAGE_QUERY_PROPERTY I/O request and examining the returned BytesPerPhysicalSector value)
and not assume 512-byte sectors when performing sector I/O. It is very important that partitioning
tools understand the size of a disk’s physical sectors and align partitions to physical sector boundaries
because partitions must be an integral number of physical sectors.

Solid State Disks
Recently, the cost of manufacturing flash memory has decreased to the point where manufacturers
are building storage subsystems with a disk-type interface, calling the device a solid state disk (SSD) or
flash disk. As far as Windows is concerned, an SSD is a disk, but there are some important differences
between a rotating disk and an SSD that Windows has to support. Before getting into the details of
how Windows supports SSDs, let’s look at how an SSD is implemented.

Flash memory in some respects is very similar to a computer’s RAM (random access memory), ex-
cept that flash memory does not lose its contents when the power is removed, which means that flash
memory is nonvolatile. The most common types of flash memory are NOR and NAND. NOR flash
memory is operationally the closest to RAM in that each byte is individually addressable, while NAND
flash memory is organized into blocks, like a disk. Typically, NOR-type flash memory is used to hold
the BIOS on your computer’s motherboard, and NAND-type flash memory is used in SSDs.

The most important difference between flash memory and RAM is that RAM can be read and writ-
ten an almost infinite number of times, while flash memory can be overwritten something less than
100,000 times. (Depending on the type of flash memory, it may be as few as 1,000 times). In effect,
flash memory wears out, so flash memory should be treated more like media with a limited lifetime
(such as a floppy disk) than RAM or a magnetic disk. Another major difference between flash memory
and RAM is that flash memory cannot be updated in place; a block must be erased before it can be
written (even for NOR-type flash memory). Flash memory is significantly faster than magnetic disks
(usually by a factor of 100,000, or so; access time: 50 nanoseconds versus 5 milliseconds), but it is
slower than RAM (usually by a factor of 50). From a practical perspective, memory access time is not
the whole story because flash memory is not on the system memory bus. Instead, it sits behind a disk-
type controller interface on an I/O bus, so in reality the difference between flash and magnetic disks
may be on the order of only 1,000 times faster, and in some workloads a rotating magnetic disk can
outperform a low-end SSD.

NAND-Type Flash Memory
NAND-type flash memory is most commonly used in SSDs, so that is what we will examine in detail.
NAND-type flash comes in two types:

 ■ Single-level cell (SLC) stores 1 bit per internal cell, has a higher number of program/erase
cycles (on the order of 100,000), and is significantly faster than multilevel cell (MLC), but it is
much more expensive than MLC.

 CHAPTER 9 Storage Management 129

 ■ Multilevel cell (MLC) stores multiple bits per internal cell and is significantly cheaper than
SLC. MLC needs more ECC bits than SLC, has fewer erase cycles (~5,000), and consumes more
power than SLC.

NAND-type flash is typically organized into 4,096-byte pages (which may be exposed as eight
512-byte sectors or a single 4,096-byte sector), which are the smallest readable or writable units, and
the pages are grouped into blocks of 64 to 1,024 pages, with thousands of blocks per chip. As with
a magnetic disk, there is overhead on each page, with ECC, page health, and spare bits. The block is
the smallest erasable unit, so to change a single sector within a page requires that the entire block be
erased and then rewritten. (Flash cells can be written only after they have been erased.) This means
that writing a sector to an empty block is very fast, but if there is not an available empty block, the
controller has to perform the following actions:

1. Read the entire block into the controller’s internal RAM.

2. Erase the block in the flash memory.

3. Update the block in RAM with the contents of the new sector.

4. Write the entire block to the flash memory.

Notice that what started as a write to a sector (512 bytes) became a write of an entire block. For
this example, if we assume 128 pages in a block and a completely full block, then the write would take
1,023 times longer (the block contains 1,024 sectors) than the write of a single sector to an empty
block. This example is a worst case and is decidedly not the norm, but it illustrates an important as-
pect of SSDs: as more and more of the SSD’s memory is consumed, it will have to rewrite substantially
more data than a single sector. In effect, SSDs slow down as they fill up. This has important implica-
tions that are addressed in the next section, “File Deletion and the Trim Command.”

As a block wears out, eventually it will fail to erase. Also, the more a block is erased and rewritten,
the slower it becomes (a result of the physics behind how flash memory is implemented). This means
that an SSD will only get slower as you use it—even on an empty block. For example, on a 1-GB
USB MLC flash disk with 128 pages per block (giving us 2,048 blocks), erasing and writing one block
per second would wear out all the blocks in 23.7 days (assuming a maximum of 1,000 erase cycles
per block, which is typical for the cheaper flash disks). Erasing and writing the same block once per
second will wear out that block in only 16.6 minutes! SSDs typically have spare blocks held in reserve
(often 20 percent of the SSD’s capacity) so that if a block wears out, the data is moved to a spare
block. Clearly, flash memory cannot be used the same way as RAM or a magnetic disk.

The flash memory controller implements a technique called wear-leveling to spread the wear
(erases) across the SSD. Wear-leveling depends on the fact that most of the data that you write to
a disk is static; that is, it does not change often (it is usually read frequently, but that doesn’t cause
wear). Of course, there is also dynamic data (such as log files) that changes frequently. There are many
different types of wear-leveling algorithms, but describing them is beyond the scope of this book. The
important concept to understand about wear-leveling is that the controller will move data around
within the flash memory in an attempt to spread writes across all the flash memory, thus prolonging
the overall life of the SSD. An implication of wear-leveling is that more blocks are subjected to more

130 Windows Internals, Sixth Edition, Part 2

frequent program/erase cycles in an attempt to extend the overall life of the flash memory, but when
the drive fails (as they all do), then more blocks will fail at the same time. Keep in mind that the SSD
industry is moving toward the point where SSDs will advertise their health more explicitly, and at the
point of impending write failure they will become read-only drives.

File Deletion and the Trim Command
The file system keeps track of which areas of a disk are currently in use for each file, and when a file
is deleted it does not zero all the areas on the disk that contained the file—if it did, then deleting
a large file would take longer than deleting a small file, and file undelete utilities would not work.
Instead, the file system driver will mark those areas of the disk as available in its data structures (usu-
ally referred to as metadata; see Chapter 12 for more information). This is not a problem for magnetic
disks because they read and write sectors natively, but SSDs do not read and write sectors natively
(recall that the size of the writable unit, the page, is much smaller than the size of the erasable unit,
the block).

SSDs have to manage the contents of pages and blocks when updating a sector. This becomes a
huge problem because the SSD does not know that the contents of a page are free unless it has been
erased. The SSD would continue to preserve “deleted” data when updating a sector or during wear-
leveling, reducing the amount of free space available to the SSD controller. The end result would be
that the speed of the SSD would degrade up to the point at which all sectors have been accessed (at
least once), and the only way to speed it up again would be to erase the entire drive. This is exactly
the behavior that existed in early SSDs.

The solution to this problem was the introduction of the trim command to the SSD’s controller.
The file system detects that the SSD supports the trim command by sending the I/O request IOCTL_
STORAGE_QUERY_PROPERTY with the property ID StorageDeviceTrimProperty down the storage stack
(covered later in this chapter). When a file is deleted or truncated on a disk that supports the trim
command, the file system sends the list of sectors that the file occupied to the disk driver, using the
I/O request IOCTL_STORAGE_MANAGE_DATA_SET_ATTRIBUTES with the action parameter Device-
DsmAction_Trim. When the disk driver receives this I/O request, it sends a trim command to the SSD,
notifying the SSD that those sectors are now free and may be erased and repurposed at the SSD’s
convenience. This lets the SSD reclaim those sectors during an update or wear-leveling operation,
thereby improving the performance of the SSD. Note that the trim command cannot be queued
internally within the SSD’s controller and executes synchronously, which may manifest as a noticeable
pause when a large file is being deleted.

While Windows does support SSDs, Microsoft recommends that they be backed up frequently if
they are being used for important data. A standard disk defragmenter should never be used on an
SSD because it will wear out the flash very quickly. The Windows defragmenter will not attempt to
defragment an SSD. (Defragmenting an SSD isn’t generally useful because file fragmentation does not
slow down access to a file on an SSD in the same way that it does on a magnetic disk.) As we’ll see in
Chapter 12, NTFS was not designed with short-lived (flash memory) disks in mind, and it frequently
issues lots of small writes to its transaction log, which is important for increasing reliability but causes

 CHAPTER 9 Storage Management 131

additional wear to the flash memory. Using an SSD as your C: drive may drastically increase the speed
of your system, but understand that the SSD will wear out before a magnetic disk would.

Note High-end magnetic disks can outperform low-end SSDs in some cases because many
low-end SSDs perform poorly for small, random writes, which is a characteristic of the typi-
cal Windows workload.

Disk Drivers

The device drivers involved in managing a particular storage device are collectively known as a stor-
age stack. Figure 9-3 shows each type of driver that might be present in a stack and includes a brief
description of its purpose. This chapter describes the behavior of device drivers below the file system
layer in the stack. (The file system driver operation is described in Chapter 12.)

Application

Sends I/O request to FSI/O subsystem

Imposes file structure on raw volumesFile system

Manages software snapshotsVolume snapshot

Presents volumes (C:, D:) to users;
supports basic and dynamic disks (RAID)

Volume manager

Manages disk partitionsPartition manager

Manages a specific device type, such
as disks or opticalClass

Miniport: Vendor supplied; functionally
linked to specific port driver; manages
hardware specific details

Port: Manages a specific
transport (Storport for

 RAID, FC, SCSI, etc.)

Disk hardware

Port
Miniport

Port
Miniport

FIGURE 9-3 Windows storage stack

132 Windows Internals, Sixth Edition, Part 2

Winload
As you saw in Chapter 4, “Management Mechanisms,” in Part 1, Winload is the Windows operat-
ing system file that conducts the first portion of the Windows boot process. Although Winload isn’t
technically part of the storage stack, it is involved with storage management because it includes sup-
port for accessing disk devices before the Windows I/O system is operational. Winload resides on the
boot volume; the boot-sector code on the system volume executes Bootmgr. Bootmgr reads the Boot
Configuration Database (BCD) from the system volume or EFI firmware and presents the computer’s
boot choices to the user. Bootmgr translates the name of the BCD boot entry that a user selects to
the appropriate boot partition and then runs Winload to load the Windows system files (starting with
the registry, Ntoskrnl.exe and its dependencies, and the boot drivers) into memory to continue the
boot process. In all cases, Winload uses the computer firmware to read the disk containing the system
volume.

Disk Class, Port, and Miniport Drivers
During initialization, the Windows I/O manager starts the disk storage drivers. Storage drivers in
Windows follow a class/port/miniport architecture, in which Microsoft supplies a storage class driver
that implements functionality common to all storage devices and a storage port driver that imple-
ments class-specific functionality common to a particular bus—such as SATA (Serial Advanced Tech-
nology Attachment), SAS (Serial Attached SCSI), or Fibre Channel—and OEMs supply miniport drivers
that plug into the port driver to interface Windows to a particular controller implementation.

In the disk storage driver architecture, only class drivers conform to the standard Windows device
driver interfaces. Miniport drivers use a port driver interface instead of the device driver interface,
and the port driver simply implements a collection of device driver support routines that inter-
face miniport drivers to Windows. This approach simplifies the role of miniport driver developers
and, because Microsoft supplies operating system–specific port drivers, allows driver developers to
focus on hardware-specific driver logic. Windows includes Disk (%SystemRoot%\System32\Drivers\
Disk.sys), a class driver that implements functionality common to all disks. Windows also provides a
handful of disk port drivers. For example, %SystemRoot%\System32\Drivers\Scsiport.sys is the legacy
port driver for disks on SCSI buses (Scsiport is now deprecated and should no longer be used), and
 %SystemRoot%\System32\Drivers\Ataport.sys is a port driver for IDE-based systems. Most newer
drivers use the %SystemRoot%\System32\Drivers\Storport.sys port driver as a replacement for
Scsiport.sys. Storport.sys is designed to realize the high performance capabilities of hardware RAID
and Fibre Channel adapters. The Storport model is similar to Scsiport, making it easy for vendors to
migrate existing Scsiport miniport drivers to Storport. Miniport drivers that developers write to use
Storport take advantage of several of Storport’s performance enhancing features, including support
for the parallel execution of I/O initiation and completion on multiprocessor systems, a more con-
trollable I/O request-queue architecture, and execution of more code at lower IRQL to minimize the
duration of hardware interrupt masking. Storport also includes support for dynamic redirection of
interrupts and DPCs to the best (most local) NUMA node (often referred to as NUMA I/O) on systems
that support it.

 CHAPTER 9 Storage Management 133

Both the Scsiport.sys and Ataport.sys drivers implement a version of the disk scheduling algorithm
known as C-LOOK. The drivers place disk I/O requests in lists sorted by the first sector (also known
as the logical block address, or LBA) at which an I/O request is directed. They use the KeInsertByKey-
DeviceQueue and KeRemoveByKeyDeviceQueue functions (documented in the Windows Driver Kit)
representing I/O requests as items and using a request’s starting sector as the key required by the
functions. When servicing requests, the drivers proceed through the list from lowest sector to highest.
When they reach the end of the list the drivers start back at the beginning, since new requests might
have been inserted in the meantime. If disk requests are spread throughout a disk this approach
results in the disk head continuously moving from near the outermost cylinders of the disk toward the
innermost cylinders. Storport.sys does not implement disk scheduling because it is commonly used
for managing I/Os directed at storage arrays where there is no clearly defined notion of a disk start
and end.

Windows ships with several miniport drivers. On systems that have at least one ATAPI-based IDE
device, %SystemRoot%\System32\Drivers\Atapi.sys, %SystemRoot%\System32\Drivers\Pciidex.sys,
and %SystemRoot%\System32\Drivers\Pciide.sys together provide miniport functionality. Most
Windows installations include one or more of the drivers mentioned.

iSCSI Drivers
The development of iSCSI as a disk transport protocol integrates the SCSI protocol with TCP/IP
networking so that computers can communicate with block-storage devices, including disks, over
IP networks. Storage area networking (SAN) is usually architected on Fibre Channel networking, but
administrators can leverage iSCSI to create relatively inexpensive SANs from networking technology
such as Gigabit Ethernet to provide scalability, disaster protection, efficient backup, and data protec-
tion. Windows support for iSCSI comes in the form of the Microsoft iSCSI Software Initiator, which is
available on all editions of Windows.

The Microsoft iSCSI Software Initiator includes several components:

 ■ Initiator This optional component, which consists of the Storport port driver and the iSCSI
miniport driver (%SystemRoot%\System32\Drivers\Msiscsi.sys), uses the TCP/IP driver to imple-
ment software iSCSI over standard Ethernet adapters and TCP/IP offloaded network adapters.

 ■ Initiator service This service, implemented in %SystemRoot%\System32\Iscsicli.exe, man-
ages the discovery and security of all iSCSI initiators as well as session initiation and termi-
nation. iSCSI device discovery functionality is implemented in %SystemRoot%\ System32\
Iscsium.dll. An important goal of the iSCSI service is to provide a common discovery/
management infrastructure irrespective of the protocol driver being used, which could be the
Microsoft software initiator driver or an HBA driver (host bus adapter; iSCSI protocol handling
offloaded to hardware, which is generally Storport miniports). In this context, iSCSI also pro-
vides Win32 and WMI interfaces for management and configuration. The iSCSI initiator service
supports four discovery mechanisms:

• iSNS (Internet Storage Name Service) The addresses of the iSNS servers that the iSCSI
initiator service will use are statically configured using the iscsicli AddiSNSServer command.

134 Windows Internals, Sixth Edition, Part 2

• SendTargets The SendTarget portals are statically configured using the iscsicli AddTarget-
Portal command.

• Host Bus Adapter Discovery iSCSI HBAs that conform to the iSCSI initiator service inter-
faces can participate in target discovery by means of an interface between the HBA and the
iSCSI initiator service.

• Manually Configured Targets iSCSI targets can be manually configured using the iscsi cli
AddTarget command or with the iSCSI Control Panel applet.

 ■ Management applications These include Iscsicli.exe, a command-line tool for managing
iSCSI device connections and security, and the corresponding Control Panel application.

Some vendors produce iSCSI adapters that offload the iSCSI protocol to hardware. The initiator
service works with these adapters, which must support the iSNS protocol (RFC 4171), so that all iSCSI
devices, including those discovered by the initiator service and those discovered by iSCSI hardware,
are recognized and managed through standard Windows interfaces.

Multipath I/O (MPIO) Drivers
Most disk devices have one path—or series of adapters, cables, and switches—between them and a
computer. Servers requiring high levels of availability use multipathing solutions, where more than
one set of connection hardware exists between the computer and a disk so that if a path fails, the
system can still access the disk via an alternate path. Without support from the operating system or
disk drivers, however, a disk with two paths, for example, appears as two different disks. Windows
includes multipath I/O support to manage multipath disks as a single disk. This support relies on built-
in or third-party drivers called device-specific modules (DSMs) to manage details of the path man-
agement—for example, load balancing policies that choose which path to use for routing requests
and error detection mechanisms to inform Windows when a path fails. Built into Windows is a DSM
(%SystemRoot%\System32\Drivers\Msdsm.sys) that works with all storage arrays that conform to the
industry standard (T10 SPC4 specification) definition of asymmetric logical unit arrays (ALUA). Storage
array vendors must write their own DSM if the modules are not ALUA-compliant. Support for writ-
ing a DSM is now part of the Windows Driver Kit. MPIO support is available as an optional feature for
Windows Server 2008/R2, which must be installed via Server Manager. MPIO is not available on client
editions of Windows.

In a Windows MPIO storage stack, shown in Figure 9-4, the disk driver includes functionality
for MPIO devices, which in older versions of Windows was a separate driver (Mpdev.sys). Disk.sys is
responsible for claiming ownership of device objects representing multipath disks—so that it can en-
sure that only one device object is created to represent those disks—and for locating the appropriate
DSM to manage the paths to the device. The Multipath Bus Driver (%SystemRoot%\System32\Drivers\
Mpio.sys) manages connections between the computer and the device, including power management
for the device. Disk.sys informs Mpio.sys of the presence of the devices for it to manage. The port
driver (and the miniport drivers beneath it) for a multipath disk is not MPIO-aware and does not par-
ticipate in anything related to handling multiple paths. There are a total of three disk device stacks,
two representing the physical paths (children of the adapter device stacks) and one representing the

 CHAPTER 9 Storage Management 135

disk (child of the MPIO adapter device stack). When the latter receives a request, it uses the DSM to
determine which path to forward that request to. The DSM makes the selection based on policy, and
the request is sent to the corresponding disk device stack, which in turn forwards it to the device via
the corresponding adapter.

MPIO (FDO)

Pnp (PDO)

Virtual adapter
device stack

Disk (FDO)

Port driver
(PDO)

Disk device stack

Disk (FDO)

Port driver
(PDO)

Disk device stack

Port driver
(FDO)

PCI (PDO)

Adapter
device stack

Port driver
(FDO)

PCI (PDO)

Adapter
device stack

FDO = Functional device object
PDO = Physical device object

Note:

Disk (FDO)

Disk device stack

MPIO (PDO) DSM

Adapter 1 Adapter 2

Disk

FIGURE 9-4 Windows MPIO storage stack

The system crash dump and hibernation mechanisms operate in a very restricted environment
(very little operating system and device driver support). Drivers operating in this environment have
some knowledge of MPIO, but there are limits as to what can be supported. For example, if one path
to a disk is down, Windows can failover only to another disk that is controlled by the same miniport
driver.

MPIO configuration management is provided through MPClaim (%SystemRoot%\System32\
Mpclaim.exe) and a disk properties tab in Explorer.

136 Windows Internals, Sixth Edition, Part 2

EXPERIMENT: Watching Physical Disk I/O
Diskmon from Windows Sysinternals (www.microsoft.com/technet/sysinternals) uses the disk
class driver’s Event Tracing for Windows (or ETW, which is described in Chapter 3, “System
Mechanisms,” in Part 1) instrumentation to monitor I/O activity to physical disks and display
it in a window. Diskmon updates once a second with new data. For each operation, Diskmon
shows the time, duration, target disk number, type and offset, and length, as you can see in the
screen shown here.

Disk Device Objects
The Windows disk class driver creates device objects that represent disks. Device objects that rep-
resent disks have names of the form \Device\HarddiskX\DRX; the number that identifies the disk
replaces both Xs. To maintain compatibility with applications that use older naming conventions, the
disk class driver creates symbolic links with Windows NT 4–formatted names that refer to the device
objects the driver created. For example, the volume manager driver creates the link \Device\Hard-
disk0\Partition0 to refer to \Device\Harddisk0\DR0, and \Device\Harddisk0\Partition1 to refer to the
first partition device object of the first disk. For backward compatibility with applications that expect
legacy names, the disk class driver also creates the same symbolic links in Windows that represent
physical drives that it would have created on Windows NT 4 systems. Thus, for example, the link
\GLOBAL??\PhysicalDrive0 references \Device\Harddisk0\DR0. Figure 9-5 shows the WinObj utility
from Sysinternals displaying the contents of a Harddisk directory for a basic disk. You can see the
physical disk and partition device objects in the pane at the right.

www.microsoft.com/technet/sysinternals

 CHAPTER 9 Storage Management 137

FIGURE 9-5 WinObj showing a Harddisk directory of a basic disk

As you saw in Chapter 3 in Part 1, the Windows API is unaware of the Windows object manager
namespace. Windows reserves two groups of namespace subdirectories to use, one of which is the
\Global?? subdirectory. (The other group is the collection of per-session \BaseNamedObjects sub-
directories, which are covered in Chapter 3.) In this subdirectory, Windows makes available device
objects that Windows applications interact with—including COM and parallel ports—as well as disks.
Because disk objects actually reside in other subdirectories, Windows uses symbolic links to con-
nect names under \Global?? to objects located elsewhere in the namespace. For each physical disk
on a system, the I/O manager creates a \Global??\PhysicalDriveX link that points to \Device\Hard-
diskX\DRX. (Numbers, starting from 0, replace X.) Windows applications that directly interact with
the sectors on a disk open the disk by calling the Windows CreateFile function and specifying the
name \\.\PhysicalDriveX (in which X is the disk number) as a parameter. (Note that directly accessing a
mounted disk’s sectors requires administrator privileges.) The Windows application layer converts the
name to \Global??\PhysicalDriveX before handing the name to the Windows object manager.

138 Windows Internals, Sixth Edition, Part 2

Partition Manager
The partition manager, %SystemRoot%\System32\Drivers\Partmgr.sys, is responsible for discovering,
creating, deleting, and managing partitions. To become aware of partitions, the partition manager
acts as the function driver for disk device objects created by disk class drivers. The partition man-
ager uses the I/O manager’s IoReadPartitionTableEx function to identify partitions and create device
objects that represent them. As miniport drivers present the disks that they identify early in the boot
process to the disk class driver, the disk class driver invokes the IoReadPartitionTableEx function for
each disk. This function invokes sector-level disk I/O that the class, port, and miniport drivers provide
to read a disk’s MBR (Master Boot Record) or GPT (GUID Partition Table; described later in this chap-
ter), constructs an internal representation of the disk’s partitioning, and returns a PDRIVE_ LAYOUT_
INFORMATION_EX structure. The partition manager driver creates device objects to represent each
primary partition (including logical drives within extended partitions) that the driver obtains from
IoReadPartitionTableEx. These names have the form \Device\HarddiskVolumeY, where Y represents the
partition number.

The partition manager is also responsible for ensuring that all disks and partitions have a unique ID
(a signature for MBR and a GUID for GPT). If it encounters two disks with the same ID, it tries to deter-
mine (by writing to one disk and reading from the other) whether they are two different disks or the
same disk being viewed via two different paths (this can happen if the MPIO software isn’t present or
isn’t working correctly). If the two disks are different, the partition manager makes only one available
for use by the upper layers of the storage stack, bringing them online and keeping the others offline.
Disk-management utilities and storage APIs can force an offline disk online, however the partition
manager will change the ID in doing so to prevent conflicts.

By managing disk attributes that are persisted in the registry (such as read-only and offline), the
partition manager can perform actions such as hiding partitions from the volume manager, which
inhibits the volumes from manifesting on the system. Clustering and Hyper-V use these attributes.
The partition manager also redirects write operations that are sent directly to the disk but fall within
a partition space to the corresponding volume manager. The volume manager determines whether to
allow the write operation based on whether the volume is dismounted or not.

Volume Management

Windows has the concept of basic and dynamic disks. Windows calls disks that rely exclusively on the
MBR-style or GPT partitioning scheme basic disks. Dynamic disks implement a more flexible partition-
ing scheme than that of basic disks. The fundamental difference between basic and dynamic disks is
that dynamic disks support the creation of new multipartition volumes. Recall from the list of terms
earlier in the chapter that multipartition volumes provide performance, sizing, and reliability features
not supported by simple volumes. Windows manages all disks as basic disks unless you manually cre-
ate dynamic disks or convert existing basic disks (with enough free space) to dynamic disks. Microsoft
recommends that you use basic disks unless you require the multipartition functionality of dynamic
disks.

 CHAPTER 9 Storage Management 139

Note Windows does not support multipartition volumes on basic disks. For a number of
reasons, including the fact that laptops usually have only one disk and laptop disks typi-
cally don’t move easily between computers, Windows uses only basic disks on laptops. In
addition, only fixed disks can be dynamic, and disks located on IEEE 1394 or USB buses or
on shared cluster server disks are by default basic disks.

Basic Disks
This section describes the two types of partitioning, MBR-style and GPT, that Windows uses to define
volumes on basic disks and the volume manager driver that presents the volumes to file system driv-
ers. Windows silently defaults to defining all disks as basic disks.

MBR-Style Partitioning
The standard BIOS implementations that BIOS-based (non-EFI) x86 (and x64) hardware uses dictate
one requirement of the partitioning format in Windows—that the first sector of the primary disk
contains the Master Boot Record (MBR). When a BIOS-based x86 system boots, the computer’s BIOS
reads the MBR and treats part of the MBR’s contents as executable code. The BIOS invokes the MBR
code to initiate an operating system boot process after the BIOS performs preliminary configuration
of the computer’s hardware. In Microsoft operating systems such as Windows, the MBR also contains
a partition table. A partition table consists of four entries that define the locations of as many as four
primary partitions on a disk. The partition table also records a partition’s type. Numerous predefined
partition types exist, and a partition’s type specifies which file system the partition includes. For ex-
ample, partition types exist for FAT32 and NTFS.

A special partition type, an extended partition, contains another MBR with its own partition table.
The equivalent of a primary partition in an extended partition is called a logical drive. By using ex-
tended partitions, Microsoft’s operating systems overcome the apparent limit of four partitions per
disk. In general, the recursion that extended partitions permit can continue indefinitely, which means
that no upper limit exists to the number of possible partitions on a disk. The Windows boot process
makes evident the distinction between primary and logical drives. The system must mark one primary
partition of the primary disk as active (bootable). The Windows code in the MBR loads the code
stored in the first sector of the active partition (the system volume) into memory and then transfers
control to that code. Because of the role in the boot process played by this first sector in the primary
partition, Windows designates the first sector of any partition as the boot sector. As you will see in
Chapter 13, “Startup and Shutdown,” every partition formatted with a file system has a boot sector
that stores information about the structure of the file system on that partition.

GUID Partition Table Partitioning
As part of an initiative to provide a standardized and extensible firmware platform for operat-
ing systems to use during their boot process, Intel designed the Extensible Firmware Interface (EFI)
specification, originally for the Itanium processor. Intel donated EFI to the Unified EFI Forum, which

140 Windows Internals, Sixth Edition, Part 2

has continued to evolve UEFI for x86, x64, and ARM CPUs. UEFI includes a mini–operating system
environment implemented in firmware (typically flash memory) that operating systems use early in
the system boot process to load system diagnostics and their boot code. UEFI defines a partitioning
scheme, called the GUID (globally unique identifier) Partition Table (GPT) that addresses some of the
shortcomings of MBR-style partitioning. For example, the sector addresses that the GPT structures use
are 64 bits wide instead of 32 bits. A 32-bit sector address is sufficient to access only 2 terabytes (TB)
of storage, while a GPT allows the addressing of disk sizes into the foreseeable future. Other advan-
tages of the GPT scheme include the fact that it uses cyclic redundancy checksums (CRC) to ensure
the integrity of the partition table, and it maintains a backup copy of the partition table. GPT takes its
name from the fact that in addition to storing a 36-byte Unicode partition name for each partition, it
assigns each partition a GUID.

Figure 9-6 shows a sample GPT partition layout. As in MBR-style partitioning, the first sector of
a GPT disk is an MBR (protective MBR) that serves to protect the GPT partitioning in case the disk is
accessed from a non-GPT-aware operating system. However, the second and last sectors of the disk
store the GPT headers with the actual partition table following the second sector and preceding the
last sector. With its extensible list of partitions, GPT partitioning doesn’t require nested partitions, as
MBR partitions do.

M
BR

Partition
table header

0 1 ... n Partition
table header0 1 ... n

Partition 1

Start
partition

End
partition Last usable block

LBAnLBA1
Start

partition
End

partition

First usable block

LBA0

Primary partition table Backup partition table

Note: LBA = Logical block address

FIGURE 9-6 Example GPT partition layout

Note Because Windows doesn’t support the creation of multipartition volumes on basic
disks, a new basic disk partition is the equivalent of a volume. For this reason, the Disk
Management MMC snap-in uses the term partition when you create a volume on a
basic disk.

 CHAPTER 9 Storage Management 141

Basic Disk Volume Manager
The volume manager driver (%SystemRoot%\System32\Drivers\Volmgr.sys) creates disk device objects
that represent volumes on basic disks and plays an integral role in managing all basic disk volumes,
including simple volumes. For each volume, the volume manager creates a device object of the form
\Device\HarddiskVolumeX, in which X is a number (starting from 1) that identifies the volume.

The volume manager is actually a bus driver because it’s responsible for enumerating basic disks to
detect the presence of basic volumes and report them to the Windows Plug and Play (PnP) manager.
To implement this enumeration, the volume manager leverages the PnP manager, with the aid of the
partition manager (Partmgr.sys) driver to determine what basic disk partitions exist. The partition
manager registers with the PnP manager so that Windows can inform the partition manager when-
ever the disk class driver creates a partition device object. The partition manager informs the volume
manager about new partition objects through a private interface and creates filter device objects
that the partition manager then attaches to the partition objects. The existence of the filter objects
prompts Windows to inform the partition manager whenever a partition device object is deleted so
that the partition manager can update the volume manager. The disk class driver deletes a parti-
tion device object when a partition in the Disk Management MMC snap-in is deleted. As the volume
manager becomes aware of partitions, it uses the basic disk configuration information to determine
the correspondence of partitions to volumes and creates a volume device object when it has been
informed of the presence of all the partitions in a volume’s description.

Windows volume drive-letter assignment, a process described shortly, creates drive-letter symbolic
links under the \Global?? object manager directory that point to the volume device objects that the
volume manager creates. When the system or an application accesses a volume for the first time,
Windows performs a mount operation that gives file system drivers the opportunity to recognize and
claim ownership for volumes formatted with a file system type they manage. (Mount operations are
described in the section “Volume Mounting” later in this chapter.)

Dynamic Disks
As we’ve stated, dynamic disks are the disk format in Windows necessary for creating multipartition
volumes such as mirrors, striped arrays, and RAID-5 arrays (described later in the chapter). Dynamic
disks are partitioned using Logical Disk Manager (LDM) partitioning. LDM is part of the Virtual Disk
Service (VDS) subsystem in Windows, which consists of user-mode and device driver components
and oversees dynamic disks. A major difference between LDM’s partitioning and MBR-style and GPT
partitioning is that LDM maintains one unified database that stores partitioning information for all the
dynamic disks on a system—including multipartition-volume configuration.

The LDM Database
The LDM database resides in a 1-MB reserved space at the end of each dynamic disk. The need for
this space is the reason Windows requires free space at the end of a basic disk before you can convert
it to a dynamic disk. The LDM database consists of four regions, which Figure 9-7 shows: a header

142 Windows Internals, Sixth Edition, Part 2

sector that LDM calls the Private Header, a table of contents area, a database records area, and a
transactional log area. (The fifth region shown in Figure 9-7 is simply a copy of the Private Header.)
The Private Header sector resides 1 MB before the end of a dynamic disk and anchors the database.
As you spend time with Windows, you’ll quickly notice that it uses GUIDs to identify just about every-
thing, and disks are no exception. A GUID (globally unique identifier) is a 128-bit value that various
components in Windows use to uniquely identify objects. LDM assigns each dynamic disk a GUID,
and the Private Header sector notes the GUID of the dynamic disk on which it resides—hence the
Private Header’s designation as information that is private to the disk. The Private Header also stores
the name of the disk group, which is the name of the computer concatenated with Dg0 (for example,
Daryl-Dg0 if the computer’s name is Daryl), and a pointer to the beginning of the database table of
contents. For reliability, LDM keeps a copy of the Private Header in the disk’s last sector.

The database table of contents is 16 sectors in size and contains information regarding the data-
base’s layout. LDM begins the database record area immediately following the table of contents with
a sector that serves as the database record header. This sector stores information about the database
record area, including the number of records it contains, the name and GUID of the disk group the
database relates to, and a sequence number identifier that LDM uses for the next entry it creates in
the database. Sectors following the database record header contain 128-byte fixed-size records that
store entries that describe the disk group’s partitions and volumes.

A database entry can be one of four types: partition, disk, component, and volume. LDM uses the
database entry types to identify three levels that describe volumes. LDM connects entries with inter-
nal object identifiers. At the lowest level, partition entries describe soft partitions (hard partitions are
described later in this chapter), which are contiguous regions on a disk; identifiers stored in a partition
entry link the entry to a component and disk entry. A disk entry represents a dynamic disk that is part
of the disk group and includes the disk’s GUID. A component entry serves as a connector between one
or more partition entries and the volume entry each partition is associated with. A volume entry stores
the GUID of the volume, the volume’s total size and state, and a drive-letter hint. Disk entries that are
larger than a database record span multiple records; partition, component, and volume entries rarely
span multiple records.

Transactional
log

Table of
contents

Database
records

Private Header Database
record header

Private Header
mirror

1 MB

FIGURE 9-7 LDM database layout

LDM requires three entries to describe a simple volume: a partition, component, and volume entry.
The following listing shows the contents of a simple LDM database that defines one 200-MB volume
that consists of one partition:

 CHAPTER 9 Storage Management 143

Disk Entry Volume Entry Component Entry Partition Entry
Name: Disk1 Name: Volume1 Name: Volume1-01 Name: Disk1-01
GUID: XXX-XX... ID: 0x408 ID: 0x409 ID: 0x407
Disk ID: 0x404 State: ACTIVE Parent ID: 0x408 Parent ID: 0x409
 Size: 200MB Disk ID: 0x404
 GUID: XXX-XX... Start: 300MB
 Drive Hint: H: Size: 200MB

The partition entry describes the area on a disk that the system assigned to the volume, the
component entry connects the partition entry with the volume entry, and the volume entry contains
the GUID that Windows uses internally to identify the volume. Multipartition volumes require more
than three entries. For example, a striped volume (which is described later in the chapter) consists of
at least two partition entries, a component entry, and a volume entry. The only volume type that has
more than one component entry is a mirror; mirrors have two component entries, each of which rep-
resents one half of the mirror. LDM uses two component entries for mirrors so that when you break
a mirror, LDM can split it at the component level, creating two volumes with one component entry
each.

The final area of the LDM database is the transactional log area, which consists of a few sectors
for storing backup database information as the information is modified. This setup safeguards the
database in case of a crash or power failure because LDM can use the log to return the database to a
consistent state.

EXPERIMENT: Using LDMDump to View the LDM Database
You can use LDMDump from Sysinternals to view detailed information about the contents of
the LDM database. LDMDump takes a disk number as a command-line argument, and its out-
put is usually more than a few screens in size, so you should pipe its output to a file for viewing
in a text editor—for example, ldmdump /d0 > disk.txt. The following example shows excerpts
of LDMDump output. The LDM database header displays first, followed by the LDM database
records that describe a 12-GB disk with three 4-GB dynamic volumes. The volume’s database
entry is listed as Volume1. At the end of the output, LDMDump lists the soft partitions and defi-
nitions of volumes it locates in the database.

C:\>ldmdump /d0
Logical Disk Manager Configuration Dump v1.03
Copyright (C) 2000-2002 Mark Russinovich

PRIVATE HEAD:
Signature : PRIVHEAD
Version : 2.12
Disk Id : b5f4a801-758d-11dd-b7f0-000c297f0108
Host Id : 1b77da20-c717-11d0-a5be-00a0c91db73c
Disk Group Id : b5f4a7fd-758d-11dd-b7f0-000c297f0108
Disk Group Name : WIN-SL5V78KD01W-Dg0
Logical disk start : 3F
Logical disk size : 7FF7C1 (4094 MB)
Configuration start: 7FF800
Configuration size : 800 (1 MB)

144 Windows Internals, Sixth Edition, Part 2

Number of TOCs : 2
TOC size : 7FD (1022 KB)
Number of Configs : 1
Config size : 5C9 (740 KB)
Number of Logs : 1
Log size : E0 (112 KB)

TOC 1:
Signature : TOCBLOCK
Sequence : 0x1
Config bitmap start: 0x11
Config bitmap size : 0x5C9
Log bitmap start : 0x5DA
Log bitmap size : 0xE0
...
VBLK DATABASE:
0x000004: [000001] <DiskGroup>
 Name : WIN-SL5V78KD01W-Dg0
 Object Id : 0x0001
 GUID : b5f4a7fd-758d-11dd-b7f0-000c297f010
0x000006: [000003] <Disk>
 Name : Disk1
 Object Id : 0x0002
 Disk Id : b5f4a7fe-758d-11dd-b7f0-000c297f010

0x000007: [000005] <Disk>
 Name : Disk2
 Object Id : 0x0003
 Disk Id : b5f4a801-758d-11dd-b7f0-000c297f010

0x000008: [000007] <Disk>
 Name : Disk3
 Object Id : 0x0004
 Disk Id : b5f4a804-758d-11dd-b7f0-000c297f010

0x000009: [000009] <Component>
 Name : Volume1-01
 Object Id : 0x0006
 Parent Id : 0x0005

0x00000A: [00000A] <Partition>
 Name : Disk1-01
 Object Id : 0x0007
 Parent Id : 0x3157
 Disk Id : 0x0000
 Start : 0x7C100
 Size : 0x0 (0 MB)
 Volume Off : 0x3 (0 MB)

0x00000B: [00000B] <Partition>
 Name : Disk2-01
 Object Id : 0x0008
 Parent Id : 0x3157
 Disk Id : 0x0000
 Start : 0x7C100

 CHAPTER 9 Storage Management 145

 Size : 0x0 (0 MB)
 Volume Off : 0x7FE80003 (1047808 MB)

0x00000C: [00000C] <Partition>
 Name : Disk3-01
 Object Id : 0x0009
 Parent Id : 0x3157
 Disk Id : 0x0000
 Start : 0x7C100
 Size : 0x0 (0 MB)
 Volume Off : 0xFFD00003 (2095616 MB)

0x00000D: [00000F] <Volume>
 Name : Volume1
 Object Id : 0x0005
 Volume state: ACTIVE
 Size : 0x017FB800 (12279 MB)
 GUID : b5f4a806-758d-11dd-b7f0-c297f0108
 Drive Hint : E:

LDM and GPT or MBR-Style Partitioning
When you install Windows on a computer, one of the first things it requires you to do is to create a
partition on the system’s primary physical disk (specified in the BIOS or UEFI as the disk from which
to boot the system). To make enabling BitLocker easier, Windows Setup will create a small (100 MB)
unencrypted partition known as the system volume, containing the Boot Manager (Bootmgr), Boot
Configuration Database (BCD), and other early boot files. (By default, this volume does not have
a drive letter assigned to it, but you can assign one using the Disk Management MMC snap-in, at
 %SystemRoot%\System32\Diskmgmt.msc, if you want to examine the contents of the volume with
Windows Explorer). In addition, Windows Setup requires you to create a partition that serves as the
home for the boot volume, onto which the setup program installs the Windows system files and cre-
ates the system directory (\Windows). The nomenclature that Microsoft defines for system and boot
volumes is somewhat confusing. The system volume is where Windows places boot files, such as the
Boot Manager, and the boot volume is where Windows stores the rest of the operating system files,
such as Ntoskrnl.exe, the core kernel file.

Note If the system has BitLocker enabled, the boot volume will be encrypted, but the sys-
tem volume is never encrypted.

Although the partitioning data of a dynamic disk resides in the LDM database, LDM implements
MBR-style partitioning or GPT partitioning so that the Windows boot code can find the system and
boot volumes when the volumes are on dynamic disks. (Winload and the Itanium firmware, for exam-
ple, know nothing about LDM partitioning.) If a disk contains the system or boot volumes, partitions
in the MBR or GPT describe the location of those volumes. Otherwise, one partition encompasses the
entire usable area of the disk. LDM marks this partition as type “LDM”. The region encompassed by

146 Windows Internals, Sixth Edition, Part 2

this place-holding MBR-style or GPT partition is where LDM creates partitions that the LDM database
organizes. On MBR-partitioned disks the LDM database resides in hidden sectors at the end of the
disk, and on GPT-partitioned disks there exists an LDM metadata partition that contains the LDM
database near the beginning of the disk.

Another reason LDM creates an MBR or a GPT is so that legacy disk-management utilities, includ-
ing those that run under Windows and under other operating systems in dual-boot environments,
don’t mistakenly believe a dynamic disk is unpartitioned.

Because LDM partitions aren’t described in the MBR or GPT of a disk, they are called soft partitions;
MBR-style and GPT partitions are called hard partitions. Figure 9-8 illustrates this dynamic disk layout
on an MBR-style partitioned disk.

Master Boot Record
LDM partition area

1 MB

LDM database

FIGURE 9-8 Internal dynamic disk organization

Dynamic Disk Volume Manager
The Disk Management MMC snap-in DLL (DMDiskManager, located in %SystemRoot%\System32\
Dmdskmgr.dll), shown in Figure 9-9, is used to create and change the contents of the LDM data-
base. When you launch the Disk Management MMC snap-in, DMDiskManager loads into memory
and reads the LDM database from each disk and returns the information it obtains to the user. If it
detects a database from another computer’s disk group, it notes that the volumes on the disk are
foreign and lets you import them into the current computer’s database if you want to use them. As
you change the configuration of dynamic disks, DMDiskManager updates its in-memory copy of the
database. When DMDiskManager commits changes, it passes the updated database to the VolMgrX
driver (%SystemRoot%\System32\Drivers\Volmgrx.sys). VolMgrX is a kernel-mode DLL that provides
dynamic disk functionality for VolMgr, so it controls access to the on-disk database and creates device
objects that represent the volumes on dynamic disks. When you exit Disk Management, DMDisk-
Manager stops.

 CHAPTER 9 Storage Management 147

FIGURE 9-9 Disk Management MMC snap-in

Multipartition Volume Management
VolMgr is responsible for presenting volumes that file system drivers manage and for mapping I/O
directed at volumes to the underlying partitions that they’re part of. For simple volumes, this process
is straightforward: the volume manager ensures that volume-relative offsets are translated to disk-
relative offsets by adding the volume-relative offset to the volume’s starting disk offset.

Multipartition volumes are more complex because the partitions that make up a volume can be
located on discontiguous partitions or even on different disks. Some types of multipartition volumes
use data redundancy, so they require more involved volume-to-disk–offset translation. Thus, VolMgr
uses VolMgrX to process all I/O requests aimed at the multipartition volumes they manage by deter-
mining which partitions the I/O ultimately affects.

The following types of multipartition volumes are available in Windows:

 ■ Spanned volumes

 ■ Mirrored volumes

 ■ Striped volumes

 ■ RAID-5 volumes

After describing multipartition-volume partition configuration and logical operation for each of
the multipartition-volume types, we’ll cover the way that the VolMgr driver handles IRPs that a file
system driver sends to multipartition volumes. The term volume manager is used to represent VolMgr
and the VolMgrX extension DLL throughout the explanation of multipartition volumes.

148 Windows Internals, Sixth Edition, Part 2

Spanned Volumes
A spanned volume is a single logical volume composed of a maximum of 32 free partitions on one
or more disks. The Disk Management MMC snap-in combines the partitions into a spanned volume,
which can then be formatted for any of the Windows-supported file systems. Figure 9-10 shows a
100-GB spanned volume identified by drive letter D that has been created from the last third of the
first disk and the first third of the second. Spanned volumes were called volume sets in Windows NT 4.

NTFS
Volume 2

NTFS
Volume 1

NTFS
Volume 3

NTFS
Volume 2

C:
(100 GB)

D:
(50 GB)

D:
(50 GB)

E:
(100 GB)

FIGURE 9-10 Spanned volume

A spanned volume is useful for consolidating small areas of free disk space into one larger volume
or for creating a single large volume out of two or more small disks. If the spanned volume has been
formatted for NTFS, it can be extended to include additional free areas or additional disks without
affecting the data already stored on the volume. This extensibility is one of the biggest benefits of
describing all data on an NTFS volume as a file. NTFS can dynamically increase the size of a logical
volume because the bitmap that records the allocation status of the volume is just another file—the
bitmap file. The bitmap file can be extended to include any space added to the volume. Dynamically
extending a FAT volume, on the other hand, would require the FAT itself to be extended, which would
dislocate everything else on the disk.

A volume manager hides the physical configuration of disks from the file systems installed on
 Windows. NTFS, for example, views volume D: in Figure 9-10 as an ordinary 100-GB volume. NTFS
consults its bitmap to determine what space in the volume is free for allocation. After translating
a byte offset to a cluster offset, it then calls the volume manager to read or write data beginning
at a particular cluster offset on the volume. The volume manager views the physical sectors in the
spanned volume as numbered sequentially from the first free area on the first disk to the last free
area on the last disk. It determines which physical sector on which disk corresponds to the supplied
cluster offset.

Striped Volumes
A striped volume is a series of up to 32 partitions, one partition per disk, that gets combined into a
single logical volume. Striped volumes are also known as RAID level 0 (RAID-0) volumes. Figure 9-11
shows a striped volume consisting of three partitions, one on each of three disks. (A partition in a
striped volume need not span an entire disk; the only restriction is that the partitions on each disk be
the same size.)

 CHAPTER 9 Storage Management 149

Stripe 1
2
3
4
5
6
7

(150 GB) (150 GB) (150 GB) 1
2
3
4
5
6
7

FIGURE 9-11 Striped volume

To a file system, this striped volume appears to be a single 450-GB volume, but the volume man-
ager optimizes data storage and retrieval times on the striped volume by distributing the volume’s
data among the physical disks. The volume manager accesses the physical sectors of the disks as if
they were numbered sequentially in stripes across the disks, as illustrated in Figure 9-12.

(150 GB) (150 GB) (150 GB)

0 1 2 3 4 5 6 7
8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

 24 25 26 27 ...

FIGURE 9-12 Logical numbering of physical sectors on a striped volume

Because each stripe unit is a relatively narrow 64 KB (a value chosen to prevent small individual
reads and writes from accessing two disks), the data tends to be distributed evenly among the disks.
Striping thus increases the probability that multiple pending read and write operations will be bound
for different disks. And because data on all three disks can be accessed simultaneously, latency time
for disk I/O is often reduced, particularly on heavily loaded systems.

Spanned volumes make managing disk volumes more convenient, and striped volumes spread the
I/O load over multiple disks. These two volume-management features don’t provide the ability to
recover data if a disk fails, however. For data recovery, the volume manager implements two redun-
dant storage schemes: mirrored volumes and RAID-5 volumes. These features are created with the
Windows Disk Management administrative tool.

Mirrored Volumes
In a mirrored volume, the contents of a partition on one disk are duplicated in an equal-sized parti-
tion on another disk. Mirrored volumes are sometimes referred to as RAID level 1 (RAID-1). A mirrored
volume is shown in Figure 9-13.

150 Windows Internals, Sixth Edition, Part 2

C:

C:
(mirror)

FIGURE 9-13 Mirrored volume

When a program writes to drive C:, the volume manager writes the same data to the same loca-
tion on the mirror partition. If the first disk or any of the data on its C: partition becomes unread-
able because of a hardware or software failure, the volume manager automatically accesses the data
from the mirror partition. A mirror volume can be formatted for any of the Windows-supported file
systems. The file system drivers remain independent and are not affected by the volume manager’s
mirroring activity.

Mirrored volumes can aid in read I/O throughput on heavily loaded systems. When I/O activity is
high, the volume manager balances its read operations between the primary partition and the mirror
partition (accounting for the number of unfinished I/O requests pending from each disk). Two read
operations can proceed simultaneously and thus theoretically finish in half the time. When a file is
modified, both partitions of the mirror set must be written, but disk writes are performed in parallel,
so the performance of user-mode programs is generally not affected by the extra disk update.

Mirrored volumes are the only multipartition volume type supported for system and boot vol-
umes. The reason for this is that the Windows boot code, including the MBR code and Winload, don’t
have the sophistication required to understand multipartition volumes—mirrored volumes are the
exception because the boot code treats them as simple volumes, reading from the half of the mirror
marked as the boot or system drive in the MBR-style partition table. Because the boot code doesn’t
modify the disk metadata and will read or write to the same half of the mirrored set, it can safely
ignore the other half of the mirror; however, the Boot Manager and OS loader will update the file
\Boot\BootStat.dat on the system volume. This file is used only to communicate status between the
various phases of booting, so, again, it does not need to be written to the other half of the mirror.

EXPERIMENT: Watching Mirrored Volume I/O Operations
Using the Performance Monitor, you can verify that write operations directed at mirrored
volumes copy to both disks that make up the mirror and that read operations, if relatively
infrequent, occur primarily from one half of the volume. This experiment requires three hard
disks. If you don’t have three disks, you can skip the experiment setup instructions and view the
Performance tool screen shot in this experiment that demonstrates the experiment’s results.

 CHAPTER 9 Storage Management 151

Use the Disk Management MMC snap-in to create a mirrored volume. To do this, perform
the following steps:

1. Run Disk Management by starting Computer Management, expanding the Storage
tree, and clicking Disk Management (or by inserting Disk Management as a snap-in in
an MMC console).

2. Right-click on an unallocated space of a drive, and then click New Simple Volume.

3. Follow the instructions in the New Simple Volume Wizard to create a simple volume.
(Make sure there’s enough room on another disk for a volume of the same size as the
one you’re creating.)

4. Right-click on the new volume, and then click Add Mirror on the context menu.

Once you have a mirrored volume, run the Performance Monitor tool and add counters for
the PhysicalDisk performance object for both disk instances that contain a partition belong-
ing to the mirror. Select the Disk Writes/sec counters for each instance. Select a large directory
from the third disk (the one that isn’t part of the mirrored volume), and copy it to the mirrored
volume. The Performance Monitor tool output window should look something like the follow-
ing screen shot as the copy operation progresses.

The top two lines, which overlap throughout the timeline, are the Disk Writes/sec counters
for each disk. The screen shot reveals that the volume manager (in this case VolMgr) is writing
the copied file data to both halves of the volume.

152 Windows Internals, Sixth Edition, Part 2

RAID-5 Volumes
A RAID-5 volume is a fault tolerant variant of a regular striped volume. RAID-5 volumes implement
RAID level 5. They are also known as striped volumes with rotated parity because they are based on
the striping approach taken by striped volumes. Fault tolerance is achieved by reserving the equiva-
lent of one disk for storing parity for each stripe. Figure 9-14 is a visual representation of a RAID-5
volume.

In Figure 9-14, the parity for stripe 1 is stored on disk 1. It contains a byte-for-byte logical sum
(XOR) of the first stripe units on disks 2 and 3. The parity for stripe 2 is stored on disk 2, and the parity
for stripe 3 is stored on disk 3. Rotating the parity across the disks in this way is an I/O optimization
technique. Each time data is written to a disk, the parity bytes corresponding to the modified bytes
must be recalculated and rewritten. If the parity were always written to the same disk, that disk would
be busy continually and could become an I/O bottleneck.

Stripe 1
2
3
4
5
6
7

Disk 1 Disk 2 Disk 3

1
2
3
4
5
6
7

Parity

FIGURE 9-14 RAID-5 volume

Recovering a failed disk in a RAID-5 volume relies on a simple arithmetic principle: in an equation
with n variables, if you know the value of n – 1 of the variables, you can determine the value of the
missing variable by subtraction. For example, in the equation x + y = z, where z represents the parity
stripe unit, the volume manager computes z – y to determine the contents of x; to find y, it computes
z – x. The volume manager uses similar logic to recover lost data. If a disk in a RAID-5 volume fails or
if data on one disk becomes unreadable, the volume manager reconstructs the missing data by using
the XOR operation (bitwise logical addition).

If disk 1 in Figure 9-14 fails, the contents of its stripe units 2 and 5 are calculated by XOR-ing the
corresponding stripe units of disk 3 with the parity stripe units on disk 2. The contents of stripes 3 and
6 on disk 1 are similarly determined by XOR-ing the corresponding stripe units of disk 2 with the par-
ity stripe units on disk 3. At least three disks (or, rather, three same-sized partitions on three disks) are
required to create a RAID-5 volume.

 CHAPTER 9 Storage Management 153

The Volume Namespace
The volume namespace mechanism handles the assignment of drive letters to device objects that rep-
resent actual volumes, which lets Windows applications access these drives through familiar means,
and also provides mount and dismount functionality.

The Mount Manager
The Mount Manager device driver (%SystemRoot%\System32\Drivers\Mountmgr.sys) assigns drive
letters for dynamic disk volumes and basic disk volumes created after Windows is installed, CD-
ROMs, floppies, and removable devices. Windows stores all drive-letter assignments under HKLM\
SYSTEM\MountedDevices. If you look in the registry under that key, you’ll see values with names such
as \??\Volume{X} (where X is a GUID) and values such as \DosDevices\C:. Every volume has a volume
name entry, but a volume doesn’t necessarily have an assigned drive letter (for example, the system
volume). Figure 9-15 shows the contents of an example Mount Manager registry key. Note that the
MountedDevices key isn’t included in a control set and so isn’t protected by the last known good
boot option. (See the section “Last Known Good” in Chapter 13 for more information on control sets
and the last known good boot option.)

FIGURE 9-15 Mounted devices listed in the Mount Manager’s registry key

The data that the registry stores in values for basic disk volume drive letters and volume names is
the disk signature and the starting offset of the first partition associated with the volume. The data
that the registry stores in values for dynamic disk volumes includes the volume’s VolMgr-internal
GUID. When the Mount Manager initializes during the boot process, it registers with the Windows
Plug and Play subsystem so that it receives notification whenever a device identifies itself as a volume.
When the Mount Manager receives such a notification, it determines the new volume’s GUID or disk
signature and uses the GUID or signature as a guide to look in its internal database, which reflects
the contents of the MountedDevices registry key. The Mount Manager then determines whether its
internal database contains the drive-letter assignment. If the volume has no entry in the database, the
Mount Manager asks VolMgr for a suggested drive-letter assignment and stores that in the database.

154 Windows Internals, Sixth Edition, Part 2

VolMgr doesn’t return suggestions for simple volumes, but it looks at the drive-letter hint in the vol-
ume’s database entry for dynamic volumes.

If no suggested drive-letter assignment exists for a dynamic volume, the Mount Manager uses the
first unassigned drive letter (if one exists), defines a new assignment, creates a symbolic link for the
assignment (for example, \Global??\D:), and updates the MountedDevices registry key. If there are
no available drive letters, no drive-letter assignment is made. At the same time, the Mount Manager
creates a volume symbolic link (that is, \Global??\Volume{X}) that defines a new volume GUID if the
volume doesn’t already have one. This GUID is different from the volume GUIDs that VolMgr uses
internally.

Mount Points
Mount points let you link volumes through directories on NTFS volumes, which makes volumes
with no drive-letter assignment accessible. For example, an NTFS directory that you’ve named
C:\Projects could mount another volume (NTFS or FAT) that contains your project directories and files.
If your project volume had a file you named \CurrentProject\Description.txt, you could access the file
through the path C:\Projects\CurrentProject\Description.txt. What makes mount points possible is
reparse point technology. (Reparse points are discussed in more detail in Chapter 12.)

A reparse point is a block of arbitrary data with some fixed header data that Windows associ-
ates with an NTFS file or directory. An application or the system defines the format and behavior of
a reparse point, including the value of the unique reparse point tag that identifies reparse points
belonging to the application or system and specifies the size and meaning of the data portion of a
reparse point. (The data portion can be as large as 16 KB.) Any application that implements a reparse
point must supply a file system filter driver to watch for reparse-related return codes for file opera-
tions that execute on NTFS volumes, and the driver must take appropriate action when it detects the
codes. NTFS returns a reparse status code whenever it processes a file operation and encounters a file
or directory with an associated reparse point.

The Windows NTFS file system driver, the I/O manager, and the object manager all partly imple-
ment reparse point functionality. The object manager initiates pathname parsing operations by
using the I/O manager to interface with file system drivers. Therefore, the object manager must retry
operations for which the I/O manager returns a reparse status code. The I/O manager implements
pathname modification that mount points and other reparse points might require, and the NTFS file
system driver must associate and identify reparse point data with files and directories. You can there-
fore think of the I/O manager as the reparse point file system filter driver for many Microsoft-defined
reparse points.

One common use of reparse points is the symbolic link functionality offered on Windows by NTFS
(see Chapter 12 for more information on NTFS symbolic links). If the I/O manager receives a reparse
status code from NTFS and the file or directory for which NTFS returned the code isn’t associated with
one of a handful of built-in Windows reparse points, no filter driver claimed the reparse point. The I/O
manager then returns an error to the object manager that propagates as a “file cannot be accessed by
the system” error to the application making the file or directory access.

 CHAPTER 9 Storage Management 155

Mount points are reparse points that store a volume name (\Global??\Volume{X}) as the reparse
data. When you use the Disk Management MMC snap-in to assign or remove path assignments for
volumes, you’re creating mount points. You can also create and display mount points by using the
built-in command-line tool Mountvol.exe (%SystemRoot%\System32\Mountvol.exe).

The Mount Manager maintains the Mount Manager remote database on every NTFS volume in
which the Mount Manager records any mount points defined for that volume. The database file
resides in the directory System Volume Information on the NTFS volume. Mount points move when
a disk moves from one system to another and in dual-boot environments—that is, when booting
between multiple Windows installations—because of the existence of the Mount Manager remote
database. NTFS also keeps track of reparse points in the NTFS metadata file \$Extend\$Reparse. (NTFS
doesn’t make any of its metadata files available for viewing by applications.) NTFS stores reparse
point information in the metadata file so that Windows can, for example, easily enumerate the mount
points (which are reparse points) defined for a volume when a Windows application, such as Disk
Management, requests mount-point definitions.

Volume Mounting
Because Windows assigns a drive letter to a volume doesn’t mean that the volume contains data that
has been organized in a file system format that Windows recognizes. The volume-recognition process
consists of a file system claiming ownership for a partition; the process takes place the first time the
kernel, a device driver, or an application accesses a file or directory on a volume. After a file system
driver signals its responsibility for a partition, the I/O manager directs all IRPs aimed at the volume
to the owning driver. Mount operations in Windows consist of three components: file system driver
registration, volume parameter blocks (VPBs), and mount requests.

Note The partition manager honors the system SAN policy, which can be set with the
Windows DiskPart utility, that specifies whether it should surface disks for visibility to the
volume manager. The default policy in Windows Server 2008 Enterprise and Datacenter
editions is to not make SAN disks visible, which prevents the system from aggressively
mounting their volumes.

The I/O manager oversees the mount process and is aware of available file system drivers because
all file system drivers register with the I/O manager when they initialize. The I/O manager provides the
IoRegisterFileSystem function to local disk (rather than network) file system drivers for this registra-
tion. When a file system driver registers, the I/O manager stores a reference to the driver in a list that
the I/O manager uses during mount operations.

Every device object contains a VPB data structure, but the I/O manager treats VPBs as meaning-
ful only for volume device objects. A VPB serves as the link between a volume device object and the
device object that a file system driver creates to represent a mounted file system instance for that
volume. If a VPB’s file system reference is empty (VPB->DeviceObject == NULL), no file system has
mounted the volume. The I/O manager checks a volume device object’s VPB whenever an open API
that specifies a file name or a directory name on a volume device object executes.

156 Windows Internals, Sixth Edition, Part 2

For example, if the Mount Manager assigns drive letter D to the second volume on a system, it
 creates a \Global??\D: symbolic link that resolves to the device object \Device\HarddiskVolume2.
A Windows application that attempts to open the \Temp\Test.txt file on the D: drive specifies the
name D:\Temp\Test.txt, which the Windows subsystem converts to \Global??\D:\Temp\Test.txt before
invoking NtCreateFile, the kernel’s file-open routine. NtCreateFile uses the object manager to parse
the name, and the object manager encounters the \Device\HarddiskVolume2 device object with the
path \Temp\Test.txt still unresolved. At that point, the I/O manager checks to see whether \Device\
Harddisk Volume2’s VPB references a file system. If it doesn’t, the I/O manager asks each registered
file system driver via a mount request whether the driver recognizes the format of the volume in
question as the driver’s own.

EXPERIMENT: Looking at VPBs
You can look at the contents of a VPB by using the !vpb kernel debugger command. Because
the VPB is pointed to by the device object for a volume, you must first locate a volume device
object. To do this, you must dump the volume manager’s driver object, locate a device object
that represents a volume, and display the device object, which reveals its Vpb field.

lkd> !drvobj volmgr
Driver object (84905030) is for:
 \Driver\volmgr
Driver Extension List: (id , addr)

Device Object list:
84a64780 849d5b28 84a64518 84a64030
84905e00

The !drvobj command lists the addresses of the device objects a driver owns. In this example,
there are five device objects. One of them represents the programmatic (control) interface
to the device driver, and the rest are volume device objects. Because the objects are listed in
reverse order from the way that they were created and the driver creates the control device
object first, the first device object listed is that of a volume. Now execute the !devobj kernel
debugger command on the volume device object address:

lkd> !devobj 84a64780
Device object (84a64780) is for:
 HarddiskVolume4 \Driver\volmgr DriverObject 84905030
Current Irp 00000000 RefCount 0 Type 00000007 Flags 00001050
Vpb 84a64228 Dacl 8b1a8674 DevExt 84a64838 DevObjExt 84a64930 Dope 849fd838 DevNode
 849d5938
ExtensionFlags (0x00000800)
 Unknown flags 0x00000800
AttachedDevice (Upper) 84a66020 \Driver\volsnap
Device queue is not busy

The !devobj command shows the Vpb field for the volume device object. (The device object
shown is named HarddiskVolume4.) Now you’re ready to execute the !vpb command:

lkd> !vpb 84a64228
Vpb at 0x84a64228

 CHAPTER 9 Storage Management 157

Flags: 0x1 mounted
DeviceObject: 0x84a6b020
RealDevice: 0x849d5b28
RefCount: 4311
Volume Label: OS

The command reveals that the volume device object is mounted by a file system driver that
has assigned the volume the name OS. The RealDevice field in the VPB points back to the vol-
ume device object, and the DeviceObject field points to the mounted file system device object.
You can use !devobj on this address to get more information on the mounted file system, as
seen in the following output, which shows that NTFS has mounted the volume:

lkd> !devobj 0x84a6b020
Device object (84a6b020) is for:
 \FileSystem\Ntfs DriverObject 84a02ad0
Current Irp 00000000 RefCount 0 Type 00000008 Flags 00040000
DevExt 84a6b0d8 DevObjExt 84a6bc00
ExtensionFlags (0x00000800)
 Unknown flags 0x00000800
AttachedDevice (Upper) 84a63ac0 \FileSystem\FltMgr
Device queue is not busy

The convention followed by file system drivers for recognizing volumes mounted with their format
is to examine the volume’s boot record (VBR), which is stored in the first sector of the volume. Boot
records for Microsoft file systems contain a field that stores a file system format type. File system
drivers usually examine this field, and if it indicates a format they manage, they look at other informa-
tion stored in the boot record. This information usually includes a file system name field and enough
data for the file system driver to locate critical metadata files on the volume. NTFS, for example, will
recognize a volume only if the MBR partition Type field is NTFS (0x07), the Name field is “NTFS,” and
the critical metadata files described by the boot record are consistent.

If a file system driver signals affirmatively, the I/O manager fills in the VPB and passes the open
request with the remaining path (that is, \Temp\Test.txt) to the file system driver. The file system driver
completes the request by using its file system format to interpret the data that the volume stores.
After a mount fills in a volume device object’s VPB, the I/O manager hands subsequent open requests
aimed at the volume to the mounted file system driver. If no file system driver claims a volume, Raw—
a file system driver built into Ntoskrnl.exe—claims the volume and fails all requests to open files on
that partition; however, Raw does allow sector I/O to the partition for applications with administrator
privileges, but even an administrator cannot write to sectors of a mounted volume, except for the
boot sectors. Figure 9-16 shows a simplified example (that is, the figure omits the file system driver’s
interactions with the Windows cache and memory managers) of the path that I/O directed at a
mounted volume follows.

158 Windows Internals, Sixth Edition, Part 2

NTFS file system driverNTFS file system
device object

\Device\HarddiskVolume2
Disk class driver

Disk port driver
Disk miniport driver

2

3

1

4

5

Application directs file-level (e.g., D:\temp\test.txt)
I/O request at drive letter corresponding to partition
\Device\HarddiskVolume2.

Application I/O request

I/O manager
follows VPB to
mounted file
system device
object.

VPB file
system

reference

I/O manager
routes I/O request
to file system driver
that owns the file
system device
object. File system performs sector-level

volume I/O to service I/O request.

I/O manager
routes sector-level
I/O to disk class
driver.

FIGURE 9-16 Mounted volume I/O flow

Instead of having every file system driver loaded, regardless of whether they have any volumes to
manage, Windows tries to minimize memory usage by using a surrogate driver named File System
Recognizer (%SystemRoot%\System32\Drivers\Fs_rec.sys) to perform preliminary file system recogni-
tion. File System Recognizer knows enough about each file system format that Windows supports to
be able to examine a boot record and determine whether it’s associated with a Windows file system
driver. When the system boots, File System Recognizer registers as a file system driver, and when the
I/O manager calls it during a file system mount operation for a new volume, File System Recognizer
loads the appropriate file system driver if the VBR describes a file system that isn’t loaded. After load-
ing a file system driver, File System Recognizer forwards the mount IRP to the file system driver and
lets it claim ownership of the volume.

Aside from the boot volume, which a driver mounts while the kernel is initializing, file system driv-
ers mount most volumes when the Chkdsk file system consistency-checking application runs during
a boot sequence. The boot-time version of Chkdsk is a native application (as opposed to a Win32
application) named Autochk.exe (%SystemRoot%\System32\Autochk.exe), and the Session Manager
(%SystemRoot%\System32\Smss.exe) runs it because it is specified as a boot-run program in the
HKLM\SYSTEM\CurrentControlSet\Control\Session Manager\BootExecute value. Autochk accesses
each drive letter to see whether the volume associated with the letter requires a consistency check.

One place in which mounting can occur more than once for the same disk is with removable me-
dia. Windows file system drivers respond to media changes by querying the disk’s volume identifier. If
they see the volume identifier change, the driver dismounts the disk and attempts to remount it.

 CHAPTER 9 Storage Management 159

Volume I/O Operations
File system drivers manage data stored on volumes but rely on the volume manager to interact with
storage drivers to transfer data to and from the disk or disks on which a volume resides. File sys-
tem drivers obtain references to the volume manager’s volume objects through the mount process
and then send the volume manager requests via the volume objects. Applications can also send the
volume manager requests, bypassing file system drivers, when they want to directly manipulate a
volume’s data. File-undelete programs are an example of applications that do this.

Whenever a file system driver or an application sends an I/O request to a device object that
represents a volume, the Windows I/O manager routes the request (which comes in an IRP—a self-
contained package, described in Chapter 8, “I/O System”) to the volume manager that created the
target device object. Thus, if an application (running with administrator privileges) wants to read the
boot sector of the second volume on the system (which is a simple volume in this example), it opens
a handle to \\.\HarddiskVolume2 and then calls ReadFile to read 512 bytes starting at offset zero on
the device. (Both the starting byte offset and length must be a multiple of the sector size.) The I/O
manager sends the application’s request in the form of an IRP to the volume manager that owns the
device object, notifying it that the IRP is directed at the HarddiskVolume2 device.

Because volumes are logical conveniences that Windows uses to represent contiguous areas on
one or more physical disks, the volume manager must translate offsets that are relative to a volume
to offsets that are relative to the beginning of a disk. If volume 2 consists of one partition that begins
4,096 sectors into the disk, the partition manager would adjust the IRP’s parameters to designate an
offset with that value before passing the request to the disk class driver. The disk class driver uses a
miniport driver to carry out physical disk I/O, and reads the requested data into an application buffer
designated in the IRP.

Some examples of a volume manager’s operations will help clarify its role when it handles re-
quests aimed at multipartition volumes. If a striped volume consists of two partitions, partition 1 and
partition 2, the VolMgr device object intercepts file system disk I/O aimed at the device object for
the volume, and the VolMgr driver adjusts the request before passing it to the disk class driver. The
adjustment that VolMgr makes configures the request to refer to the correct offset of the request’s
target stripe on either partition 1 or partition 2. If the I/O spans both partitions of the volume, VolMgr
must issue two associated I/O requests, one aimed at each disk. This is shown in Figure 9-17.

In the case of writes to a mirrored volume, VolMgr splits each request so that each half of the mir-
ror receives the write operation. For mirrored reads, VolMgr performs a read from half of a mirror,
relying on the other half when a read operation fails.

160 Windows Internals, Sixth Edition, Part 2

VolMgr driver

\Device\Harddisk0\DR0

\Device\HarddiskVolumeX

Disk class driver

Disk port driver

Disk miniport driver

2

3

1

4

5

File system driver issues
sector-level I/O. I/O manager routes IRP

to VolMgr driver.

VolMgr driver determines which
partition of the spanned volume
the IRP is directed at and creates
an associated IRP directed at the
disk the partition is located on.

I/O manager routes the IRP
to the disk class driver.

Disk class driver performs
hardware I/O to access the disk.

\Device\Harddisk1\DR1

Stripe partition 1

Stripe partition 2

Harddisk0

Harddisk1

FIGURE 9-17 VolMgr I/O operations

Virtual Disk Service
A company that makes storage products such as RAID adapters, hard disks, or storage arrays has to
implement custom applications for installing and managing their devices. The use of different man-
agement applications for different storage devices has obvious drawbacks from the perspective of
system administration. These drawbacks include learning multiple interfaces and the inability to use
standard Windows storage management tools to manage third-party storage devices.

Windows includes the Virtual Disk Service (or VDS, located at %SystemRoot%\System32\Vds.exe),
which provides a unified high-level storage interface so that administrators can manage storage
devices from different vendors using the same user interfaces. VDS is shown in Figure 9-18. VDS
exports a COM-based API that allows applications to create and format disks and to view and manage
hardware RAID adapters. For example, a utility can use the VDS API to query the list of physical disks
that map to a RAID logical unit number (LUN). Windows disk-management utilities, including the Disk
Management MMC snap-in and the DiskPart and DiskRAID command-line tools, use VDS APIs.

 CHAPTER 9 Storage Management 161

Management
applications

Disk
Management

snap-in

Command-line
tools

Virtual Disk Service

Software providers Hardware
providers

LUNs

RAID array

Hardware

Microsoft functionality

Non-Microsoft functionality

- Basic disk
- Dynamic disk

- DiskPart
- DiskRAID

FIGURE 9-18 VDS service architecture

VDS supplies two interfaces, one for software providers and one for hardware providers:

 ■ Software providers implement interfaces to high-level storage abstractions such as disks,
disk partitions, and volumes. Examples of operations supported by these interfaces include
creating, extending, and deleting volumes; adding or breaking mirrors; and formatting and
assigning drive letters. VDS looks for registered software providers in HKLM\SYSTEM\Current-
ControlSet\Services\Vds\SoftwareProviders, which contains subkeys whose names are GUIDs.
Within each subkey is a value named ClsId, which specifies the COM class ID, and these are
listed in HKEY_CLASSES_ROOT\CLSID\<ClsId>. Windows includes the VDS Dynamic Provider
(%SystemRoot%\System32\Vdsdyn.dll) for interfacing to dynamic disks and the VDS Basic
Provider (%SystemRoot%\System32\Vdsbas.dll) for interfacing to basic disks.

 ■ Hardware vendors implement VDS hardware providers as DLLs that register under HKLM\
SYSTEM\CurrentControlSet\Services\Vds\HardwareProviders and that translate device-
independent VDS commands into commands for their hardware. The hardware provider allows
for management of a storage subsystem such as a hardware RAID array or an adapter card,
and supported operations include creating, extending, deleting, masking, and unmasking
LUNs.

162 Windows Internals, Sixth Edition, Part 2

When an application initiates a connection to the VDS API and the VDS service isn’t started, the
Svchost process hosting the RPC service starts the VDS loader process (%SystemRoot%\System32\
Vdsldr.exe), which starts the VDS service process and then exits. When the last connection to the VDS
API closes, the VDS service process exits.

Virtual Hard Disk Support

Windows includes extensive built-in support for VHD (Virtual Hard Disk, the Microsoft virtual machine
disk format) files. Using disk-management utilities, you can create, delete, and merge VHDs, as well
as attach them to the system as though they were physical disks. Windows also includes support for
booting Windows installations stored in NTFS volumes within VHDs.

There are three types of VHDs, all of which are supported by the VHD functionality in Windows:

 ■ Dynamic The VHD does not necessarily contain all the blocks it is advertising (thinly provi-
sioned) and will be grown as necessary, up to its maximum size. In other words, the amount
of space being consumed by the VHD is equal to the amount of data that is being stored in it
(plus a small amount of overhead for the VHD container).

 ■ Fixed The VHD is of fixed size, cannot grow, and contains all the disk blocks it is advertising
(fully provisioned).

 ■ Differencing Similar to a dynamic VHD, but contains only the sectors that would have been
modified when compared with a parent VHD (which is read-only). The parent VHD may be
of any of the three VHD types (including another differencing VHD). Differencing VHDs are
generally used for taking a snapshot of the state of a parent VHD. That state can then be
recovered by simply deleting the differencing VHD. This is often used in checkpointing virtual
machines (VMs) to enable the user to return the VM to a particular state. Note that the dif-
ferencing VHD must be kept in the same directory as the parent VHD.

When presented to the system, the standard partition manager and volume manager mounting
volume recognition and mounting processes take place, making file systems stored in the VHD acces-
sible using Windows file system APIs and utilities.

VHDs can be contained within a VHD, so Windows limits the number of nesting levels of VHDs that
it will present to the system as a disk to two, with the maximum number of nesting levels specified by
the registry value HKLM\System\CurrentControlSet\Services\FsDepends\Parameters\VirtualDiskMax-
TreeDepth. Mounting VHDs can be prevented by setting the registry value HKLM\System\Current-
ControlSet\Services\FsDepends\Parameters\VirtualDiskNoLocalMount to 1.

Windows can also boot from a VHD. A bootable VHD may be created from scratch during instal-
lation (when booting the Windows installation disk) or from a running system using various tools,
including ImageX or Sysinternals’s Disk2VHD. That “system in a VHD” can be run under Virtual PC or
Hyper-V (on Windows Server), and Windows Ultimate and Enterprise editions can directly boot from
a VHD.

 CHAPTER 9 Storage Management 163

Windows also extends its support of VHDs to all its built-in disk-management utilities. Creating,
mounting, and dismounting a VHD can be done while Windows is running using the Disk Manage-
ment MMC snap-in (%SystemRoot%\System32\Diskmgmt.msc) or the DiskPart (%SystemRoot%\
System32\Diskpart.exe) command-line tool. These tools are implemented using Virtual Disk Service
(VDS) APIs, which can also be used by third-party utilities for managing and manipulating VHDs.

Attaching VHDs
The root-enumerated bus driver Vdrvroot (%SystemRoot%\System32\Drivers\Vdrvroot.sys) creates a
physical device object (PDO) for each nested file system to be mounted. The PnP manager loads the
Vhdmp (%SystemRoot%\System32\Drivers\Vhdmp.sys) Storport miniport driver as the function driver
on the PDO, exposing what to the rest of the system looks like a physical disk. The I/O manager then
layers the rest of the storage stack (disk class driver, partition manager, volume manager, and file
system driver) on top of the device stack (DevStack) containing Vhdmp. When Vhdmp receives sector
read and write requests, it translates those requests into offsets within the VHD file and then forwards
the requests to the storage stack where the VHD file is located.

Nested File Systems
To support nested file systems, a dependency tree is created to track which file systems have de-
pendencies on other file systems. This is important for several systemwide operations to function
properly, such as dismounting a volume (dependent file systems would have to be dismounted first),
system shutdown (similar to volume dismounting), and volume snapshots (dependent volumes need
to be flushed before the parent during a FlushAndHold operation). Dependencies are tracked by a file
system minifilter driver (%SystemRoot%\System32\Drivers\Fsdepends.sys), which sits above the file
system driver. Dependencies are tracked by Fsdepends using PnP removal relations, instead of parent-
child relationships, because removal relations are more dynamic and are queried at run time rather
than set up statically. (This is important because nested drivers can set up additional dependency
relationships after a VHD is mounted.)

As far as most Windows components are concerned, a mounted VHD volume is identical to a vol-
ume residing on a physical disk, with the limitations that neither paging files, the hibernation file, or
the crash dump file can be located on a mounted VHD and VHDs cannot be larger than 2 TB.

BitLocker Drive Encryption

An operating system can enforce its security policies only while it’s active, so you have to take ad-
ditional measures to protect data when the physical security of a system can be compromised and
the data accessed from outside the operating system. Hardware-based mechanisms such as BIOS
passwords and encryption are two technologies commonly used to prevent unauthorized access,
especially on laptops, which are the computers most likely to be lost or stolen.

While Windows supports the Encrypting File System (EFS), you can’t use EFS to protect access to
sensitive areas of the system, such as the registry hive files. For example, if Group Policy allows you

164 Windows Internals, Sixth Edition, Part 2

to log on to your laptop even when you’re not connected to a domain, then your domain credential
verifiers are cached in the registry, so an attacker could use tools to obtain your domain account pass-
word hash and use that to try to obtain your password with a password cracker. The password would
provide access to your account and EFS files (assuming you didn’t store the EFS key on a smartcard).
To make it easy to encrypt the entire boot volume, including all its system files and data, Windows
includes a full-volume encryption feature called Windows BitLocker Drive Encryption.

BitLocker operates in two modes:

 ■ Standard Protects the fixed disks in a system.

 ■ BitLocker To Go Protects removable disks formatted using the FAT file system, including
USB flash disks.

In standard mode, BitLocker helps prevent unauthorized access to data on lost or stolen computers
by combining two major data-protection procedures:

 ■ Encrypting the entire Windows operating system volume on the hard disk.

 ■ Verifying the integrity of early boot components and boot configuration data.

The most secure implementation of BitLocker leverages the enhanced security capabilities of
a Trusted Platform Module (TPM) version 1.2. The TPM is a cryptographic coprocessor installed
in many newer computers by computer manufacturers. The TPM implements a variety of func-
tions, including public key cryptography. Information on the operation of the TPM can be found at
http://www.Trusted ComputingGroup.org/. The TPM works with BitLocker to help protect user data
and to ensure that a computer running Windows has not been tampered with while the system was
offline. On computers that do not have a TPM version 1.2, BitLocker can still encrypt the Windows
operating system volume. However, this implementation requires the user to insert a USB startup
flash disk to start the computer or resume from hibernation, and it does not provide the full offline
and preboot protection that a TPM-enabled system does.

BitLocker’s architecture provides functionality and management mechanisms in both kernel mode
and user mode. At a high level, the main components of BitLocker are:

 ■ The Trusted Platform Module driver (%SystemRoot%\System32\Drivers\Tpm.sys), a kernel-
mode driver that accesses the TPM chip.

 ■ The TPM Base Services, which include a user-mode service that provides user-mode access
to the TPM (%SystemRoot%\System32\Tbssvc.dll), a WMI provider, and an MMC snap-in for
configuration (%SystemRoot%\System32\Tpm.msc).

 ■ The BitLocker-related code in the Boot Manager (\Bootmgr, on the system volume) that au-
thenticates access to the disk, handles boot-related unlocking, and allows recovery.

 ■ The BitLocker filter driver (%SystemRoot%\System32\Drivers\Fvevol.sys), a kernel-mode filter
driver that performs on-the-fly encryption and decryption of the volume.

 ■ The BitLocker WMI provider and management script, which allow configuration and scripting
of the BitLocker interface.

http://www.TrustedComputingGroup.org/

 CHAPTER 9 Storage Management 165

In the next sections, we’ll take a look at these various components and the services they provide.
Figure 9-19 provides an overview of the BitLocker architecture.

Camera

TPM

User

Kernel

BitLocker
command line tool

(manage-bde)

TPM
MMC snap-in

BitLocker
Recovery
Wizard

BitLocker
Notify
applet

BitLocker
Setup

Wizard

TPM
Initialization

Wizard

TPM WMI
provider

TPM Base Services
(TBS)

TPM.sys

BitLocker WMI
provider

BitLocker fIlter driver
(fvevol.sys)

Volume manager

File system

I/O manager

Key ring

Shared memory
page

Disk

Boot Manager/
OS loader
(pre-OS)

Active
Directory

Partition manager

FIGURE 9-19 BitLocker architecture

Encryption Keys
BitLocker encrypts the contents of the volume using a full-volume encryption key (FVEK) and cryp-
tography that uses the AES128-CBC (by default) or AES256-CBC algorithm, with a Microsoft-specific
extension called a diffuser. In turn, the FVEK is encrypted with a volume master key (VMK) and stored
in a special metadata region of the volume. Securing the volume master key is an indirect way of pro-
tecting data on the volume: the addition of the volume master key allows the system to be rekeyed
easily when keys upstream in the trust chain are lost or compromised. This ability to rekey the system
saves the time and expense of decrypting and re-encrypting the entire volume again.

166 Windows Internals, Sixth Edition, Part 2

When you configure BitLocker, you have a number of options for how the VMK will be protected,
depending on the system’s hardware capabilities. If the system has a TPM, you can encrypt the VMK
with the TPM, have the system encrypt the VMK using a key stored in the TPM and one stored on
a USB flash device, encrypt the VMK using a TPM-stored key and a PIN you enter when the system
boots, or encrypt the VMK with a combination of both a PIN and a USB flash device. For systems that
don’t have a compatible TPM, BitLocker offers the option of encrypting the VMK using a key stored
on an external USB flash device.

In any case you’ll need an unencrypted 100-MB NTFS system volume, the volume where the Boot
Manager and BCD are stored, because the MBR and boot-sector code are legacy code, run in 16-bit
real mode (as discussed in Chapter 13), and do not have the ability to perform any on-the-fly decryp-
tion of the same volume they’re running on. This means that these components must remain on an
unencrypted volume so that the BIOS can access them and they can run and locate Bootmgr.

As covered earlier in this chapter, the system volume is created automatically when Windows is
installed on a system, regardless of whether or not you are using BitLocker. This places the system
volume at the beginning of the disk (the first partition), which keeps the rest of the disk contiguous.

Figure 9-20 and Table 9-1 summarize the various ways in which the VMK can be generated.

TABLE 9-1 VMK Sources

Source Identifies Security User Impact

TPM only What it is Protects against software attacks,
but vulnerable to hardware
attacks.

None

TPM + PIN What it is + What you know Adds protection against most
hardware attacks as well.

User must enter PIN
each boot

TPM + USB key What it is + What you have Fully protects against hardware
attacks, but vulnerable to stolen
USB key.

User must insert USB
key each boot

TPM + USB key
+ PIN

What it is + What you have +
What you know

Maximum level of protection. User must enter PIN
and insert USB key
each boot

USB key only What you have Minimum level of protection
for systems without TPM, but
vulnerable to stolen key.

User must insert USB
key each boot

Finally, BitLocker also provides a simple encryption-based authentication scheme to ensure the
integrity of the drive contents. Although AES encryption is currently considered uncrackable through
brute-force attacks and is one of the most widely used algorithms in the industry today, it doesn’t
provide a way to ensure that modified encrypted data can’t in some way be modified such that it is
translated back to plaintext data that an attacker could make use of. For example, by precise ma-
nipulation of the encrypted data, a hacker might be able to cause a certain logon function to behave
differently and allow all logons.

 CHAPTER 9 Storage Management 167

PIN
(4–20 digits)

TPM SRK RSA
2048 bit

TPM SRK RSA
2048 bit

TPM SRK RSA
2048 bit

Startup key
256 bit

Clear key
256 bit

Recovery key
256 bit

Key
sequence

Intermediate
key 1

256 bit

Intermediate
key 2

256 bit

Intermediate
key 2

256 bit

Intermediate
key 1

256 bit

Clear salt
128 bit

Key
stretchEncode

XOR

SHA256 +

AES

AuthData

PCR config

PCR configuration

PCR configuration

RSA

RSA

TPM

TPM and PIN

TPM and startup key

Clear key

Startup key or recovery key

Recovery password

Volume
master

key
256 bit

Full volume
encryption key

256 bit

RSA

AES

AES

AES

AES

AES

FIGURE 9-20 BitLocker key generation

To protect the system against this type of attack, BitLocker includes a diffuser algorithm called
Elephant. The job of the diffuser is to make sure that even a single bit change in the ciphertext
(encrypted data) will result in a totally random plaintext data output, ensuring that the modified
executable code will most likely arbitrarily crash instead of performing a specific malicious function.
Additionally, when combined with code integrity (see Chapter 3 in Part 1 for more information on

168 Windows Internals, Sixth Edition, Part 2

code integrity), the diffuser will also cause core system files to fail their signature checks, rendering
the system unbootable.

Trusted Platform Module (TPM)
A TPM is a tamper-resistant processor mounted on a motherboard that provides various crypto-
graphic services such as key and random number generation and sealed storage. Support for TPM in
Windows reaches beyond supporting BitLocker, however. Through the TPM Base Services (TBS), other
applications on the system can also take advantage of compatible hardware TPM chips and use WMI
to administer and script access to the TPM. For example, Windows uses a TPM as an additional seed
into random number generation, which enhances the overall security of all applications on the system
that depend on strong security or hashing algorithms (including mechanisms such as logons).

Although your computer may have a TPM, that does not necessarily mean that Windows will be
able to support it. There are two requirements for Windows TPM support:

 ■ The computer must have a TPM version 1.2 or higher.

 ■ The computer must have a Trusted Computing Group (TCG)–compliant BIOS. The BIOS estab-
lishes a chain of trust for the preboot environment and must include support for TCG-specific
Static Root of Trust Measurement (SRTM).

The easiest way to determine whether your machine contains a compatible TPM is to run the TPM
MMC snap-in (%SystemRoot%\System32\Tpm.msc). If Windows detects a compatible TPM, you should
see a window similar to the one shown in Figure 9-21. Otherwise, an error message will appear.

As stated earlier, BitLocker can be configured to use the TPM to perform system integrity checks
on critical early boot components. At a high level, the TPM collects and stores measurements from
multiple early boot components and boot configuration data to create a system identifier (much like
a fingerprint) for that computer. It stores each part of this fingerprint as a hash in a 160-bit platform
configuration register (PCR). BitLocker uses the hash of these functions to seal the VMK, which is the
key that BitLocker uses to protect other keys, including the FVEKs used to encrypt volumes.

If the early boot components are changed or tampered with, such as by changing the BIOS or
MBR, changing an operating system file, or moving the hard disk to a different computer, the TPM
prevents BitLocker from unsealing the VMK, and Windows enters a key recovery mode (described
later in the chapter). If the PCR values match those used to seal the key, the system is deemed to be
tamper free, and it unseals the key, and BitLocker can decrypt the keys used to encrypt the volumes.
Once the keys are unsealed, Windows starts and system protection becomes the responsibility of the
user and the operating system.

 CHAPTER 9 Storage Management 169

FIGURE 9-21 The TPM MMC snap-in after initializing the TPM.

A platform validation profile supported by TPMs consists of at least 16, and as many as 24, PCRs
that contain additional information and only reset after a TPM reset (implying a machine reboot).
Each PCR is associated with components that run when an operating system starts, as shown in
Table 9-2.

TABLE 9-2 Platform Configuration Registers

Index Meaning

0 Core Root of Trust of Measurement (CRTM), BIOS, and platform extensions

1 Platform and motherboard configuration and data (BIOS data and CPU microcode)

2 Option ROM code

3 Option ROM configuration and data

4 Master Boot Record (MBR) code

5 Master Boot Record (MBR) partition table

6 Power-state transition and wake events

7 Computer manufacturer-specific

8 First NTFS boot sector (volume boot record)

9 Remaining NTFS boot sectors (volume boot record)

10 Boot Manager

170 Windows Internals, Sixth Edition, Part 2

Index Meaning

11 BitLocker Access Control

12 Defined for use by the static operating system

13 Defined for use by the static operating system

14 Defined for use by the static operating system

15 Defined for use by the static operating system

16 Used for debugging

17 Dynamic CRTM

18 Platform defined

19 Used by a trusted operating system

20 Used by a trusted operating system

21 Used by a trusted operating system

22 Used by a trusted operating system

23 Application support

By default, BitLocker uses registers 0, 2, 4, 5, 8, 9, 10, and 11 to seal the VMK. The set of PCRs used
by BitLocker is known as the Platform Validation Profile, which can be configured via Group Policy
(Computer Configuration\Administrative Templates\Windows Components\BitLocker Drive Encryp-
tion\Operating System Drives\Configure TPM platform validation profile) and depends on the security
requirements of your organization, as shown in Table 9-2. PCR 11 must be selected to enable Bit-
Locker protection.

Note If you change anything protected by the PCRs specified in your Platform Validation
Profile, your system will not boot without either the recovery key or recovery password.
For example, if you need to update the BIOS on your system, suspend BitLocker (using the
BitLocker Drive Encryption Control Panel applet) before performing the update.

BitLocker Boot Process
The actual measurements stored in the TPM PCRs are generated by the TPM itself, the TPM BIOS, and
Windows. When the system boots, the TPM does a self-test, following which the CRTM in the BIOS
measures its own hashing and PCR loading code and writes the hash to the first PCR of the TPM. It
then hashes the BIOS and stores that measurement in the first PCR as well. The BIOS in turn hashes
the next component in the boot sequence, the MBR of the boot drive, and this process continues until
the operating system loader is measured. Each subsequent piece of code that runs is responsible for
measuring the code that it loads and for storing the measurement in the appropriate PCR in the TPM.

Finally, when the user selects which operating system to boot, the Boot Manager (Bootmgr) reads
the encrypted VMK from the volume and asks the TPM to unseal it. As described previously, only if all
the measurements are the same as when the VMK was sealed, including the optional PIN (password),

 CHAPTER 9 Storage Management 171

will the TPM successfully decrypt the VMK. This process not only guarantees that the machine and
system files are identical to the applications or operating systems that are allowed to read the drive,
but also verifies the uniqueness of the operating system installation. For example, even another iden-
tical Windows operating system installed on the same machine will not get access to the drive be-
cause Bootmgr takes an active role in protecting the VMK from being passed to an operating system
to which it doesn’t belong (by generating a MAC hash of several system configuration options).

You can think of this scheme as a verification chain, where each component in the boot sequence
describes the next component to the TPM. In effect, the TPM acts like a safe with 12 combination
dials, with each dial containing 2,160 numbers. Only if all the PCRs match the original ones given
to it when BitLocker was enabled will the TPM divulge its secret. BitLocker therefore protects the
encrypted data even when the disk is removed and placed in another system, the system is booted
using a different operating system, or the unencrypted files on the boot volume are compromised.
Figure 9-22 shows the various steps of the preboot process up until Winload begins loading the oper-
ating system.

Pre-OS

Start OS

BIOS

MBR

Boot sector

OS loader

Static OS All boot blobs
unlocked

Volume blob of
target OS unlocked

TPM Init

Boot Manager

Boot block

FIGURE 9-22 BitLocker preboot process

The administrator may need to temporarily suspend BitLocker protection because a component
specified in the Platform Validation Profile needs to be changed (for example, updating BIOS, chang-
ing a drive’s partition table, installing another operating system on the same disk, and so on). The Bit-
Locker Drive Encryption Control Panel applet provides a simple mechanism for suspending BitLocker
(click Suspend Protection for the volume). When BitLocker is suspended, the contents of the volume
are still encrypted, but the volume master key is encrypted with a symmetric clear key, which is writ-
ten to the volume’s BitLocker metadata. When a volume is mounted, BitLocker automatically looks for
a clear key and will be able to decrypt the contents of the volume. When BitLocker protection on a
volume is resumed, the clear key is removed from the metadata.

172 Windows Internals, Sixth Edition, Part 2

Note Exposing the volume master key even for a brief period of time is a security risk be-
cause an attacker could access the volume master key and FVEK when these keys were ex-
posed by the clear key, so do not leave a volume suspended for any longer than absolutely
necessary.

BitLocker Key Recovery
For recovery purposes, BitLocker uses a recovery key (stored on a USB device) or a recovery password
(numerical password), as shown earlier in Figure 9-20. BitLocker creates the recovery key and recovery
password during initialization. A copy of the VMK is encrypted with a 256-bit AES-CCM key that can
be computed with the recovery password and a salt stored in the metadata block. The password is a
48-digit number, eight groups of 6 digits, with three properties for checksumming:

 ■ Each group of 6 digits must be divisible by 11. This check can be used to identify groups mis-
typed by the user.

 ■ Each group of 6 digits must be less than 216 * 11. Each group contains 16 bits of key informa-
tion. The eight groups, therefore, hold 128 bits of key.

 ■ The sixth digit in each group is a checksum digit.

Inserting the recovery key or typing the recovery password enables an authorized user to regain
access to the encrypted volume in the event of an attempted security breach or system failure. Figure
9-23 displays the prompt requesting the user to type the recovery password.

FIGURE 9-23 BitLocker recovery screen

 CHAPTER 9 Storage Management 173

The recovery key or password is also used in cases when parts of the system have changed, result-
ing in different measurements. One common example of this is when a user has modified the BCD,
such as by adding the debug option. Upon reboot, Bootmgr will detect the change and ask the user
to validate it by inputting the recovery key. For this reason, it is extremely important not to lose this
key, because it isn’t only used for recovery but for validating system changes. Another application
of the recovery key is for foreign volumes. Foreign volumes are operating system volumes that were
BitLocker-enabled on another computer and have been transferred to a different Windows computer.
An administrator can unlock these volumes by entering the recovery password.

Full-Volume Encryption Driver
Unlike EFS, which is implemented by the NTFS file system driver and operates at the file level, Bit-
Locker encrypts at the volume level using the full-volume encryption (FVE) driver (%SystemRoot%\
System32\Drivers\Fvevol.sys), as shown in Figure 9-24.

User mode

Kernel mode

Application

NTFS

FVE filter driver

Volume manager

Disk driver

System volume

FIGURE 9-24 BitLocker filter driver implementation

FVE is a filter driver, so it automatically sees all the I/O requests sent to the volume, encrypting
blocks as they’re written and decrypting them as they’re read using the FVEK assigned to the volume
when it’s initially configured to use BitLocker. Because the encryption and decryption happen beneath
NTFS in the I/O system, the volume appears to NTFS as if it’s unencrypted, and NTFS is not aware that
BitLocker is enabled. If you attempt to read data from the volume from outside Windows, however, it
appears to be random data.

BitLocker also uses an extra measure to make plaintext attacks in which an attacker knows the con-
tents of a sector and uses that information to try and derive the key used to encrypt it more difficult.
By combining the FVEK with the sector number to create the key used to encrypt a particular sector,

174 Windows Internals, Sixth Edition, Part 2

and passing the encrypted data through the Elephant diffuser, BitLocker ensures that every sector is
encrypted with a slightly different key, resulting in different encrypted data for different sectors even
if their contents are identical.

BitLocker encrypts every sector (including unallocated sectors) on a volume with the exception of
the first sector and three unencrypted metadata blocks containing the encrypted VMK and other data
used by BitLocker. The metadata is surfaced in the volume’s System Volume Information directory.

BitLocker Management
BitLocker provides a variety of administrative interfaces, each suited to a particular role or task. It
provides a WMI interface (and works with the TBS—TPM Base Services—WMI interface) for program-
matic access to the BitLocker functionality, a set of group policies that allow administrators to define
the behavior across the network or a series of machines, integration with Active Directory, and a
command-line management program (%SystemRoot%\System32\Manage-bde.exe).

Developers and system administrators with scripting familiarity can access the Win32_Tpm and
Win32_EncryptableVolume interfaces to protect keys, define authentication methods, define which
PCR registers are used as part of the BitLocker Platform Validation Profile, and manually initiate en-
cryption or decryption of an entire volume. The Manage-bde.exe program, located in %SystemRoot%\
System32, uses these interfaces to allow command-line management of the BitLocker service.

On systems that are joined to a domain, the key for each machine can automatically be backed up
as part of a key escrow service, allowing IT administrators to easily recover and gain access to ma-
chines that are part of the corporate network. Additionally, various group policies related to BitLocker
can be configured. You can access these by using the Local Group Policy Editor, under the Computer
Configuration, Administrative Templates, Windows Components, BitLocker Drive Encryption entry. For
example, Figure 9-25 displays the option for enabling the Active Directory key backup functionality.

If a TPM chip is present on the system, additional options (such as TPM Key Backup) can be ac-
cessed from the Trusted Platform Module Services entry under Windows Components.

To ensure easy access to corporate data, the Data Recovery Agent (DRA) feature has been added
to BitLocker. The DRA is most commonly configured via Group Policy and allows a certificate to be
specified as a key protector. This allows anyone holding that certificate (or a smartcard containing
the certificate) to access (or unlock) a BitLocker-protected volume. See http://technet.microsoft.com/
en-us/library/dd875560(WS.10).aspx for more information on configuring DRA.

http://technet.microsoft.com/en-us/library/dd875560(WS.10).aspx
http://technet.microsoft.com/en-us/library/dd875560(WS.10).aspx

 CHAPTER 9 Storage Management 175

FIGURE 9-25 BitLocker Group Policy settings

BitLocker To Go
USB flash disks have become a popular method for transporting data because of their small size, low
cost, and large capacity. However, it is precisely these qualities that make USB flash disks a security
threat. Gigabytes of confidential information can be stored on a device the size of an AA battery that
is easily lost or stolen. Standard BitLocker only encrypts NTFS volumes, and all USB flash disks use
the FAT file system by default. BitLocker To Go (BTG) now brings the security of BitLocker full-volume
encryption to disk devices using the FAT file system. BTG-encrypted flash disks can be created only
on the Enterprise, Ultimate, or Server editions of Windows. They can be read on any edition—even
on older operating systems such as Windows XP and Windows Vista—but can be written only on
Windows 7 or Windows Server 2008/R2. To ensure that BTG is used, Group Policy can be used to
restrict writing to removable media unless it is protected with BTG.

Like standard BitLocker, BTG encrypts the volume using AES, the decryption key is encrypted with
multiple key protectors, and a recovery key can be saved to a file or escrowed through Active Direc-
tory. Unlike standard BitLocker, BTG does not make use of the TPM or public key cryptography. One
of the key protectors may be either a user-supplied password or a smartcard.

BTG can be enabled in Explorer (right-click on the flash disk, and select Turn On BitLocker) or from
the BitLocker Control Panel applet. Once it’s enabled, BTG will create a FAT32 discovery volume con-
taining the files shown in Figure 9-26. The purpose of the discovery volume is to provide the stand-
alone BitLockerToGo application and its MUI files (user interface strings in various languages) and
metadata to the host operating system.

176 Windows Internals, Sixth Edition, Part 2

FIGURE 9-26 BitLocker To Go files

The encrypted volume is implemented as one or more cover files, named COV 0000. ER to COV
9999. ER, each of which can have a maximum size of 4 GB, as shown in Figures 9-26 and 9-27. Any ex-
tra space left on the volume will be filled with padding files to prevent any additional files from being
added to the discovery volume.

Discovery volume

Metadata

Encrypted virtual volume

COV 0000. ER COV 0001. ER COV 0002. ER

BitLockerToGo
application files

FIGURE 9-27 BitLocker To Go layout

When the BitLockerToGo application mounts the encrypted virtual volume, the discovery volume
will be hidden and is not accessible. The virtual volume may then be accessed like any other disk.

 CHAPTER 9 Storage Management 177

Volume Shadow Copy Service

The Volume Shadow Copy Service (VSS) is a built-in Windows mechanism that enables the creation of
consistent, point-in-time copies of data, known as shadow copies or snapshots. VSS coordinates with
applications, file-system services, backup applications, fast-recovery solutions, and storage hardware
to produce consistent shadow copies.

Shadow Copies
Shadow copies are created through one of two mechanisms—clone and copy-on-write. The VSS
provider (described in more detail later) determines the method to use. (Providers can implement the
snapshot as they see fit. For example, certain hardware providers will take a hybrid approach: clone
first, and then copy-on-write.)

Clone Shadow Copies
A clone shadow copy, also called a split mirror, is a full duplicate of the original data on a volume, cre-
ated either by software or hardware mirroring. Software or hardware keeps a clone synchronized with
the master copy until the mirror connection is broken in order to create a shadow copy. At that mo-
ment, the live volume (also called the original volume) and the shadow volume become independent.
The live volume is writable and still accepts changes, but the shadow volume is read-only and stores
contents of the live volume at the time it was created.

Copy-on-Write Shadow Copies
A copy-on-write shadow copy, also called a differential copy, is a differential, rather than a full, du-
plicate of the original data. Similar to a clone copy, differential copies can be created by software or
hardware mechanisms. Whenever a change is made to the live data, the block of data being modified
is copied to a “differences area” associated with the shadow copy before the change is written to the
live data block. Overlaying the modified data on the live data creates a view of the live data at the
point in time when the shadow copy was created.

Note The in-box VSS provider that ships with Windows supports only copy-on-write
 shadow copies.

VSS Architecture
VSS (%SystemRoot%\System32\Vssvc.exe) coordinates VSS writers, VSS providers, and VSS request-
ors. A VSS writer is a software component that enables shadow-copy-aware applications, such as
Microsoft SQL Server, Microsoft Exchange Server, and Active Directory, to receive freeze and thaw
notifications to ensure that backup copies of their data files are internally consistent. Implementing
a VSS provider allows an ISV or IHV with unique storage schemes to integrate with the shadow copy
service. For instance, an IHV with mirrored storage devices might define a shadow copy as the frozen

178 Windows Internals, Sixth Edition, Part 2

half of a split mirrored volume. VSS requestors are the applications that request the creation of vol-
ume shadow copies and include backup utilities and the Windows System Restore feature. Figure 9-28
shows the relationship between the VSS shadow copy service, writers, providers, and requestors.

Volumes

System
provider

Software
provider

Hardware
provider

Writers Volume Shadow Copy Service Requestor

FIGURE 9-28 VSS architecture

VSS Operation
Regardless of the specific purpose for the copy and the application making use of VSS, shadow copy
creation follows the same steps, shown in Figure 9-29. First, a requestor sends a command to VSS to
enumerate writers, gather metadata, and prepare for the copy (1). VSS asks each writer to return in-
formation on its restore capabilities and an XML description of its backup components (2). Next, each
writer prepares for the copy in its own appropriate way, which might include completing outstanding
transactions and flushing caches. A prepare command is sent to all involved providers as well (3).

At this point, VSS initiates the commit phase of the copy (4). VSS instructs each writer to quiesce its
data and temporarily freeze all write I/O requests (read requests are still passed through). VSS then
flushes volume file system buffers and requests that the volume file system drivers freeze their I/O by
sending them the IOCTL_VOLSNAP_FLUSH_AND_HOLD_WRITES device I/O control command, ensur-
ing that all the file system metadata is written out to disk consistently (5). Once the system is in this
state, VSS sends a command telling the provider to perform the actual copy creation (6). VSS allows
up to 10 seconds for the creation, after which it aborts the operation if it is not already completed
in this interval. After the provider has created the shadow copy, VSS asks the file systems to thaw, or
resume write I/O operations, by sending them the IOCTL_VOLSNAP_RELEASE_WRITES command, and
it releases the writers from their temporary freeze. All queued write I/O operations then proceed (7).

VSS next queries the writers to confirm that I/O operations were successfully held during the cre-
ation to ensure that the created shadow copy is consistent. If the shadow copy is inconsistent as the
result of file system damage, the shadow copy is deleted by VSS. In other cases of writer failure, VSS
simply notifies the requestor. At this point, the requestor can retry the procedure from (1) or wait for
user action. If the copy was created consistently, VSS tells the requestor the location of the copy.

 CHAPTER 9 Storage Management 179

An optional final step is to make the snapshot device(s) writable, such that interested writers such
as TxF (transactional NTFS) can perform additional recovery actions on the snapshot device itself.
After this recovery step, the snapshot is sealed read-only and handed out to the requestor.

Note VSS also allows the surfacing of shadow copy devices on a different server—called
transportable shadow copies.

Software
provider

Hardware
provider

WritersVolume Shadow
Copy ServiceRequestor

2

7

1
4
5

6 3

FIGURE 9-29 VSS shadow copy creation

Shadow Copy Provider
The Shadow Copy Provider (%SystemRoot%\System32\Drivers\Swprov.dll) implements software-
based differential copies with the aid of the Volume Shadow Copy Driver (Volsnap—%SystemRoot%\
System32\Drivers\Volsnap.sys). Volsnap is a storage filter driver that resides between file system
drivers and volume manager drivers (the drivers that present views of the sectors that represent a
volume) so that the I/O system forwards it I/O operations directed at a volume.

When asked by VSS to create a shadow copy, Volsnap queues I/O operations directed at the target
volume and creates a differential file in the volume’s System Volume Information directory to store
volume data that subsequently changes. Volsnap also creates a virtual volume through which applica-
tions can access the shadow copy. For example, if a volume’s name in the object manager namespace
is \Device\HarddiskVolume1, the shadow volume would have a name like \Device\HarddiskVolume-
ShadowCopyN, where N is a unique ID.

Whenever Volsnap sees a write operation directed at a live volume, it reads a copy of the sectors
that will be overwritten into a paging file—a backed memory section that’s associated with the cor-
responding shadow copy. It services read operations directed at the shadow copy of modified sectors

180 Windows Internals, Sixth Edition, Part 2

from this memory section, and it services reads to unmodified areas by reading from the live volume.
Because the backup utility won’t save the paging file or the contents of the system-managed System
Volume Information directory located on every volume (which includes shadow copy differential files),
Volsnap uses the defragmentation API to determine the location of these files and directories and
does not record changes to them.

Figure 9-30 demonstrates the behavior of applications accessing a volume and a backup applica-
tion accessing the volume’s shadow volume copy. When an application writes to a sector after the
snapshot time, the Volsnap driver makes a backup copy, like it has for sectors a, b, and c of volume C:
in the figure. Subsequently, when an application reads from sector c, Volsnap directs the read to vol-
ume C:, but when a backup application reads from sector c, Volsnap reads the sector from the snap-
shot. When a read occurs for any unmodified sector, such as d, Volsnap routes the read to volume C:.

Note Volsnap avoids copy-on-write operations for the paging file, hibernation file, and
the difference data stored in the System Volume Information folder. All other files will get
copy-on-write protection.

Shadow
volume

C:
C:

Backup application Application

File system driver

Volsnap.sys

a b c

a d b c...

Backup read of sector c

Application read of sector c

Snapshot

C:

FIGURE 9-30 Volsnap operation

 CHAPTER 9 Storage Management 181

EXPERIMENT: Looking at Microsoft Shadow Copy Provider Filter
Device Objects
You can see the Microsoft Shadow Copy Provider driver’s device objects attached to each vol-
ume device on a Windows system in a kernel debugger. Every system has at least one volume,
and the following command displays the device object of the first volume on a system:

1: kd> !devobj \device\harddiskvolume1
Device object (88cfd908) is for:
 HarddiskVolume1 \Driver\volmgr DriverObject 8861a550
Current Irp 00000000 RefCount 3274 Type 00000007 Flags 00201150
Vpb 88cfc3f8 Dacl 8bbcf7ec DevExt 88cfd9c0 DevObjExt 88cfdaa8 Dope
 88cfdb38 DevNode 88cfc008
ExtensionFlags (0x00000800) DOE_DEFAULT_SD_PRESENT
Characteristics (0000000000)
AttachedDevice (Upper) 88cfd3b8 \Driver\fvevol
Device queue is not busy.
1: kd> !devstack 88cfd908
 !DevObj !DrvObj !DevExt ObjectName
 88d015a0 \Driver\volsnap 88d01658
 88cfc478 \Driver\rdyboost 88cfc530
 88cfd3b8 \Driver\fvevol 88cfd470
> 88cfd908 \Driver\volmgr 88cfd9c0 HarddiskVolume1
!DevNode 88cfc008 :
 DeviceInst is "STORAGE\Volume\{53ffaec4-5e9c-11e1-a633-806e6f6e6963}#0000000000100000"
 ServiceName is "volsnap"

The address of HarddiskVolume1’s device object (88cfd908) is passed to the !devstack com-
mand, which displays the device objects layered on top of it.

Uses in Windows
Several features in Windows make use of VSS, including Backup, System Restore, Previous Versions,
and Shadow Copies for Shared Folders. We’ll look at some of these uses and describe why VSS is
needed and which VSS functionality is applicable to the applications.

Backup
A limitation of many backup utilities relates to open files. If an application has a file open for exclusive
access, a backup utility can’t gain access to the file’s contents. Even if the backup utility can access an
open file, the utility runs the risk of creating an inconsistent backup. Consider an application that up-
dates a file at its beginning and then at its end. A backup utility saving the file during this operation
might record an image of the file that reflects the start of the file before the application’s modification
and the end after the modification. If the file is later restored the application might deem the entire
file corrupt because it might be prepared to handle the case where the beginning has been modified
and not the end, but not vice versa. These two problems illustrate why most backup utilities skip open
files altogether.

182 Windows Internals, Sixth Edition, Part 2

EXPERIMENT: Viewing Shadow Volume Device Objects
You can see the existence of shadow volume device objects in the object manager namespace
by starting the Windows backup application (under System Tools in the Accessories folder of
the Start menu), and then running WinObj to see the objects in the \Device subdirectory, as
shown here.

Instead of opening files to back up on the live volume, the backup utility opens them on the
shadow volume. A shadow volume represents a point-in-time view of a volume, so by relying on the
shadow copy facility, the backup utility overcomes both the backup problems related to open files.

Previous Versions and System Restore
The Windows Previous Versions feature also integrates support for automatically creating volume
snapshots, typically one per day, that you can access through Explorer (by opening a Properties
dialog box) using the same interface used by Shadow Copies for Shared Folders. This enables you to
view, restore, or copy old versions of files and directories that you might have accidentally modified
or deleted.

Windows also takes advantage of volume snapshots to unify user and system data-protection
mechanisms and avoid saving redundant backup data. When an application installation or configuration

 CHAPTER 9 Storage Management 183

change causes incorrect or undesirable behaviors, you can use System Restore to restore system
files and data to their state as it existed when a restore point was created. When you use the System
Restore user interface in Windows 7 to go back to a restore point, you’re actually copying earlier ver-
sions of modified system files from the snapshot associated with the restore point to the live volume.

EXPERIMENT: Navigating Through Previous Versions
As you saw earlier, each time Windows creates a new system restore point, this results in a
shadow copy being taken for that volume. You can use Windows Explorer to navigate through
time and see older copies of each drive being shadowed. To see a list of all previous versions of
an entire volume, right-click on a partition, such as C:, and select Restore Previous Versions. You
will see a dialog box similar to the one shown here.

Pick any of the versions shown, and then click the Open button. This opens a new Explorer
window displaying that volume at the point in time when the snapshot was taken. The path
shown will include localhost\C$\<volume label> (<drive>:) (<date>, <time>), which is how
Explorer virtualizes the different shadow copies taken. (C$ is the local hidden default share that
Windows networking uses; for more information, see Chapter 7, “Networking,” in Part 1.) Note
that Explorer will normally display a path as a friendly name in its address bar. To see the actual
path, click once within the address bar.

Note If your disk is drastically low on free space, the space consumed by the
shadow copy will be reclaimed, in which case you might not have any previous
versions.

184 Windows Internals, Sixth Edition, Part 2

Internally, each volume shadow copy shown isn’t a complete copy of the drive, so it doesn’t du-
plicate the entire contents twice, which would double disk space requirements for every single copy.
Previous Versions uses the copy-on-write mechanism described earlier to create shadow copies. For
example, if the only file that changed between time A and time B, when a volume shadow copy was
taken, is New.txt, the shadow copy will contain only New.txt. This allows VSS to be used in client sce-
narios with minimal visible impact on the user, since entire drive contents are not duplicated and size
constraints remain small.

Although shadow copies for previous versions are taken daily (or whenever a Windows Update or
software installation is performed, for example), you can manually request a copy to be taken. This
can be useful if, for example, you’re about to make major changes to the system or have just copied
a set of files you want to save immediately for the purpose of creating a previous version. You can
access these settings by right-clicking Computer on the Start Menu or desktop, selecting Properties,
and then clicking System Protection. You can also open Control Panel, click System And Maintenance,
and then click System. The dialog box shown in Figure 9-31 allows you to select the volumes on which
to enable System Restore (which also affects previous versions) and to create an immediate restore
point and name it.

FIGURE 9-31 System Restore and Previous Versions configuration

 CHAPTER 9 Storage Management 185

EXPERIMENT: Mapping Volume Shadow Device Objects
Although you can browse previous versions by using Explorer, this doesn’t give you a per-
manent interface through which you can access that view of the drive in an application-
independent, persistent way. You can use the Vssadmin utility (%SystemRoot%\System32\
Vssadmin.exe) included with Windows to view all the shadow copies taken, and you can then
take advantage of symbolic links to map a copy. This experiment will show you how.

1. List all shadow copies available on the system by using the list shadows command:

vssadmin list shadows

You’ll see output that resembles the following. Each entry is either a previous version
copy or a shared folder with shadow copies enabled.

vssadmin 1.1 - Volume Shadow Copy Service administrative command-line tool
(C) Copyright 2001-2005 Microsoft Corp.

Contents of shadow copy set ID: {dfe617b7-ef2b-4280-9f4e-ddf94c2ccfac}
 Contained 1 shadow copies at creation time: 8/27/2008 1:59:58 PM
 Shadow Copy ID: {f455a794-6b0c-49e4-9ae5-e54647fd1f31}
 Original Volume: (C:)\\?\Volume{f5f9d9c3-7466-11dd-9ba5-806e6f6e6963}\
 Shadow Copy Volume: \\?\GLOBALROOT\Device\HarddiskVolumeShadowCopy1
 Originating Machine: WIN-SL5V78KD01W
 Service Machine: WIN-SL5V78KD01W
 Provider: 'Microsoft Software Shadow Copy provider 1.0'
 Type: ClientAccessibleWriters
 Attributes: Persistent, Client-accessible, No auto release,
 Differential, Auto recovered

Contents of shadow copy set ID: {02dad996-e7b0-4d2d-9fb9-7e692be8fe3c}
 Contained 1 shadow copies at creation time: 8/29/2008 1:51:14 AM
 Shadow Copy ID: {79c9ee14-ca1f-4e46-b3f0-0dc98f8eb0d4}
 Original Volume: (C:)\\?\Volume{f5f9d9c3-7466-11dd-9ba5-806e6f6e6963}\
 Shadow Copy Volume: \\?\GLOBALROOT\Device\HarddiskVolumeShadowCopy2.
...

Note that each shadow copy set ID displayed in this output matches the C$ entries
shown by Explorer in the previous experiment (although the date and time may be
formatted differently), and the tool also displays the shadow copy volume, which cor-
responds to the shadow copy device objects that you can see with WinObj.

2. You can now use the Mklink.exe utility to create a directory symbolic link (for more
information on symbolic links, see Chapter 12), which will let you map a shadow copy
into an actual location. Use the /d flag to create a directory link, and specify a folder
on your drive to map to the given volume device object. Make sure to append the
path with a backslash (\) as shown here:

mklink /d c:\old \\?\GLOBALROOT\Device\HarddiskVolumeShadowCopy2\

186 Windows Internals, Sixth Edition, Part 2

3. Finally, with the Subst.exe utility, you can map the c:\old directory to a real volume us-
ing the command shown here:

subst g: c:\old

You can now access the old contents of your drive from any application by using the
c:\old path, or from any command-prompt utility by using the g:\ path—for example,
try dir g: to list the contents of your drive.

Conclusion

In this chapter, we’ve reviewed the on-disk organization, components, and operation of Windows disk
storage management. In Chapter 11, we’ll delve into the cache manager, an executive component
integral to the operation of file system drivers that mount the volume types presented in this chapter.
However, next, we’ll take a close look at an integral component of the Windows kernel: the memory
manager.

 187

C H A P T E R 1 0

Memory Management

In this chapter, you’ll learn how Windows implements virtual memory and how it manages the subset
of virtual memory kept in physical memory. We’ll also describe the internal structure and com-

ponents that make up the memory manager, including key data structures and algorithms. Before
examining these mechanisms, we’ll review the basic services provided by the memory manager and
key concepts such as reserved memory versus committed memory and shared memory.

Introduction to the Memory Manager

By default, the virtual size of a process on 32-bit Windows is 2 GB. If the image is marked specifically
as large address space aware, and the system is booted with a special option (described later in this
chapter), a 32-bit process can grow to be 3 GB on 32-bit Windows and to 4 GB on 64-bit Windows.
The process virtual address space size on 64-bit Windows is 7,152 GB on IA64 systems and 8,192 GB
on x64 systems. (This value could be increased in future releases.)

As you saw in Chapter 2, “System Architecture,” in Part 1 (specifically in Table 2-2), the maximum
amount of physical memory currently supported by Windows ranges from 2 GB to 2,048 GB, depend-
ing on which version and edition of Windows you are running. Because the virtual address space
might be larger or smaller than the physical memory on the machine, the memory manager has two
primary tasks:

 ■ Translating, or mapping, a process’s virtual address space into physical memory so that when
a thread running in the context of that process reads or writes to the virtual address space, the
correct physical address is referenced. (The subset of a process’s virtual address space that is
physically resident is called the working set. Working sets are described in more detail later in
this chapter.)

 ■ Paging some of the contents of memory to disk when it becomes overcommitted—that is,
when running threads or system code try to use more physical memory than is currently avail-
able—and bringing the contents back into physical memory when needed.

In addition to providing virtual memory management, the memory manager provides a core set
of services on which the various Windows environment subsystems are built. These services include
memory mapped files (internally called section objects), copy-on-write memory, and support for ap-
plications using large, sparse address spaces. In addition, the memory manager provides a way for a
process to allocate and use larger amounts of physical memory than can be mapped into the process

188 Windows Internals, Sixth Edition, Part 2

virtual address space at one time (for example, on 32-bit systems with more than 3 GB of physical
memory). This is explained in the section “Address Windowing Extensions” later in this chapter.

Note There is a Control Panel applet that provides control over the size, number, and loca-
tions of the paging files, and its nomenclature suggests that “virtual memory” is the same
thing as the paging file. This is not the case. The paging file is only one aspect of virtual
memory. In fact, even if you run with no page file at all, Windows will still be using virtual
memory. This distinction is explained in more detail later in this chapter.

Memory Manager Components
The memory manager is part of the Windows executive and therefore exists in the file Ntoskrnl.exe.
No parts of the memory manager exist in the HAL. The memory manager consists of the following
components:

 ■ A set of executive system services for allocating, deallocating, and managing virtual memory,
most of which are exposed through the Windows API or kernel-mode device driver interfaces

 ■ A translation-not-valid and access fault trap handler for resolving hardware-detected memory
management exceptions and making virtual pages resident on behalf of a process

 ■ Six key top-level routines, each running in one of six different kernel-mode threads in the Sys-
tem process (see the experiment “Mapping a System Thread to a Device Driver,” which shows
how to identify system threads, in Chapter 2 in Part 1):

• The balance set manager (KeBalanceSetManager, priority 16). It calls an inner routine, the
working set manager (MmWorkingSetManager), once per second as well as when free
memory falls below a certain threshold. The working set manager drives the overall mem-
ory management policies, such as working set trimming, aging, and modified page writing.

• The process/stack swapper (KeSwapProcessOrStack, priority 23) performs both process
and kernel thread stack inswapping and outswapping. The balance set manager and the
thread-scheduling code in the kernel awaken this thread when an inswap or outswap op-
eration needs to take place.

• The modified page writer (MiModifiedPageWriter, priority 17) writes dirty pages on the
modified list back to the appropriate paging files. This thread is awakened when the size of
the modified list needs to be reduced.

• The mapped page writer (MiMappedPageWriter, priority 17) writes dirty pages in mapped
files to disk (or remote storage). It is awakened when the size of the modified list needs
to be reduced or if pages for mapped files have been on the modified list for more than
5 minutes. This second modified page writer thread is necessary because it can generate
page faults that result in requests for free pages. If there were no free pages and there was
only one modified page writer thread, the system could deadlock waiting for free pages.

 CHAPTER 10 Memory Management 189

• The segment dereference thread (MiDereferenceSegmentThread, priority 18) is responsible
for cache reduction as well as for page file growth and shrinkage. (For example, if there is
no virtual address space for paged pool growth, this thread trims the page cache so that
the paged pool used to anchor it can be freed for reuse.)

• The zero page thread (MmZeroPageThread, base priority 0) zeroes out pages on the free
list so that a cache of zero pages is available to satisfy future demand-zero page faults.
Unlike the other routines described here, this routine is not a top-level thread function but
is called by the top-level thread routine Phase1Initialization. MmZeroPageThread never
returns to its caller, so in effect the Phase 1 Initialization thread becomes the zero page
thread by calling this routine. Memory zeroing in some cases is done by a faster func-
tion called MiZeroInParallel. See the note in the section “Page List Dynamics” later in this
chapter.

Each of these components is covered in more detail later in the chapter.

Internal Synchronization
Like all other components of the Windows executive, the memory manager is fully reentrant and sup-
ports simultaneous execution on multiprocessor systems—that is, it allows two threads to acquire re-
sources in such a way that they don’t corrupt each other’s data. To accomplish the goal of being fully
reentrant, the memory manager uses several different internal synchronization mechanisms, such as
spinlocks, to control access to its own internal data structures. (Synchronization objects are discussed
in Chapter 3, “System Mechanisms,” in Part 1.)

Some of the systemwide resources to which the memory manager must synchronize access
include:

 ■ Dynamically allocated portions of the system virtual address space

 ■ System working sets

 ■ Kernel memory pools

 ■ The list of loaded drivers

 ■ The list of paging files

 ■ Physical memory lists

 ■ Image base randomization (ASLR) structures

 ■ Each individual entry in the page frame number (PFN) database

Per-process memory management data structures that require synchronization include the
working set lock (held while changes are being made to the working set list) and the address space
lock (held whenever the address space is being changed). Both these locks are implemented using
pushlocks.

190 Windows Internals, Sixth Edition, Part 2

Examining Memory Usage
The Memory and Process performance counter objects provide access to most of the details about
system and process memory utilization. Throughout the chapter, we’ll include references to specific
performance counters that contain information related to the component being described. We’ve
included relevant examples and experiments throughout the chapter. One word of caution, how-
ever: different utilities use varying and sometimes inconsistent or confusing names when displaying
memory information. The following experiment illustrates this point. (We’ll explain the terms used in
this example in subsequent sections.)

EXPERIMENT: Viewing System Memory Information
The Performance tab in the Windows Task Manager, shown in the following screen shot, dis-
plays basic system memory information. This information is a subset of the detailed memory
information available through the performance counters. It includes data on both physical and
virtual memory usage.

The following table shows the meaning of the memory-related values.

Task Manager Value Definition

Memory bar histogram Bar/chart line height shows physical memory in use by Windows (not
available as a performance counter). The remaining height of the
graph is equal to the Available counter in the Physical Memory section,
described later in the table. The total height of the graph is equal to the
Total counter in that section. This represents the total RAM usable by
the operating system, and does not include BIOS shadow pages, device
memory, and so on.

 CHAPTER 10 Memory Management 191

Task Manager Value Definition

Physical Memory (MB): Total Physical memory usable by Windows

Physical Memory (MB): Cached Sum of the following performance counters in the Memory object:
Cache Bytes, Modified Page List Bytes, Standby Cache Core Bytes,
Standby Cache Normal Priority Bytes, and Standby Cache Reserve Bytes
(all in Memory object)

Physical Memory (MB):
Available

Amount of memory that is immediately available for use by the
operating system, processes, and drivers. Equal to the combined size of
the standby, free, and zero page lists.

Physical Memory (MB): Free Free and zero page list bytes

Kernel Memory (MB): Paged Pool paged bytes. This is the total size of the pool, including both free
and allocated regions

Kernel Memory (MB):
Nonpaged

Pool nonpaged bytes. This is the total size of the pool, including both
free and allocated regions

System: Commit (two numbers
shown)

Equal to performance counters Committed Bytes and Commit Limit,
respectively

To see the specific usage of paged and nonpaged pool, use the Poolmon utility, described in
the “Monitoring Pool Usage” section.

The Process Explorer tool from Windows Sysinternals (http://www.microsoft.com/technet/
sysinternals) can show considerably more data about physical and virtual memory. On its main
screen, click View and then System Information, and then choose the Memory tab. Here is an
example display from a 32-bit Windows system:

We will explain most of these additional counters in the relevant sections later in this chapter.

http://www.microsoft.com/technet/sysinternals
http://www.microsoft.com/technet/sysinternals

192 Windows Internals, Sixth Edition, Part 2

Two other Sysinternals tools show extended memory information:

 ■ VMMap shows the usage of virtual memory within a process to an extremely fine level of
detail.

 ■ RAMMap shows detailed physical memory usage.

These tools will be featured in experiments found later in this chapter.

Finally, the !vm command in the kernel debugger shows the basic memory management in-
formation available through the memory-related performance counters. This command can be
useful if you’re looking at a crash dump or hung system. Here’s an example of its output from a
4-GB Windows client system:

1: kd> !vm

*** Virtual Memory Usage ***
 Physical Memory: 851757 (3407028 Kb)
 Page File: \??\C:\pagefile.sys
 Current: 3407028 Kb Free Space: 3407024 Kb
 Minimum: 3407028 Kb Maximum: 4193280 Kb

 Available Pages: 699186 (2796744 Kb)

 ResAvail Pages: 757454 (3029816 Kb)

 Locked IO Pages: 0 (0 Kb)

 Free System PTEs: 370673 (1482692 Kb)

 Modified Pages: 9799 (39196 Kb)

 Modified PF Pages: 9798 (39192 Kb)

 NonPagedPool Usage: 0 (0 Kb)

 NonPagedPoolNx Usage: 8735 (34940 Kb)

 NonPagedPool Max: 522368 (2089472 Kb)

 PagedPool 0 Usage: 17573 (70292 Kb)

 PagedPool 1 Usage: 2417 (9668 Kb)

 PagedPool 2 Usage: 0 (0 Kb)

 PagedPool 3 Usage: 0 (0 Kb)

 PagedPool 4 Usage: 28 (112 Kb)

 PagedPool Usage: 20018 (80072 Kb)

 PagedPool Maximum: 523264 (2093056 Kb)

 Session Commit: 6218 (24872 Kb)

 Shared Commit: 18591 (74364 Kb)

 Special Pool: 0 (0 Kb)

 Shared Process: 2151 (8604 Kb)

 PagedPool Commit: 20031 (80124 Kb)

 Driver Commit: 4531 (18124 Kb)

 Committed pages: 179178 (716712 Kb)

 Commit limit: 1702548 (6810192 Kb)

 Total Private: 66073 (264292 Kb)

 0a30 CCC.exe 11078 (44312 Kb)

 0548 dwm.exe 6548 (26192 Kb)

 091c MOM.exe 6103 (24412 Kb)

 ...

We will describe many of the details of the output of this command later in this chapter.

 CHAPTER 10 Memory Management 193

Services Provided by the Memory Manager

The memory manager provides a set of system services to allocate and free virtual memory, share
memory between processes, map files into memory, flush virtual pages to disk, retrieve information
about a range of virtual pages, change the protection of virtual pages, and lock the virtual pages into
memory.

Like other Windows executive services, the memory management services allow their caller to
supply a process handle indicating the particular process whose virtual memory is to be manipulated.
The caller can thus manipulate either its own memory or (with the proper permissions) the memory
of another process. For example, if a process creates a child process, by default it has the right to
manipulate the child process’s virtual memory. Thereafter, the parent process can allocate, deallocate,
read, and write memory on behalf of the child process by calling virtual memory services and pass-
ing a handle to the child process as an argument. This feature is used by subsystems to manage the
memory of their client processes. It is also essential for implementing debuggers because debuggers
must be able to read and write to the memory of the process being debugged.

Most of these services are exposed through the Windows API. The Windows API has three groups
of functions for managing memory in applications: heap functions (Heapxxx and the older interfaces
Localxxx and Globalxxx, which internally make use of the Heapxxx APIs), which may be used for allo-
cations smaller than a page; virtual memory functions, which operate with page granularity (Virtual-
xxx); and memory mapped file functions (CreateFileMapping, CreateFileMappingNuma, MapViewOf-
File, MapViewOfFileEx, and MapViewOfFileExNuma). (We’ll describe the heap manager later in this
chapter.)

The memory manager also provides a number of services (such as allocating and deallocating
physical memory and locking pages in physical memory for direct memory access [DMA] transfers) to
other kernel-mode components inside the executive as well as to device drivers. These functions be-
gin with the prefix Mm. In addition, though not strictly part of the memory manager, some executive
support routines that begin with Ex are used to allocate and deallocate from the system heaps (paged
and nonpaged pool) as well as to manipulate look-aside lists. We’ll touch on these topics later in this
chapter in the section “Kernel-Mode Heaps (System Memory Pools).”

Large and Small Pages
The virtual address space is divided into units called pages. That is because the hardware memory
management unit translates virtual to physical addresses at the granularity of a page. Hence, a page
is the smallest unit of protection at the hardware level. (The various page protection options are
described in the section “Protecting Memory” later in the chapter.) The processors on which Windows
runs support two page sizes, called small and large. The actual sizes vary based on the processor
architecture, and they are listed in Table 10-1.

194 Windows Internals, Sixth Edition, Part 2

TABLE 10-1 Page Sizes

Architecture Small Page Size Large Page Size Small Pages per Large Page

x86 4 KB 4 MB (2 MB if Physical Address
Extension (PAE) enabled (PAE is
described later in the chapter)

1,024 (512 with PAE)

x64 4 KB 2 MB 512

IA64 8 KB 16 MB 2,048

Note IA64 processors support a variety of dynamically configurable page sizes, from 4 KB
up to 256 MB. Windows on Itanium uses 8 KB and 16 MB for small and large pages, respec-
tively, as a result of performance tests that confirmed these values as optimal. Additionally,
recent x64 processors support a size of 1 GB for large pages, but Windows does not use
this feature.

The primary advantage of large pages is speed of address translation for references to other data
within the large page. This advantage exists because the first reference to any byte within a large
page will cause the hardware’s translation look-aside buffer (TLB, described in a later section) to have
in its cache the information necessary to translate references to any other byte within the large page.
If small pages are used, more TLB entries are needed for the same range of virtual addresses, thus
increasing recycling of entries as new virtual addresses require translation. This, in turn, means having
to go back to the page table structures when references are made to virtual addresses outside the
scope of a small page whose translation has been cached. The TLB is a very small cache, and thus
large pages make better use of this limited resource.

To take advantage of large pages on systems with more than 2 GB of RAM, Windows maps with
large pages the core operating system images (Ntoskrnl.exe and Hal.dll) as well as core operat-
ing system data (such as the initial part of nonpaged pool and the data structures that describe the
state of each physical memory page). Windows also automatically maps I/O space requests (calls by
device drivers to MmMapIoSpace) with large pages if the request is of satisfactory large page length
and alignment. In addition, Windows allows applications to map their images, private memory, and
 page-file-backed sections with large pages. (See the MEM_LARGE_PAGE flag on the VirtualAlloc,
Virtual AllocEx, and VirtualAllocExNuma functions.) You can also specify other device drivers to be
mapped with large pages by adding a multistring registry value to HKLM\SYSTEM\CurrentControlSet\
Control\Session Manager\Memory Management\LargePageDrivers and specifying the names of the
drivers as separately null-terminated strings.

Attempts to allocate large pages may fail after the operating system has been running for an
extended period, because the physical memory for each large page must occupy a significant number
(see Table 10-1) of physically contiguous small pages, and this extent of physical pages must further-
more begin on a large page boundary. (For example, physical pages 0 through 511 could be used as
a large page on an x64 system, as could physical pages 512 through 1,023, but pages 10 through 521
could not.) Free physical memory does become fragmented as the system runs. This is not a problem
for allocations using small pages but can cause large page allocations to fail.

 CHAPTER 10 Memory Management 195

It is not possible to specify anything but read/write access to large pages. The memory is also
always nonpageable, because the page file system does not support large pages. And, because the
memory is nonpageable, it is not considered part of the process working set (described later). Nor are
large page allocations subject to job-wide limits on virtual memory usage.

There is an unfortunate side effect of large pages. Each page (whether large or small) must be
mapped with a single protection that applies to the entire page (because hardware memory protec-
tion is on a per-page basis). If a large page contains, for example, both read-only code and read/
write data, the page must be marked as read/write, which means that the code will be writable. This
means that device drivers or other kernel-mode code could, as a result of a bug, modify what is sup-
posed to be read-only operating system or driver code without causing a memory access violation.
If small pages are used to map the operating system’s kernel-mode code, the read-only portions of
Ntoskrnl.exe and Hal.dll can be mapped as read-only pages. Using small pages does reduce efficiency
of address translation, but if a device driver (or other kernel-mode code) attempts to modify a read-
only part of the operating system, the system will crash immediately with the exception information
pointing at the offending instruction in the driver. If the write was allowed to occur, the system would
likely crash later (in a harder-to-diagnose way) when some other component tried to use the cor-
rupted data.

If you suspect you are experiencing kernel code corruptions, enable Driver Verifier (described later
in this chapter), which will disable the use of large pages.

Reserving and Committing Pages
Pages in a process virtual address space are free, reserved, committed, or shareable. Committed
and shareable pages are pages that, when accessed, ultimately translate to valid pages in physical
memory.

Committed pages are also referred to as private pages. This reflects the fact that committed pages
cannot be shared with other processes, whereas shareable pages can be (but, of course, might be in
use by only one process).

Private pages are allocated through the Windows VirtualAlloc, VirtualAllocEx, and VirtualAlloc-
ExNuma functions. These functions allow a thread to reserve address space and then commit portions
of the reserved space. The intermediate “reserved” state allows the thread to set aside a range of con-
tiguous virtual addresses for possible future use (such as an array), while consuming negligible system
resources, and then commit portions of the reserved space as needed as the application runs. Or, if
the size requirements are known in advance, a thread can reserve and commit in the same function
call. In either case, the resulting committed pages can then be accessed by the thread. Attempting to
access free or reserved memory results in an exception because the page isn’t mapped to any storage
that can resolve the reference.

If committed (private) pages have never been accessed before, they are created at the time of first
access as zero-initialized pages (or demand zero). Private committed pages may later be automati-
cally written to the paging file by the operating system if required by demand for physical memory.
“Private” refers to the fact that these pages are normally inaccessible to any other process.

196 Windows Internals, Sixth Edition, Part 2

Note There are functions, such as ReadProcessMemory and WriteProcessMemory, that
apparently permit cross-process memory access, but these are implemented by running
kernel-mode code in the context of the target process (this is referred to as attaching to
the process). They also require that either the security descriptor of the target process grant
the accessor the PROCESS_VM_READ or PROCESS_VM_WRITE right, respectively, or that
the accessor holds SeDebugPrivilege, which is by default granted only to members of the
Administrators group.

Shared pages are usually mapped to a view of a section, which in turn is part or all of a file, but
may instead represent a portion of page file space. All shared pages can potentially be shared with
other processes. Sections are exposed in the Windows API as file mapping objects.

When a shared page is first accessed by any process, it will be read in from the associated mapped
file (unless the section is associated with the paging file, in which case it is created as a zero-initialized
page). Later, if it is still resident in physical memory, the second and subsequent processes accessing
it can simply use the same page contents that are already in memory. Shared pages might also have
been prefetched by the system.

Two upcoming sections of this chapter, “Shared Memory and Mapped Files” and “Section Objects,”
go into much more detail about shared pages. Pages are written to disk through a mechanism called
modified page writing. This occurs as pages are moved from a process’s working set to a systemwide
list called the modified page list; from there, they are written to disk (or remote storage). (Working
sets and the modified list are explained later in this chapter.) Mapped file pages can also be written
back to their original files on disk as a result of an explicit call to FlushViewOfFile or by the mapped
page writer as memory demands dictate.

You can decommit private pages and/or release address space with the VirtualFree or VirtualFreeEx
function. The difference between decommittal and release is similar to the difference between reser-
vation and committal—decommitted memory is still reserved, but released memory has been freed;
it is neither committed nor reserved.

Using the two-step process of reserving and then committing virtual memory defers commit-
ting pages—and, thereby, defers adding to the system “commit charge” described in the next sec-
tion—until needed, but keeps the convenience of virtual contiguity. Reserving memory is a relatively
inexpensive operation because it consumes very little actual memory. All that needs to be updated
or constructed is the relatively small internal data structures that represent the state of the process
address space. (We’ll explain these data structures, called page tables and virtual address descriptors,
or VADs, later in the chapter.)

One extremely common use for reserving a large space and committing portions of it as needed is
the user-mode stack for each thread. When a thread is created, a stack is created by reserving a con-
tiguous portion of the process address space. (1 MB is the default; you can override this size with the

 CHAPTER 10 Memory Management 197

CreateThread and CreateRemoteThread function calls or change it on an imagewide basis by using the
/STACK linker flag.) By default, the initial page in the stack is committed and the next page is marked
as a guard page (which isn’t committed) that traps references beyond the end of the committed por-
tion of the stack and expands it.

EXPERIMENT: Reserved vs. Committed Pages
The TestLimit utility (which you can download from the Windows Internals book webpage) can
be used to allocate large amounts of either reserved or private committed virtual memory, and
the difference can be observed via Process Explorer. First, open two Command Prompt win-
dows. Invoke TestLimit in one of them to create a large amount of reserved memory:

C:\temp>testlimit -r 1 -c 800

Testlimit v5.2 - test Windows limits
Copyright (C) 2012 Mark Russinovich
Sysinternals - wwww.sysinternals.com

Process ID: 1544

Reserving private bytes 1 MB at a time ...
Leaked 800 MB of reserved memory (800 MB total leaked). Lasterror: 0
The operation completed successfully.

In the other window, create a similar amount of committed memory:

C:\temp>testlimit -m 1 -c 800

Testlimit v5.2 - test Windows limits
Copyright (C) 2012 Mark Russinovich
Sysinternals - wwww.sysinternals.com

Process ID: 2828

Leaking private bytes 1 KB at a time ...
Leaked 800 MB of private memory (800 MB total leaked). Lasterror: 0
The operation completed successfully.

Now run Task Manager, go to the Processes tab, and use the Select Columns command on
the View menu to include Memory—Commit Size in the display. Find the two instances of Test-
Limit in the list. They should appear something like the following figure.

198 Windows Internals, Sixth Edition, Part 2

Task Manager shows the committed size, but it has no counters that will reveal the reserved
memory in the other TestLimit process.

Finally, invoke Process Explorer. Choose View, Select Columns, select the Process Memory
tab, and enable the Private Bytes and Virtual Size counters. Find the two TestLimit processes in
the main display:

Notice that the virtual sizes of the two processes are identical, but only one shows a value
for Private Bytes comparable to that for Virtual Size. The large difference in the other TestLimit
process (process ID 1544) is due to the reserved memory. The same comparison could be made
in Performance Monitor by looking at the Process | Virtual Bytes and Process | Private Bytes
counters.

 CHAPTER 10 Memory Management 199

Commit Limit
On Task Manager’s Performance tab, there are two numbers following the legend Commit. The
memory manager keeps track of private committed memory usage on a global basis, termed commit-
ment or commit charge; this is the first of the two numbers, which represents the total of all commit-
ted virtual memory in the system.

There is a systemwide limit, called the system commit limit or simply the commit limit, on the
amount of committed virtual memory that can exist at any one time. This limit corresponds to the
current total size of all paging files, plus the amount of RAM that is usable by the operating system.
This is the second of the two numbers displayed as Commit on Task Manager’s Performance tab. The
memory manager can increase the commit limit automatically by expanding one or more of the pag-
ing files, if they are not already at their configured maximum size.

Commit charge and the system commit limit will be explained in more detail in a later section.

Locking Memory
In general, it’s better to let the memory manager decide which pages remain in physical memory.
However, there might be special circumstances where it might be necessary for an application or
device driver to lock pages in physical memory. Pages can be locked in memory in two ways:

 ■ Windows applications can call the VirtualLock function to lock pages in their process working
set. Pages locked using this mechanism remain in memory until explicitly unlocked or until the
process that locked them terminates. The number of pages a process can lock can’t exceed
its minimum working set size minus eight pages. Therefore, if a process needs to lock more
pages, it can increase its working set minimum with the SetProcessWorkingSetSizeEx function
(referred to in the section “Working Set Management”).

 ■ Device drivers can call the kernel-mode functions MmProbeAndLockPages, MmLockPagable-
CodeSection, MmLockPagableDataSection, or MmLockPagableSectionByHandle. Pages locked
using this mechanism remain in memory until explicitly unlocked. The last three of these APIs
enforce no quota on the number of pages that can be locked in memory because the resident
available page charge is obtained when the driver first loads; this ensures that it can never
cause a system crash due to overlocking. For the first API, quota charges must be obtained or
the API will return a failure status.

Allocation Granularity
Windows aligns each region of reserved process address space to begin on an integral boundary
defined by the value of the system allocation granularity, which can be retrieved from the Windows
GetSystemInfo or GetNativeSystemInfo function. This value is 64 KB, a granularity that is used by the
memory manager to efficiently allocate metadata (for example, VADs, bitmaps, and so on) to support
various process operations. In addition, if support were added for future processors with larger page
sizes (for example, up to 64 KB) or virtually indexed caches that require systemwide physical-to-virtual

200 Windows Internals, Sixth Edition, Part 2

page alignment, the risk of requiring changes to applications that made assumptions about allocation
alignment would be reduced.

Note Windows kernel-mode code isn’t subject to the same restrictions; it can reserve
memory on a single-page granularity (although this is not exposed to device drivers for
the reasons detailed earlier). This level of granularity is primarily used to pack TEB alloca-
tions more densely, and because this mechanism is internal only, this code can easily be
changed if a future platform requires different values. Also, for the purposes of supporting
16-bit and MS-DOS applications on x86 systems only, the memory manager provides the
MEM_DOS_LIM flag to the MapViewOfFileEx API, which is used to force the use of single-
page granularity.

Finally, when a region of address space is reserved, Windows ensures that the size and base of
the region is a multiple of the system page size, whatever that might be. For example, because x86
systems use 4-KB pages, if you tried to reserve a region of memory 18 KB in size, the actual amount
reserved on an x86 system would be 20 KB. If you specified a base address of 3 KB for an 18-KB
region, the actual amount reserved would be 24 KB. Note that the VAD for the allocation would then
also be rounded to 64-KB alignment/length, thus making the remainder of it inaccessible. (VADs will
be described later in this chapter.)

Shared Memory and Mapped Files
As is true with most modern operating systems, Windows provides a mechanism to share memory
among processes and the operating system. Shared memory can be defined as memory that is vis-
ible to more than one process or that is present in more than one process virtual address space. For
example, if two processes use the same DLL, it would make sense to load the referenced code pages
for that DLL into physical memory only once and share those pages between all processes that map
the DLL, as illustrated in Figure 10-1.

Each process would still maintain its private memory areas in which to store private data, but the
DLL code and unmodified data pages could be shared without harm. As we’ll explain later, this kind of
sharing happens automatically because the code pages in executable images (.exe and .dll files, and
several other types like screen savers (.scr), which are essentially DLLs under other names) are mapped
as execute-only and writable pages are mapped as copy-on-write. (See the section “Copy-on-Write”
for more information.)

The underlying primitives in the memory manager used to implement shared memory are called
section objects, which are exposed as file mapping objects in the Windows API. The internal structure
and implementation of section objects are described in the section “Section Objects” later in this
chapter.

This fundamental primitive in the memory manager is used to map virtual addresses, whether in
main memory, in the page file, or in some other file that an application wants to access as if it were in

 CHAPTER 10 Memory Management 201

memory. A section can be opened by one process or by many; in other words, section objects don’t
necessarily equate to shared memory.

Process 1
virtual memory

Physical
memory

Process 2
virtual memory

DLL code

FIGURE 10-1 Sharing memory between processes

A section object can be connected to an open file on disk (called a mapped file) or to committed
memory (to provide shared memory). Sections mapped to committed memory are called page-file-
backed sections because the pages are written to the paging file (as opposed to a mapped file) if
demands on physical memory require it. (Because Windows can run with no paging file, page-file-
backed sections might in fact be “backed” only by physical memory.) As with any other empty page
that is made visible to user mode (such as private committed pages), shared committed pages are
always zero-filled when they are first accessed to ensure that no sensitive data is ever leaked.

To create a section object, call the Windows CreateFileMapping or CreateFileMappingNuma
function, specifying the file handle to map it to (or INVALID_HANDLE_VALUE for a page-file-backed
section) and optionally a name and security descriptor. If the section has a name, other processes
can open it with OpenFileMapping. Or you can grant access to section objects through either handle
inheritance (by specifying that the handle be inheritable when opening or creating the handle) or
handle duplication (by using DuplicateHandle). Device drivers can also manipulate section objects
with the ZwOpenSection, ZwMapViewOfSection, and ZwUnmapViewOfSection functions.

A section object can refer to files that are much larger than can fit in the address space of a pro-
cess. (If the paging file backs a section object, sufficient space must exist in the paging file and/or
RAM to contain it.) To access a very large section object, a process can map only the portion of the
section object that it requires (called a view of the section) by calling the MapViewOfFile, MapViewOf-
FileEx, or MapViewOfFileExNuma function and then specifying the range to map. Mapping views

202 Windows Internals, Sixth Edition, Part 2

permits processes to conserve address space because only the views of the section object needed at
the time must be mapped into memory.

Windows applications can use mapped files to conveniently perform I/O to files by simply making
them appear in their address space. User applications aren’t the only consumers of section objects:
the image loader uses section objects to map executable images, DLLs, and device drivers into
memory, and the cache manager uses them to access data in cached files. (For information on how
the cache manager integrates with the memory manager, see Chapter 11, “Cache Manager.”) The
implementation of shared memory sections, both in terms of address translation and the internal data
structures, is explained later in this chapter.

EXPERIMENT: Viewing Memory Mapped Files
You can list the memory mapped files in a process by using Process Explorer from Sysinternals.
To view the memory mapped files by using Process Explorer, configure the lower pane to show
the DLL view. (Click on View, Lower Pane View, DLLs.) Note that this is more than just a list of
DLLs—it represents all memory mapped files in the process address space. Some of these are
DLLs, one is the image file (EXE) being run, and additional entries might represent memory
mapped data files.

For example, the following display from Process Explorer shows a WinDbg process using
several different memory mappings to access the memory dump file being examined. Like most
Windows programs, it (or one of the Windows DLLs it is using) is also using memory mapping
to access a Windows data file called Locale.nls, which is part of the internationalization support
in Windows.

You can also search for memory mapped files by clicking Find, DLL. This can be useful when
trying to determine which process(es) are using a DLL or a memory mapped file that you are
trying to replace.

 CHAPTER 10 Memory Management 203

Protecting Memory
As explained in Chapter 1, “Concepts and Tools,” in Part 1, Windows provides memory protection so
that no user process can inadvertently or deliberately corrupt the address space of another process or
of the operating system. Windows provides this protection in four primary ways.

First, all systemwide data structures and memory pools used by kernel-mode system components
can be accessed only while in kernel mode—user-mode threads can’t access these pages. If they
attempt to do so, the hardware generates a fault, which in turn the memory manager reports to the
thread as an access violation.

Second, each process has a separate, private address space, protected from being accessed by any
thread belonging to another process. Even shared memory is not really an exception to this because
each process accesses the shared regions using addresses that are part of its own virtual address
space. The only exception is if another process has virtual memory read or write access to the process
object (or holds SeDebugPrivilege) and thus can use the ReadProcessMemory or WriteProcessMemory
function. Each time a thread references an address, the virtual memory hardware, in concert with the
memory manager, intervenes and translates the virtual address into a physical one. By controlling
how virtual addresses are translated, Windows can ensure that threads running in one process don’t
inappropriately access a page belonging to another process.

Third, in addition to the implicit protection virtual-to-physical address translation offers, all proces-
sors supported by Windows provide some form of hardware-controlled memory protection (such as
read/write, read-only, and so on); the exact details of such protection vary according to the proces-
sor. For example, code pages in the address space of a process are marked read-only and are thus
protected from modification by user threads.

Table 10-2 lists the memory protection options defined in the Windows API. (See the Virtual-
Protect, VirtualProtectEx, VirtualQuery, and VirtualQueryEx functions.)

TABLE 10-2 Memory Protection Options Defined in the Windows API

Attribute Description

PAGE_NOACCESS Any attempt to read from, write to, or execute code in this region causes an access
violation.

PAGE_READONLY Any attempt to write to (and on processors with no execute support, execute code
in) memory causes an access violation, but reads are permitted.

PAGE_READWRITE The page is readable and writable but not executable.

PAGE_EXECUTE Any attempt to write to code in memory in this region causes an access violation,
but execution (and read operations on all existing processors) is permitted.

PAGE_EXECUTE_READ* Any attempt to write to memory in this region causes an access violation, but
executes and reads are permitted.

PAGE_EXECUTE_READWRITE* The page is readable, writable, and executable—any attempted access will succeed.

PAGE_WRITECOPY Any attempt to write to memory in this region causes the system to give the
process a private copy of the page. On processors with no-execute support,
attempts to execute code in memory in this region cause an access violation.

204 Windows Internals, Sixth Edition, Part 2

Attribute Description

PAGE_EXECUTE_WRITECOPY Any attempt to write to memory in this region causes the system to give the
process a private copy of the page. Reading and executing code in this region is
permitted. (No copy is made in this case.)

PAGE_GUARD Any attempt to read from or write to a guard page raises an EXCEPTION_GUARD_
PAGE exception and turns off the guard page status. Guard pages thus act as
a one-shot alarm. Note that this flag can be specified with any of the page
protections listed in this table except PAGE_NOACCESS.

PAGE_NOCACHE Uses physical memory that is not cached. This is not recommended for general
usage. It is useful for device drivers—for example, mapping a video frame buffer
with no caching.

PAGE_WRITECOMBINE Enables write-combined memory accesses. When enabled, the processor does
not cache memory writes (possibly causing significantly more memory traffic
than if memory writes were cached), but it does try to aggregate write requests
to optimize performance. For example, if multiple writes are made to the same
address, only the most recent write might occur. Separate writes to adjacent
addresses may be similarly collapsed into a single large write. This is not typically
used for general applications, but it is useful for device drivers—for example,
mapping a video frame buffer as write combined.

* No execute protection is supported on processors that have the necessary hardware support (for example, all x64 and
IA64 processors) but not in older x86 processors.

And finally, shared memory section objects have standard Windows access control lists (ACLs) that
are checked when processes attempt to open them, thus limiting access of shared memory to those
processes with the proper rights. Access control also comes into play when a thread creates a sec-
tion to contain a mapped file. To create the section, the thread must have at least read access to the
underlying file object or the operation will fail.

Once a thread has successfully opened a handle to a section, its actions are still subject to the
memory manager and the hardware-based page protections described earlier. A thread can change
the page-level protection on virtual pages in a section if the change doesn’t violate the permissions
in the ACL for that section object. For example, the memory manager allows a thread to change the
pages of a read-only section to have copy-on-write access but not to have read/write access. The
copy-on-write access is permitted because it has no effect on other processes sharing the data.

No Execute Page Protection
No execute page protection (also referred to as data execution prevention, or DEP) causes an attempt
to transfer control to an instruction in a page marked as “no execute” to generate an access fault.
This can prevent certain types of malware from exploiting bugs in the system through the execu-
tion of code placed in a data page such as the stack. DEP can also catch poorly written programs
that don’t correctly set permissions on pages from which they intend to execute code. If an attempt
is made in kernel mode to execute code in a page marked as no execute, the system will crash with
the ATTEMPTED_EXECUTE_OF_NOEXECUTE_MEMORY bugcheck code. (See Chapter 14, “Crash
Dump Analysis,” for an explanation of these codes.) If this occurs in user mode, a STATUS_ACCESS_
VIOLATION (0xc0000005) exception is delivered to the thread attempting the illegal reference.
If a process allocates memory that needs to be executable, it must explicitly mark such pages by

 CHAPTER 10 Memory Management 205

specifying the PAGE_EXECUTE, PAGE_EXECUTE_READ, PAGE_EXECUTE_READWRITE, or PAGE_
EXECUTE_WRITECOPY flags on the page granularity memory allocation functions.

On 32-bit x86 systems that support DEP, bit 63 in the page table entry (PTE) is used to mark a page
as nonexecutable. Therefore, the DEP feature is available only when the processor is running in Physi-
cal Address Extension (PAE) mode, without which page table entries are only 32 bits wide. (See the
section “Physical Address Extension (PAE)” later in this chapter.) Thus, support for hardware DEP on
32-bit systems requires loading the PAE kernel (%SystemRoot%\System32\Ntkrnlpa.exe), even if that
system does not require extended physical addressing (for example, physical addresses greater than
4 GB). The operating system loader automatically loads the PAE kernel on 32-bit systems that support
hardware DEP. To force the non-PAE kernel to load on a system that supports hardware DEP, the BCD
option nx must be set to AlwaysOff, and the pae option must be set to ForceDisable.

On 64-bit versions of Windows, execution protection is always applied to all 64-bit processes
and device drivers and can be disabled only by setting the nx BCD option to AlwaysOff. Execution
protection for 32-bit programs depends on system configuration settings, described shortly. On
64-bit Windows, execution protection is applied to thread stacks (both user and kernel mode), user-
mode pages not specifically marked as executable, kernel paged pool, and kernel session pool (for a
description of kernel memory pools, see the section “Kernel-Mode Heaps (System Memory Pools).”
However, on 32-bit Windows, execution protection is applied only to thread stacks and user-mode
pages, not to paged pool and session pool.

The application of execution protection for 32-bit processes depends on the value of the BCD nx
option. The settings can be changed by going to the Data Execution Prevention tab under Computer,
Properties, Advanced System Settings, Performance Settings. (See Figure 10-2.) When you configure
no execute protection in the Performance Options dialog box, the BCD nx option is set to the appro-
priate value. Table 10-3 lists the variations of the values and how they correspond to the DEP settings
tab. The registry lists 32-bit applications that are excluded from execution protection under the key
HKLM\SOFTWARE\Microsoft\Windows NT\CurrentVersion\AppCompatFlags\Layers, with the value
name being the full path of the executable and the data set to “DisableNXShowUI”.

On Windows client versions (both 64-bit and 32-bit) execution protection for 32-bit processes
is configured by default to apply only to core Windows operating system executables (the nx BCD
option is set to OptIn) so as not to break 32-bit applications that might rely on being able to execute
code in pages not specifically marked as executable, such as self-extracting or packed applications.
On Windows server systems, execution protection for 32-bit applications is configured by default to
apply to all 32-bit programs (the nx BCD option is set to OptOut).

Note To obtain a complete list of which programs are protected, install the Windows
Application Compatibility Toolkit (downloadable from www.microsoft.com) and run the
Compatibility Administrator Tool. Click System Database, Applications, and then Windows
Components. The pane at the right shows the list of protected executables.

www.microsoft.com

206 Windows Internals, Sixth Edition, Part 2

FIGURE 10-2 Data Execution Prevention tab settings

TABLE 10-3 BCD nx Values

BCD nx Value Option on DEP Settings Tab Meaning

OptIn Turn on DEP for essential Windows
programs and services only

Enables DEP for core Windows system images. Enables 32-bit
processes to dynamically configure DEP for their lifetime.

OptOut Turn on DEP for all programs and
services except those I select

Enables DEP for all executables except those specified.
Enables 32-bit processes to dynamically configure DEP for
their lifetime. Enables system compatibility fixes for DEP.

AlwaysOn No dialog box option for this
setting

Enables DEP for all components with no ability to exclude
certain applications. Disables dynamic configuration for 32-bit
processes, and disables system compatibility fixes.

AlwaysOff No dialog box option for this
setting

Disables DEP (not recommended). Disables dynamic
configuration for 32-bit processes.

Even if you force DEP to be enabled, there are still other methods through which applications can
disable DEP for their own images. For example, regardless of the execution protection options that
are enabled, the image loader (see Chapter 3 in Part 1 for more information about the image loader)
will verify the signature of the executable against known copy-protection mechanisms (such as
SafeDisc and SecuROM) and disable execution protection to provide compatibility with older copy-
protected software such as computer games.

 CHAPTER 10 Memory Management 207

EXPERIMENT: Looking at DEP Protection on Processes
Process Explorer can show you the current DEP status for all the processes on your system,
including whether the process is opted in or benefiting from permanent protection. To look at
the DEP status for processes, right-click any column in the process tree, choose Select Columns,
and then select DEP Status on the Process Image tab. Three values are possible:

 ■ DEP (permanent) This means that the process has DEP enabled because it is a “neces-
sary Windows program or service.”

 ■ DEP This means that the process opted in to DEP. This may be due to a systemwide
policy to opt in all 32-bit processes, an API call such as SetProcessDEPPolicy, or setting the
linker flag /NXCOMPAT when the image was built.

 ■ Nothing If the column displays no information for this process, DEP is disabled, either
because of a systemwide policy or an explicit API call or shim.

The following Process Explorer window shows an example of a system on which DEP is set to
OptOut, Turn On DEP For All Programs And Services Except Those That I Select. Note that two
processes running in the user’s login, a third-party sound-card manager and a USB port moni-
tor, show simply DEP, meaning that DEP can be turned off for them via the dialog box shown in
Figure 10-2. The other processes shown are running Windows in-box programs and show DEP
(Permanent), indicating that DEP cannot be disabled for them.

Additionally, to provide compatibility with older versions of the Active Template Library (ATL)
framework (version 7.1 or earlier), the Windows kernel provides an ATL thunk emulation environ-
ment. This environment detects ATL thunk code sequences that have caused the DEP exception and
emulates the expected operation. Application developers can request that ATL thunk emulation not
be applied by using the latest Microsoft C++ compiler and specifying the /NXCOMPAT flag (which

208 Windows Internals, Sixth Edition, Part 2

sets the IMAGE_DLLCHARACTERISTICS_NX_COMPAT flag in the PE header), which tells the system
that the executable fully supports DEP. Note that ATL thunk emulation is permanently disabled if the
AlwaysOn value is set.

Finally, if the system is in OptIn or OptOut mode and executing a 32-bit process, the SetProcess-
DEPPolicy function allows a process to dynamically disable DEP or to permanently enable it. (Once
enabled through this API, DEP cannot be disabled programmatically for the lifetime of the process.)
This function can also be used to dynamically disable ATL thunk emulation in case the image wasn’t
compiled with the /NXCOMPAT flag. On 64-bit processes or systems booted with AlwaysOff or
 AlwaysOn, the function always returns a failure. The GetProcessDEPPolicy function returns the 32-bit
per-process DEP policy (it fails on 64-bit systems, where the policy is always the same— enabled),
while GetSystemDEPPolicy can be used to return a value corresponding to the policies in Table 10-3.

Software Data Execution Prevention
For older processors that do not support hardware no execute protection, Windows supports limited
software data execution prevention (DEP). One aspect of software DEP reduces exploits of the ex-
ception handling mechanism in Windows. (See Chapter 3 in Part 1 for a description of structured
exception handling.) If the program’s image files are built with safe structured exception handling (a
feature in the Microsoft Visual C++ compiler that is enabled with the /SAFESEH flag), before an excep-
tion is dispatched, the system verifies that the exception handler is registered in the function table
(built by the compiler) located within the image file.

The previous mechanism depends on the program’s image files being built with safe structured ex-
ception handling. If they are not, software DEP guards against overwrites of the structured exception
handling chain on the stack in x86 processes via a mechanism known as Structured Exception Handler
Overwrite Protection (SEHOP). A new symbolic exception registration record is added on the stack
when a thread first begins user-mode execution. The normal exception registration chain will lead
to this record. When an exception occurs, the exception dispatcher will first walk the list of exception
handler registration records to ensure that the chain leads to this symbolic record. If it does not, the
exception chain must have been corrupted (either accidentally or deliberately), and the exception dis-
patcher will simply terminate the process without calling any of the exception handlers described on
the stack. Address Space Layout Randomization (ASLR) contributes to the robustness of this method
by making it more difficult for attacking code to know the location of the function pointed to by the
symbolic exception registration record, and so to construct a fake symbolic record of its own.

To further validate the SEH handler when /SAFESEH is not present, a mechanism called Image
 Dispatch Mitigation ensures that the SEH handler is located within the same image section as the
function that raised an exception, which is normally the case for most programs (although not neces-
sarily, since some DLLs might have exception handlers that were set up by the main executable, which
is why this mitigation is off by default). Finally, Executable Dispatch Mitigation further makes sure that
the SEH handler is located within an executable page—a less strong requirement than Image Dis-
patch Mitigation, but one with fewer compatibility issues.

 CHAPTER 10 Memory Management 209

Two other methods for software DEP that the system implements are stack cookies and pointer en-
coding. The first relies on the compiler to insert special code at the beginning and end of each poten-
tially exploitable function. The code saves a special numerical value (the cookie) on the stack on entry
and validates the cookie’s value before returning to the caller saved on the stack (which would have
now been corrupted to point to a piece of malicious code). If the cookie value is mismatched, the ap-
plication is terminated and not allowed to continue executing. The cookie value is computed for each
boot when executing the first user-mode thread, and it is saved in the KUSER_SHARED_DATA struc-
ture. The image loader reads this value and initializes it when a process starts executing in user mode.
(See Chapter 3 in Part 1 for more information on the shared data section and the image loader.)

The cookie value that is calculated is also saved for use with the EncodeSystemPointer and
 DecodeSystemPointer APIs, which implement pointer encoding. When an application or a DLL has
static pointers that are dynamically called, it runs the risk of having malicious code overwrite the
pointer values with code that the malware controls. By encoding all pointers with the cookie value
and then decoding them, when malicious code sets a nonencoded pointer, the application will still
attempt to decode the pointer, resulting in a corrupted value and causing the program to crash. The
EncodePointer and DecodePointer APIs provide similar protection but with a per-process cookie (cre-
ated on demand) instead of a per-system cookie.

Note The system cookie is a combination of the system time at generation, the stack value
of the saved system time, the number of page faults, and the current interrupt time.

Copy-on-Write
Copy-on-write page protection is an optimization the memory manager uses to conserve physical
memory. When a process maps a copy-on-write view of a section object that contains read/write
pages, instead of making a process private copy at the time the view is mapped, the memory man-
ager defers making a copy of the pages until the page is written to. For example, as shown in Figure
10-3, two processes are sharing three pages, each marked copy-on-write, but neither of the two
processes has attempted to modify any data on the pages.

Page 1

Page 2

Page 3

Physical memory

Original data

Process
address
space

Original data

Process
address
space

FIGURE 10-3 The “before” of copy-on-write

210 Windows Internals, Sixth Edition, Part 2

If a thread in either process writes to a page, a memory management fault is generated. The
memory manager sees that the write is to a copy-on-write page, so instead of reporting the fault as
an access violation, it allocates a new read/write page in physical memory, copies the contents of the
original page to the new page, updates the corresponding page-mapping information (explained
later in this chapter) in this process to point to the new location, and dismisses the exception, thus
causing the instruction that generated the fault to be reexecuted. This time, the write operation suc-
ceeds, but as shown in Figure 10-4, the newly copied page is now private to the process that did the
writing and isn’t visible to the other process still sharing the copy-on-write page. Each new process
that writes to that same shared page will also get its own private copy.

Page 1

Page 2

Page 3

Copy of page 2

Physical memory

Original data

Process
address
space

Modified data

Process
address
space

FIGURE 10-4 The “after” of copy-on-write

One application of copy-on-write is to implement breakpoint support in debuggers. For example,
by default, code pages start out as execute-only. If a programmer sets a breakpoint while debug-
ging a program, however, the debugger must add a breakpoint instruction to the code. It does this
by first changing the protection on the page to PAGE_EXECUTE_READWRITE and then changing the
instruction stream. Because the code page is part of a mapped section, the memory manager cre-
ates a private copy for the process with the breakpoint set, while other processes continue using the
unmodified code page.

Copy-on-write is one example of an evaluation technique known as lazy evaluation that the
memory manager uses as often as possible. Lazy-evaluation algorithms avoid performing an expen-
sive operation until absolutely required—if the operation is never required, no time is wasted on it.

To examine the rate of copy-on-write faults, see the performance counter Memory: Write
Copies/sec.

Address Windowing Extensions
Although the 32-bit version of Windows can support up to 64 GB of physical memory (as shown in
Table 2-2 in Part 1), each 32-bit user process has by default only a 2-GB virtual address space. (This
can be configured up to 3 GB when using the increaseuserva BCD option, described in the upcoming
section “User Address Space Layout.”) An application that needs to make more than 2 GB (or 3 GB) of
data easily available in a single process could do so via file mapping, remapping a part of its address

 CHAPTER 10 Memory Management 211

space into various portions of a large file. However, significant paging would be involved upon each
remap.

For higher performance (and also more fine-grained control), Windows provides a set of functions
called Address Windowing Extensions (AWE). These functions allow a process to allocate more physical
memory than can be represented in its virtual address space. It then can access the physical memory
by mapping a portion of its virtual address space into selected portions of the physical memory at
various times.

Allocating and using memory via the AWE functions is done in three steps:

1. Allocating the physical memory to be used. The application uses the Windows functions
 AllocateUserPhysicalPages or AllocateUserPhysicalPagesNuma. (These require the Lock Pages
In Memory user right.)

2. Creating one or more regions of virtual address space to act as windows to map views of the
physical memory. The application uses the Win32 VirtualAlloc, VirtualAllocEx, or Virtual Alloc-
ExNuma function with the MEM_PHYSICAL flag.

3. The preceding steps are, generally speaking, initialization steps. To actually use the memory,
the application uses MapUserPhysicalPages or MapUserPhysicalPagesScatter to map a portion
of the physical region allocated in step 1 into one of the virtual regions, or windows, allocated
in step 2.

Figure 10-5 shows an example. The application has created a 256-MB window in its address space
and has allocated 4 GB of physical memory (on a system with more than 4 GB of physical memory).
It can then use MapUserPhysicalPages or MapUserPhysicalPagesScatter to access any portion of the
physical memory by mapping the desired portion of memory into the 256-MB window. The size of
the application’s virtual address space window determines the amount of physical memory that the
application can access with any given mapping. To access another portion of the allocated RAM, the
application can simply remap the area.

The AWE functions exist on all editions of Windows and are usable regardless of how much physi-
cal memory a system has. However, AWE is most useful on 32-bit systems with more than 2 GB of
physical memory because it provides a way for a 32-bit process to access more RAM than its virtual
address space would otherwise allow. Another use is for security purposes: because AWE memory is
never paged out, the data in AWE memory can never have a copy in the paging file that someone
could examine by rebooting into an alternate operating system. (VirtualLock provides the same guar-
antee for pages in general.)

Finally, there are some restrictions on memory allocated and mapped by the AWE functions:

 ■ Pages can’t be shared between processes.

 ■ The same physical page can’t be mapped to more than one virtual address in the same
process.

 ■ Page protection is limited to read/write, read-only, and no access.

212 Windows Internals, Sixth Edition, Part 2

System
address
space

User
address
space

AWE window

Server application
address space

Physical memory

2 GB

0

0

4 GB 64 GB

AWE memory

FIGURE 10-5 Using AWE to map physical memory

AWE is less useful on x64 or IA64 Windows systems because these systems support 8 TB or 7 TB
(respectively) of virtual address space per process, while allowing a maximum of only 2 TB of RAM.
Therefore, AWE is not necessary to allow an application to use more RAM than it has virtual address
space; the amount of RAM on the system will always be smaller than the process virtual address
space. AWE remains useful, however, for setting up nonpageable regions of a process address space.
It provides finer granularity than the file mapping APIs (the system page size, 4 KB or 8 KB, versus
64 KB).

For a description of the page table data structures used to map memory on systems with more
than 4 GB of physical memory, see the section “Physical Address Extension (PAE).”

Kernel-Mode Heaps (System Memory Pools)

At system initialization, the memory manager creates two dynamically sized memory pools, or heaps,
that most kernel-mode components use to allocate system memory:

 ■ Nonpaged pool Consists of ranges of system virtual addresses that are guaranteed to reside
in physical memory at all times and thus can be accessed at any time without incurring a page
fault; therefore, they can be accessed from any IRQL. One of the reasons nonpaged pool is
required is because of the rule described in Chapter 2 in Part 1: page faults can’t be satisfied at

 CHAPTER 10 Memory Management 213

DPC/dispatch level or above. Therefore, any code and data that might execute or be accessed
at or above DPC/dispatch level must be in nonpageable memory.

 ■ Paged pool A region of virtual memory in system space that can be paged into and out of
the system. Device drivers that don’t need to access the memory from DPC/dispatch level or
above can use paged pool. It is accessible from any process context.

Both memory pools are located in the system part of the address space and are mapped in the vir-
tual address space of every process. The executive provides routines to allocate and deallocate from
these pools; for information on these routines, see the functions that start with ExAllocatePool and
ExFreePool in the WDK documentation.

Systems start with four paged pools (combined to make the overall system paged pool) and one
nonpaged pool; more are created, up to a maximum of 64, depending on the number of NUMA
nodes on the system. Having more than one paged pool reduces the frequency of system code
blocking on simultaneous calls to pool routines. Additionally, the different pools created are mapped
across different virtual address ranges that correspond to different NUMA nodes on the system. (The
different data structures, such as the large page look-aside lists, to describe pool allocations are also
mapped across different NUMA nodes. More information on NUMA optimizations will follow later.)

In addition to the paged and nonpaged pools, there are a few other pools with special attributes
or uses. For example, there is a pool region in session space, which is used for data that is common to
all processes in the session. (Sessions are described in Chapter 1 in Part 1.) There is a pool called, quite
literally, special pool. Allocations from special pool are surrounded by pages marked as no-access to
help isolate problems in code that accesses memory before or after the region of pool it allocated.
Special pool is described in Chapter 14.

Pool Sizes
Nonpaged pool starts at an initial size based on the amount of physical memory on the system and
then grows as needed. For nonpaged pool, the initial size is 3 percent of system RAM. If this is less
than 40 MB, the system will instead use 40 MB as long as 10 percent of RAM results in more than 40
MB; otherwise 10 percent of RAM is chosen as a minimum.

Windows dynamically chooses the maximum size of the pools and allows a given pool to grow
from its initial size to the maximums shown in Table 10-4.

TABLE 10-4 Maximum Pool Sizes

Pool Type Maximum on 32-Bit Systems Maximum on 64-Bit Systems

Nonpaged 75% of physical memory or 2 GB,
whichever is smaller

75% of physical memory or 128 GB,
whichever is smaller

Paged 2 GB 128 GB

Four of these computed sizes are stored in kernel variables, three of which are exposed as per-
formance counters, and one is computed only as a performance counter value. These variables and
counters are listed in Table 10-5.

214 Windows Internals, Sixth Edition, Part 2

TABLE 10-5 System Pool Size Variables and Performance Counters

Kernel Variable Performance Counter Description

MmSizeOfNonPagedPoolInBytes Memory: Pool
Nonpaged Bytes

Size of the initial nonpaged pool. This can be
reduced or enlarged automatically by the system
if memory demands dictate. The kernel variable
will not show these changes, but the performance
counter will.

MmMaximumNonPagedPoolInBytes Not available Maximum size of nonpaged pool

Not available Memory: Pool Paged
Bytes

Current total virtual size of paged pool

WorkingSetSize (number of pages)
in the MmPagedPoolWs struct (type
_MMSUPPORT)

Memory: Pool Paged
Resident Bytes

Current physical (resident) size of paged pool

MmSizeOfPagedPoolInBytes Not available Maximum (virtual) size of paged pool

EXPERIMENT: Determining the Maximum Pool Sizes
You can obtain the pool maximums by using either Process Explorer or live kernel debugging
(explained in Chapter 1 in Part 1). To view pool maximums with Process Explorer, click on View,
System Information, and then click the Memory tab. The pool limits are displayed in the Kernel
Memory middle section, as shown here:

Note that for Process Explorer to retrieve this information, it must have access to the symbols
for the kernel running on your system. (For a description of how to configure Process Explorer
to use symbols, see the experiment “Viewing Process Details with Process Explorer” in Chapter 1
in Part 1.)

 CHAPTER 10 Memory Management 215

To view the same information by using the kernel debugger, you can use the !vm command
as shown here:

kd> !vm

1: kd> !vm

*** Virtual Memory Usage ***
 Physical Memory: 851757 (3407028 Kb)
 Page File: \??\C:\pagefile.sys
 Current: 3407028 Kb Free Space: 3407024 Kb
 Minimum: 3407028 Kb Maximum: 4193280 Kb

 Available Pages: 699186 (2796744 Kb)

 ResAvail Pages: 757454 (3029816 Kb)

 Locked IO Pages: 0 (0 Kb)

 Free System PTEs: 370673 (1482692 Kb)

 Modified Pages: 9799 (39196 Kb)

 Modified PF Pages: 9798 (39192 Kb)

 NonPagedPool Usage: 0 (0 Kb)

 NonPagedPoolNx Usage: 8735 (34940 Kb)

 NonPagedPool Max: 522368 (2089472 Kb)

 PagedPool 0 Usage: 17573 (70292 Kb)

 PagedPool 1 Usage: 2417 (9668 Kb)

 PagedPool 2 Usage: 0 (0 Kb)

 PagedPool 3 Usage: 0 (0 Kb)

 PagedPool 4 Usage: 28 (112 Kb)

 PagedPool Usage: 20018 (80072 Kb)

 PagedPool Maximum: 523264 (2093056 Kb)

 ...

On this 4-GB, 32-bit system, nonpaged and paged pool were far from their maximums.

You can also examine the values of the kernel variables listed in Table 10-5. The following
were taken from a 32-bit system:

lkd> ? poi(MmMaximumNonPagedPoolInBytes)
Evaluate expression: 2139619328 = 7f880000

lkd> ? poi(MmSizeOfPagedPoolInBytes)
Evaluate expression: 2143289344 = 7fc00000

From this example, you can see that the maximum size of both nonpaged and paged pool
is approximately 2 GB, typical values on 32-bit systems with large amounts of RAM. On the
system used for this example, current nonpaged pool usage was 35 MB and paged pool usage
was 80 MB, so both pools were far from full.

Monitoring Pool Usage
The Memory performance counter object has separate counters for the size of nonpaged pool and
paged pool (both virtual and physical). In addition, the Poolmon utility (in the WDK) allows you to
monitor the detailed usage of nonpaged and paged pool. When you run Poolmon, you should see a
display like the one shown in Figure 10-6.

216 Windows Internals, Sixth Edition, Part 2

FIGURE 10-6 Poolmon output

The highlighted lines you might see represent changes to the display. (You can disable the high-
lighting feature by typing a slash (/) while running Poolmon. Type / again to reenable highlighting.)
Type ? while Poolmon is running to bring up its help screen. You can configure which pools you want
to monitor (paged, nonpaged, or both) and the sort order. For example, by pressing the P key until
only nonpaged allocations are shown, and then the D key to sort by the Diff (differences) column, you
can find out what kind of structures are most numerous in nonpaged pool. Also, the command-line
options are shown, which allow you to monitor specific tags (or every tag but one tag). For example,
the command poolmon –iCM will monitor only CM tags (allocations from the configuration manager,
which manages the registry). The columns have the meanings shown in Table 10-6.

TABLE 10-6 Poolmon Columns

Column Explanation

Tag Four-byte tag given to the pool allocation

Type Pool type (paged or nonpaged pool)

Allocs Count of all allocations (The number in parentheses shows the difference in the Allocs
column since the last update.)

Frees Count of all Frees (The number in parentheses shows the difference in the Frees column
since the last update.)

Diff Count of Allocs minus Frees

Bytes Total bytes consumed by this tag (The number in parentheses shows the difference in the
Bytes column since the last update.)

Per Alloc Size in bytes of a single instance of this tag

For a description of the meaning of the pool tags used by Windows, see the file \Program Files\
Debugging Tools for Windows\Triage\Pooltag.txt. (This file is installed as part of the Debugging Tools
for Windows, described in Chapter 1 in Part 1.) Because third-party device driver pool tags are not
listed in this file, you can use the –c switch on the 32-bit version of Poolmon that comes with the WDK
to generate a local pool tag file (Localtag.txt). This file will contain pool tags used by drivers found on

 CHAPTER 10 Memory Management 217

your system, including third-party drivers. (Note that if a device driver binary has been deleted after it
was loaded, its pool tags will not be recognized.)

Alternatively, you can search the device drivers on your system for a pool tag by using the
Strings.exe tool from Sysinternals. For example, the command

strings %SYSTEMROOT%\system32\drivers*.sys | findstr /i "abcd"

will display drivers that contain the string “abcd”. Note that device drivers do not necessarily have to
be located in %SystemRoot%\System32\Drivers—they can be in any folder. To list the full path of all
loaded drivers, open the Run dialog box from the Start menu, and then type Msinfo32. Click Soft-
ware Environment, and then click System Drivers. As already noted, if a device driver has been loaded
and then deleted from the system, it will not be listed here.

An alternative to view pool usage by device driver is to enable the pool tracking feature of Driver
Verifier, explained later in this chapter. While this makes the mapping from pool tag to device driver
unnecessary, it does require a reboot (to enable Driver Verifier on the desired drivers). After rebooting
with pool tracking enabled, you can either run the graphical Driver Verifier Manager (%SystemRoot%\
System32\Verifier.exe) or use the Verifier /Log command to send the pool usage information to a file.

Finally, you can view pool usage with the kernel debugger !poolused command. The command
!poolused 2 shows nonpaged pool usage sorted by pool tag using the most amount of pool. The
command !poolused 4 lists paged pool usage, again sorted by pool tag using the most amount of
pool. The following example shows the partial output from these two commands:

lkd> !poolused 2
 Sorting by NonPaged Pool Consumed
 Pool Used:
 NonPaged Paged
 Tag Allocs Used Allocs Used
 Cont 1669 15801344 0 0 Contiguous physical memory allocations for
 device drivers
 Int2 414 5760072 0 0 UNKNOWN pooltag 'Int2', please update
 pooltag.txt
 LSwi 1 2623568 0 0 initial work context
 EtwB 117 2327832 10 409600 Etw Buffer , Binary: nt!etw
 Pool 5 1171880 0 0 Pool tables, etc.

lkd> !poolused 4
 Sorting by Paged Pool Consumed
 Pool Used:
 NonPaged Paged
 Tag Allocs Used Allocs Used
 CM25 0 0 3921 16777216 Internal Configuration manager allocations ,
 Binary: nt!cm
 MmRe 0 0 720 13508136 UNKNOWN pooltag 'MmRe', please update
 pooltag.txt
 MmSt 0 0 5369 10827440 Mm section object prototype ptes ,
 Binary: nt!mm
 Ntff 9 2232 4210 3738480 FCB_DATA , Binary: ntfs.sys
 AlMs 0 0 212 2450448 ALPC message , Binary: nt!alpc
 ViMm 469 440584 608 1468888 Video memory manager , Binary: dxgkrnl.sys

218 Windows Internals, Sixth Edition, Part 2

EXPERIMENT: Troubleshooting a Pool Leak
In this experiment, you will fix a real paged pool leak on your system so that you can put to
use the techniques described in the previous section to track down the leak. The leak will be
generated by the Notmyfault tool from Sysinternals. When you run Notmyfault.exe, it loads the
device driver Myfault.sys and presents the following dialog box:

1. Click the Leak tab, ensure that Leak/Second is set to 1000 KB, and click the Leak Paged
button. This causes Notmyfault to begin sending requests to the Myfault device driver
to allocate paged pool. Notmyfault will continue sending requests until you click the
Stop Paged button. Note that paged pool is not normally released even when you
close a program that has caused it to occur (by interacting with a buggy device driver);
the pool is permanently leaked until you reboot the system. However, to make test-
ing easier, the Myfault device driver detects that the process was closed and frees its
allocations.

2. While the pool is leaking, first open Task Manager and click on the Performance tab.
You should notice Kernel Memory (MB): Paged climbing. You can also check this with
Process Explorer’s System Information display. (Click View, System Information, and
then the Memory tab.)

3. To determine the pool tag that is leaking, run Poolmon and press the B key to sort
by the number of bytes. Press P twice so that Poolmon is showing only paged pool.
You should notice the pool tag “Leak” climbing to the top of the list. (Poolmon shows
changes to pool allocations by highlighting the lines that change.)

 CHAPTER 10 Memory Management 219

4. Now press the Stop Paged button so that you don’t exhaust paged pool on your
system.

5. Using the technique described in the previous section, run Strings (from Sysinternals)
to look for driver binaries that contain the pool tag “Leak”:

Strings %SystemRoot%\system32\drivers*.sys | findstr Leak

This should display a match on the file Myfault.sys, thus confirming it as the driver us-
ing the “Leak” pool tag.

Look-Aside Lists
Windows also provides a fast memory allocation mechanism called look-aside lists. The basic dif-
ference between pools and look-aside lists is that while general pool allocations can vary in size, a
look-aside list contains only fixed-sized blocks. Although the general pools are more flexible in terms
of what they can supply, look-aside lists are faster because they don’t use any spinlocks.

Executive components and device drivers can create look-aside lists that match the size of fre-
quently allocated data structures by using the ExInitializeNPagedLookasideList and ExInitialize-
PagedLookasideList functions (documented in the WDK). To minimize the overhead of multiproces-
sor synchronization, several executive subsystems (such as the I/O manager, cache manager, and
object manager) create separate look-aside lists for each processor for their frequently accessed data
structures. The executive also creates a general per-processor paged and nonpaged look-aside list for
small allocations (256 bytes or less).

If a look-aside list is empty (as it is when it’s first created), the system must allocate from paged or
nonpaged pool. But if it contains a freed block, the allocation can be satisfied very quickly. (The list
grows as blocks are returned to it.) The pool allocation routines automatically tune the number of
freed buffers that look-aside lists store according to how often a device driver or executive subsys-
tem allocates from the list—the more frequent the allocations, the more blocks are stored on a list.
Look-aside lists are automatically reduced in size if they aren’t being allocated from. (This check hap-
pens once per second when the balance set manager system thread wakes up and calls the function
ExAdjustLookasideDepth.)

220 Windows Internals, Sixth Edition, Part 2

EXPERIMENT: Viewing the System Look-Aside Lists
You can display the contents and sizes of the various system look-aside lists with the kernel
debugger !lookaside command. The following excerpt is from the output of this command:

lkd> !lookaside

Lookaside "nt!IopSmallIrpLookasideList" @ 81f47c00 "Irps"
 Type = 0000 NonPagedPool
 Current Depth = 3 Max Depth = 4
 Size = 148 Max Alloc = 592
 AllocateMisses = 930 FreeMisses = 780
 TotalAllocates = 13748 TotalFrees = 13601
 Hit Rate = 93% Hit Rate = 94%

Lookaside "nt!IopLargeIrpLookasideList" @ 81f47c80 "Irpl"
 Type = 0000 NonPagedPool
 Current Depth = 4 Max Depth = 4
 Size = 472 Max Alloc = 1888
 AllocateMisses = 16555 FreeMisses = 15636
 TotalAllocates = 59287 TotalFrees = 58372
 Hit Rate = 72% Hit Rate = 73%

Lookaside "nt!IopMdlLookasideList" @ 81f47b80 "Mdl "
 Type = 0000 NonPagedPool
 Current Depth = 4 Max Depth = 4
 Size = 96 Max Alloc = 384
 AllocateMisses = 16287 FreeMisses = 15474
 TotalAllocates = 72835 TotalFrees = 72026
 Hit Rate = 77% Hit Rate = 78%
...

Total NonPaged currently allocated for above lists = 0
Total NonPaged potential for above lists = 3280
Total Paged currently allocated for above lists = 744
Total Paged potential for above lists = 1536

Heap Manager

Most applications allocate smaller blocks than the 64-KB minimum allocation granularity possible
using page granularity functions such as VirtualAlloc and VirtualAllocExNuma. Allocating such a large
area for relatively small allocations is not optimal from a memory usage and performance standpoint.
To address this need, Windows provides a component called the heap manager, which manages al-
locations inside larger memory areas reserved using the page granularity memory allocation func-
tions. The allocation granularity in the heap manager is relatively small: 8 bytes on 32-bit systems, and
16 bytes on 64-bit systems. The heap manager has been designed to optimize memory usage and
performance in the case of these smaller allocations.

 CHAPTER 10 Memory Management 221

The heap manager exists in two places: Ntdll.dll and Ntoskrnl.exe. The subsystem APIs (such as
the Windows heap APIs) call the functions in Ntdll, and various executive components and device
drivers call the functions in Ntoskrnl. Its native interfaces (prefixed with Rtl) are available only for use
in internal Windows components or kernel-mode device drivers. The documented Windows API inter-
faces to the heap (prefixed with Heap) are forwarders to the native functions in Ntdll.dll. In addition,
legacy APIs (prefixed with either Local or Global) are provided to support older Windows applications,
which also internally call the heap manager, using some of its specialized interfaces to support legacy
behavior. The C runtime (CRT) also uses the heap manager when using functions such as malloc, free,
and the C++ new operator. The most common Windows heap functions are:

 ■ HeapCreate or HeapDestroy Creates or deletes, respectively, a heap. The initial reserved and
committed size can be specified at creation.

 ■ HeapAlloc Allocates a heap block.

 ■ HeapFree Frees a block previously allocated with HeapAlloc.

 ■ HeapReAlloc Changes the size of an existing allocation (grows or shrinks an existing block).

 ■ HeapLock or HeapUnlock Controls mutual exclusion to the heap operations.

 ■ HeapWalk Enumerates the entries and regions in a heap.

Types of Heaps
Each process has at least one heap: the default process heap. The default heap is created at process
startup and is never deleted during the process’s lifetime. It defaults to 1 MB in size, but it can be
made bigger by specifying a starting size in the image file by using the /HEAP linker flag. This size
is just the initial reserve, however—it will expand automatically as needed. (You can also specify the
initial committed size in the image file.)

The default heap can be explicitly used by a program or implicitly used by some Windows internal
functions. An application can query the default process heap by making a call to the Windows func-
tion GetProcessHeap. Processes can also create additional private heaps with the HeapCreate function.
When a process no longer needs a private heap, it can recover the virtual address space by calling
HeapDestroy. An array with all heaps is maintained in each process, and a thread can query them with
the Windows function GetProcessHeaps.

A heap can manage allocations either in large memory regions reserved from the memory man-
ager via VirtualAlloc or from memory mapped file objects mapped in the process address space.
The latter approach is rarely used in practice, but it’s suitable for scenarios where the content of
the blocks needs to be shared between two processes or between a kernel-mode and a user-mode
component. The Win32 GUI subsystem driver (Win32k.sys) uses such a heap for sharing GDI and User
objects with user mode. If a heap is built on top of a memory mapped file region, certain constraints
apply with respect to the component that can call heap functions. First, the internal heap structures

222 Windows Internals, Sixth Edition, Part 2

use pointers, and therefore do not allow remapping to different addresses in other processes. Second,
the synchronization across multiple processes or between a kernel component and a user process
is not supported by the heap functions. Also, in the case of a shared heap between user mode and
kernel mode, the user-mode mapping should be read-only to prevent user-mode code from corrupt-
ing the heap’s internal structures, which would result in a system crash. The kernel-mode driver is also
responsible for not putting any sensitive data in a shared heap to avoid leaking it to user mode.

Heap Manager Structure
As shown in Figure 10-7, the heap manager is structured in two layers: an optional front-end layer and
the core heap. The core heap handles the basic functionality and is mostly common across the user-
mode and kernel-mode heap implementations. The core functionality includes the management of
blocks inside segments, the management of the segments, policies for extending the heap, commit-
ting and decommitting memory, and management of the large blocks.

Windows heap APIs
(HeapAlloc, HeapFree, LocalAlloc, GlobalAlloc, etc.)

Application

Front-end heap layer
(optional)

Core heap layer

 Memory manager

Heap manager

FIGURE 10-7 Heap manager layers

For user-mode heaps only, an optional front-end heap layer can exist on top of the existing core
functionality. The only front-end supported on Windows is the Low Fragmentation Heap (LFH). Only
one front-end layer can be used for one heap at one time.

 CHAPTER 10 Memory Management 223

Heap Synchronization
The heap manager supports concurrent access from multiple threads by default. However, if a process
is single threaded or uses an external mechanism for synchronization, it can tell the heap manager to
avoid the overhead of synchronization by specifying HEAP_NO_SERIALIZE either at heap creation or
on a per-allocation basis.

A process can also lock the entire heap and prevent other threads from performing heap opera-
tions for operations that would require consistent states across multiple heap calls. For instance, enu-
merating the heap blocks in a heap with the Windows function HeapWalk requires locking the heap if
multiple threads can perform heap operations simultaneously.

If heap synchronization is enabled, there is one lock per heap that protects all internal heap struc-
tures. In heavily multithreaded applications (especially when running on multiprocessor systems), the
heap lock might become a significant contention point. In that case, performance might be improved
by enabling the front-end heap, described in an upcoming section.

The Low Fragmentation Heap
Many applications running in Windows have relatively small heap memory usage (usually less than
1 MB). For this class of applications, the heap manager’s best-fit policy helps keep a low memory
footprint for each process. However, this strategy does not scale for large processes and multiproces-
sor machines. In these cases, memory available for heap usage might be reduced as a result of heap
fragmentation. Performance can suffer in scenarios where only certain sizes are often used concur-
rently from different threads scheduled to run on different processors. This happens because several
processors need to modify the same memory location (for example, the head of the look-aside list for
that particular size) at the same time, thus causing significant contention for the corresponding cache
line.

The LFH avoids fragmentation by managing allocated blocks in predetermined different block-size
ranges called buckets. When a process allocates memory from the heap, the LFH chooses the bucket
that maps to the smallest block large enough to hold the required size. (The smallest block is 8 bytes.)
The first bucket is used for allocations between 1 and 8 bytes, the second for allocations between 9
and 16 bytes, and so on, until the thirty-second bucket, which is used for allocations between 249
and 256 bytes, followed by the thirty-third bucket, which is used for allocations between 257 and 272
bytes, and so on. Finally, the one hundred twenty-eighth bucket, which is the last, is used for alloca-
tions between 15,873 and 16,384 bytes. (This is known as a binary buddy system.) Table 10-7 summa-
rizes the different buckets, their granularity, and the range of sizes they map to.

224 Windows Internals, Sixth Edition, Part 2

TABLE 10-7 Buckets

Buckets Granularity Range

1–32 8 1–256

33–48 16 257–512

49–64 32 513–1,024

65–80 64 1,025–2,048

81–96 128 2,049–4,096

97–112 256 4,097–8,194

113–128 512 8,195–16,384

The LFH addresses these issues by using the core heap manager and look-aside lists. The Windows
heap manager implements an automatic tuning algorithm that can enable the LFH by default under
certain conditions, such as lock contention or the presence of popular size allocations that have
shown better performance with the LFH enabled. For large heaps, a significant percentage of alloca-
tions is frequently grouped in a relatively small number of buckets of certain sizes. The allocation
strategy used by LFH is to optimize the usage for these patterns by efficiently handling same-size
blocks.

To address scalability, the LFH expands the frequently accessed internal structures to a number of
slots that is two times larger than the current number of processors on the machine. The assignment
of threads to these slots is done by an LFH component called the affinity manager. Initially, the LFH
starts using the first slot for heap allocations; however, if a contention is detected when accessing
some internal data, the LFH switches the current thread to use a different slot. Further contentions will
spread threads on more slots. These slots are controlled for each size bucket to improve locality and
minimize the overall memory consumption.

Even if the LFH is enabled as a front-end heap, the less frequent allocation sizes may still continue
to use the core heap functions to allocate memory, while the most popular allocation classes will be
performed from the LFH. The LFH can also be disabled by using the HeapSetInformation API with the
HeapCompatibilityInformation class.

Heap Security Features
As the heap manager has evolved, it has taken an increased role in early detection of heap usage
errors and in mitigating effects of potential heap-based exploits. These measures exist to lessen the
security effect of potential vulnerabilities in applications. The metadata used by the heap for internal
management is packed with a high degree of randomization to make it difficult for an attempted
exploit to patch the internal structures to prevent crashes or conceal the attack attempt. These blocks
are also subject to an integrity check mechanism on the header to detect simple corruptions such as
buffer overruns. Finally, the heap also uses a small degree of randomization of the base address (or
handle). By using the HeapSetInformation API with the HeapEnableTerminationOnCorruption class,
processes can opt in for an automatic termination in case of detected inconsistencies to avoid execut-
ing unknown code.

 CHAPTER 10 Memory Management 225

As an effect of block metadata randomization, using the debugger to simply dump a block header
as an area of memory is not that useful. For example, the size of the block and whether it is busy or
not are not easy to spot from a regular dump. The same applies to LFH blocks; they have a different
type of metadata stored in the header, partially randomized as well. To dump these details, the !heap
–i command in the debugger does all the work to retrieve the metadata fields from a block, flag-
ging checksum or free list inconsistencies as well if they exist. The command works for both the LFH
and regular heap blocks. The total size of the blocks, the user requested size, the segment owning
the block, as well as the header partial checksum are available in the output, as shown in the follow-
ing sample. Because the randomization algorithm uses the heap granularity, the !heap –i command
should be used only in the proper context of the heap containing the block. In the example, the heap
handle is 0x001a0000. If the current heap context was different, the decoding of the header would be
incorrect. To set the proper context, the same !heap –i command with the heap handle as an argu-
ment needs to be executed first.

0:000> !heap -i 001a0000
Heap context set to the heap 0x001a0000
0:000> !heap -i 1e2570
Detailed information for block entry 001e2570
Assumed heap : 0x001a0000 (Use !heap -i NewHeapHandle to change)
Header content : 0x1570F4EC 0x0C0015BE (decoded : 0x07010006 0x0C00000D)
Owning segment : 0x001a0000 (offset 0)
Block flags : 0x1 (busy)
Total block size : 0x6 units (0x30 bytes)
Requested size : 0x24 bytes (unused 0xc bytes)
Previous block size: 0xd units (0x68 bytes)
Block CRC : OK - 0x7
Previous block : 0x001e2508
Next block : 0x001e25a0

Heap Debugging Features
The heap manager leverages the 8 bytes used to store internal metadata as a consistency checkpoint,
which makes potential heap usage errors more obvious, and also includes several features to help
detect bugs by using the following heap functions:

 ■ Enable tail checking The end of each block carries a signature that is checked when the
block is released. If a buffer overrun destroyed the signature entirely or partially, the heap will
report this error.

 ■ Enable free checking A free block is filled with a pattern that is checked at various points
when the heap manager needs to access the block (such as at removal from the free list to
satisfy an allocate request). If the process continued to write to the block after freeing it, the
heap manager will detect changes in the pattern and the error will be reported.

 ■ Parameter checking This function consists of extensive checking of the parameters passed
to the heap functions.

226 Windows Internals, Sixth Edition, Part 2

 ■ Heap validation The entire heap is validated at each heap call.

 ■ Heap tagging and stack traces support This function supports specifying tags for alloca-
tion and/or captures user-mode stack traces for the heap calls to help narrow the possible
causes of a heap error.

The first three options are enabled by default if the loader detects that a process is started under
the control of a debugger. (A debugger can override this behavior and turn off these features.) The
heap debugging features can be specified for an executable image by setting various debugging
flags in the image header using the Gflags tool. (See the section “Windows Global Flags” in Chapter
3 in Part 1.) Or, heap debugging options can be enabled using the !heap command in the standard
Windows debuggers. (See the debugger help for more information.)

Enabling heap debugging options affects all heaps in the process. Also, if any of the heap debug-
ging options are enabled, the LFH will be disabled automatically and the core heap will be used (with
the required debugging options enabled). The LFH is also not used for heaps that are not expandable
(because of the extra overhead added to the existing heap structures) or for heaps that do not allow
serialization.

Pageheap
Because the tail and free checking options described in the preceding sections might be discover-
ing corruptions that occurred well before the problem was detected, an additional heap debug-
ging capability, called pageheap, is provided that directs all or part of the heap calls to a different
heap manager. Pageheap is enabled using the Gflags tool (which is part of the Debugging Tools for
Windows). When enabled, the heap manager places allocations at the end of pages and reserves the
immediately following page. Since reserved pages are not accessible, if a buffer overrun occurs it will
cause an access violation, making it easier to detect the offending code. Optionally, pageheap allows
placing the blocks at the beginning of the pages, with the preceding page reserved, to detect buffer
underrun problems. (This is a rare occurrence.) The pageheap also can protect freed pages against
any access to detect references to heap blocks after they have been freed.

Note that using the pageheap can result in running out of address space because of the signifi-
cant overhead added for small allocations. Also, performance can suffer as a result of the increase of
references to demand zero pages, loss of locality, and additional overhead caused by frequent calls to
validate heap structures. A process can reduce the impact by specifying that the pageheap be used
only for blocks of certain sizes, address ranges, and/or originating DLLs.

For more information on pageheap, see the Debugging Tools for Windows Help file.

 CHAPTER 10 Memory Management 227

Fault Tolerant Heap
Corruption of heap metadata has been identified by Microsoft as one of the most common causes of
application failures. Windows includes a feature called the fault tolerant heap, or FTH, in an attempt to
mitigate these problems and to provide better problem-solving resources to application developers.
The fault tolerant heap is implemented in two primary components: the detection component, or FTH
server, and the mitigation component, or FTH client.

The detection component is a DLL, Fthsvc.dll, that is loaded by the Windows Security Center
service (Wscsvc.dll, which in turn runs in one of the shared service processes under the local service
account). It is notified of application crashes by the Windows Error Reporting service.

When an application crashes in Ntdll.dll, with an error status indicating either an access violation
or a heap corruption exception, if it is not already on the FTH service’s list of “watched” applications,
the service creates a “ticket” for the application to hold the FTH data. If the application subsequently
crashes more than four times in an hour, the FTH service configures the application to use the FTH
client in the future.

The FTH client is an application compatibility shim. This mechanism has been used since Windows
XP to allow applications that depend on particular behavior of older Windows systems to run on later
systems. In this case, the shim mechanism intercepts the calls to the heap routines and redirects them
to its own code. The FTH code implements a number of “mitigations” that attempt to allow the ap-
plication to survive despite various heap-related errors.

For example, to protect against small buffer overrun errors, the FTH adds 8 bytes of padding and
an FTH reserved area to each allocation. To address a common scenario in which a block of heap is
accessed after it is freed, HeapFree calls are implemented only after a delay: ”freed” blocks are put
on a list, and only freed when the total size of the blocks on the list exceeds 4 MB. Attempts to free
regions that are not actually part of the heap, or not part of the heap identified by the heap handle
argument to HeapFree, are simply ignored. In addition, no blocks are actually freed once exit or
RtlExitUserProcess has been called.

The FTH server continues to monitor the failure rate of the application after the mitigations have
been installed. If the failure rate does not improve, the mitigations are removed.

The activity of the fault tolerant heap can be observed in the Event Viewer. Type eventvwr.msc
at a Run prompt, and then navigate in the left pane to Event Viewer, Applications And Services Logs,
Microsoft, Windows, Fault-Tolerant-Heap. Click on the Operational log. It may be disabled completely
in the registry: in the key HKLM\Software\Microsoft\FTH, set the value Enabled to 0.

The FTH does not normally operate on services, only applications, and it is disabled on Windows
server systems for performance reasons. A system administrator can manually apply the shim to an
application or service executable by using the Application Compatibility Toolkit.

228 Windows Internals, Sixth Edition, Part 2

Virtual Address Space Layouts

This section describes the components in the user and system address space, followed by the specific
layouts on 32-bit and 64-bit systems. This information helps you to understand the limits on process
and system virtual memory on both platforms.

Three main types of data are mapped into the virtual address space in Windows: per-process pri-
vate code and data, sessionwide code and data, and systemwide code and data.

As explained in Chapter 1 in Part 1, each process has a private address space that cannot be ac-
cessed by other processes. That is, a virtual address is always evaluated in the context of the current
process and cannot refer to an address defined by any other process. Threads within the process can
therefore never access virtual addresses outside this private address space. Even shared memory is
not an exception to this rule, because shared memory regions are mapped into each participating
process, and so are accessed by each process using per-process addresses. Similarly, the cross-process
memory functions (ReadProcessMemory and WriteProcessMemory) operate by running kernel-mode
code in the context of the target process.

The information that describes the process virtual address space, called page tables, is described
in the section on address translation. Each process has its own set of page tables. They are stored in
kernel-mode-only accessible pages so that user-mode threads in a process cannot modify their own
address space layout.

Session space contains information that is common to each session. (For a description of sessions,
see Chapter 2 in Part 1.) A session consists of the processes and other system objects (such as the
window station, desktops, and windows) that represent a single user’s logon session. Each session
has a session-specific paged pool area used by the kernel-mode portion of the Windows subsystem
(Win32k.sys) to allocate session-private GUI data structures. In addition, each session has its own
copy of the Windows subsystem process (Csrss.exe) and logon process (Winlogon.exe). The session
manager process (Smss.exe) is responsible for creating new sessions, which includes loading a session-
private copy of Win32k.sys, creating the session-private object manager namespace, and creating the
session-specific instances of the Csrss and Winlogon processes. To virtualize sessions, all sessionwide
data structures are mapped into a region of system space called session space. When a process is
created, this range of addresses is mapped to the pages associated with the session that the process
belongs to.

Finally, system space contains global operating system code and data structures visible by kernel-
mode code regardless of which process is currently executing. System space consists of the following
components:

 ■ System code Contains the operating system image, HAL, and device drivers used to boot
the system.

 ■ Nonpaged pool Nonpageable system memory heap.

 CHAPTER 10 Memory Management 229

 ■ Paged pool Pageable system memory heap.

 ■ System cache Virtual address space used to map files open in the system cache. (See Chap-
ter 11 for detailed information.)

 ■ System page table entries (PTEs) Pool of system PTEs used to map system pages such as
I/O space, kernel stacks, and memory descriptor lists. You can see how many system PTEs are
available by examining the value of the Memory: Free System Page Table Entries counter in
Performance Monitor.

 ■ System working set lists The working set list data structures that describe the three system
working sets (the system cache working set, the paged pool working set, and the system PTEs
working set).

 ■ System mapped views Used to map Win32k.sys, the loadable kernel-mode part of the
Windows subsystem, as well as kernel-mode graphics drivers it uses. (See Chapter 2 in Part 1
for more information on Win32k.sys.)

 ■ Hyperspace A special region used to map the process working set list and other per-process
data that doesn’t need to be accessible in arbitrary process context. Hyperspace is also used
to temporarily map physical pages into the system space. One example of this is invalidating
page table entries in page tables of processes other than the current one (such as when a page
is removed from the standby list).

 ■ Crash dump information Reserved to record information about the state of a system crash.

 ■ HAL usage System memory reserved for HAL-specific structures.

Now that we’ve described the basic components of the virtual address space in Windows, let’s
examine the specific layout on the x86, IA64, and x64 platforms.

x86 Address Space Layouts
By default, each user process on 32-bit versions of Windows has a 2-GB private address space; the
operating system takes the remaining 2 GB. However, the system can be configured with the increase-
userva BCD boot option to permit user address spaces up to 3 GB. Two possible address space layouts
are shown in Figure 10-8.

The ability for a 32-bit process to grow beyond 2 GB was added to accommodate the need for
32-bit applications to keep more data in memory than could be done with a 2-GB address space. Of
course, 64-bit systems provide a much larger address space.

230 Windows Internals, Sixth Edition, Part 2

Application code
Global variables

Per-thread stacks
DLL code

3-GB user space

Kernel and executive
HAL

Boot drivers

1-GB system space

Process page tables

System cache
Paged pool

Nonpaged pool

BFFFFFFF

C0000000

FFFFFFFF

FFC00000

C0000000

C0800000 (x86)
C0C00000 (x86 pae)

80000000

7FFFEFFF

00000000

7FFFF000
64-KB no access area

C0400000 (x86)
C0800000 (x86 pae) Hyperspace

00000000

FFFFFFFF

Reserved for
HAL usage

Dynamic kernel space

Dynamic kernel space

Kernel and executive
HAL

Boot drivers

Dynamic kernel space

Reserved for
HAL usage

FIGURE 10-8 x86 virtual address space layouts

For a process to grow beyond 2 GB of address space, the image file must have the IMAGE_FILE_
LARGE_ADDRESS_AWARE flag set in the image header. Otherwise, Windows reserves the additional
address space for that process so that the application won’t see virtual addresses greater than
0x7FFFFFFF. Access to the additional virtual memory is opt-in because some applications have as-
sumed that they’d be given at most 2 GB of the address space. Since the high bit of a pointer ref-
erencing an address below 2 GB is always zero, these applications would use the high bit in their
pointers as a flag for their own data, clearing it, of course, before referencing the data. If they ran with
a 3-GB address space, they would inadvertently truncate pointers that have values greater than 2 GB,
causing program errors, including possible data corruption. You set this flag by specifying the linker
flag /LARGEADDRESSAWARE when building the executable. This flag has no effect when running the
application on a system with a 2-GB user address space.

 CHAPTER 10 Memory Management 231

Several system images are marked as large address space aware so that they can take advantage of
systems running with large process address spaces. These include:

 ■ Lsass.exe The Local Security Authority Subsystem

 ■ Inetinfo.exe Internet Information Server

 ■ Chkdsk.exe The Check Disk utility

 ■ Smss.exe The Session Manager

 ■ Dllhst3g.exe A special version of Dllhost.exe (for COM+ applications)

 ■ Dispdiag.exe The display diagnostic dump utility

 ■ Esentutl.exe The Active Directory Database Utility tool

EXPERIMENT: Checking If an Application Is Large Address Aware
You can use the Dumpbin utility from the Windows SDK to check other executables to see if
they support large address spaces. Use the /HEADERS flag to display the results. Here’s a sample
output of Dumpbin on the Session Manager:

C:\Program Files\Microsoft SDKs\Windows\v7.1>dumpbin /headers c:\windows\system32\smss.exe
Microsoft (R) COFF/PE Dumper Version 10.00.40219.01
Copyright (C) Microsoft Corporation. All rights reserved.

Dump of file c:\windows\system32\smss.exe

PE signature found

File Type: EXECUTABLE IMAGE

FILE HEADER VALUES
 8664 machine (x64)
 5 number of sections
 4A5BC116 time date stamp Mon Jul 13 16:19:50 2009
 0 file pointer to symbol table
 0 number of symbols
 F0 size of optional header
 22 characteristics
 Executable
 Application can handle large (>2GB) addresses

Finally, because memory allocations using VirtualAlloc, VirtualAllocEx, and VirtualAllocExNuma
start with low virtual addresses and grow higher by default, unless a process allocates a lot of virtual
memory or it has a very fragmented virtual address space, it will never get back very high virtual
addresses. Therefore, for testing purposes, you can force memory allocations to start from high ad-
dresses by using the MEM_TOP_DOWN flag or by adding a DWORD registry value, HKLM\SYSTEM\
CurrentControlSet\Control\Session Manager\Memory Management\AllocationPreference, and setting
it to 0x100000.

232 Windows Internals, Sixth Edition, Part 2

Figure 10-9 shows two screen shots of the TestLimit utility (shown in previous experiments) leaking
memory on a 32-bit Windows machine booted with and without the increaseuserva option set to
3 GB.

Note that in the second screen shot, TestLimit was able to leak almost 3 GB, as expected. This is
only possible because TestLimit was linked with /LARGEADDRESSAWARE. Had it not been, the results
would have been essentially the same as on the system booted without increaseuserva.

FIGURE 10-9 TestLimit leaking memory on a 32-bit Windows computer, with and without increaseuserva
set to 3 GB

x86 System Address Space Layout
The 32-bit versions of Windows implement a dynamic system address space layout by using a virtual
address allocator (we’ll describe this functionality later in this section). There are still a few specifically
reserved areas, as shown in Figure 10-8. However, many kernel-mode structures use dynamic address
space allocation. These structures are therefore not necessarily virtually contiguous with themselves.
Each can easily exist in several disjointed pieces in various areas of system address space. The uses of
system address space that are allocated in this way include:

 ■ Nonpaged pool

 ■ Special pool

 ■ Paged pool

 ■ System page table entries (PTEs)

 ■ System mapped views

 ■ File system cache

 CHAPTER 10 Memory Management 233

 ■ File system structures (metadata)

 ■ Session space

x86 Session Space
For systems with multiple sessions, the code and data unique to each session are mapped into system
address space but shared by the processes in that session. Figure 10-10 shows the general layout of
session space.

Win32k.sys &
video drivers

MM_SESSION_SPACE
& session WSLs

Mapped views for this session

Paged pool for this session

FIGURE 10-10 x86 session space layout (not proportional)

The sizes of the components of session space, just like the rest of kernel system address space, are
dynamically configured and resized by the memory manager on demand.

EXPERIMENT: Viewing Sessions
You can display which processes are members of which sessions by examining the session ID.
This can be viewed with Task Manager, Process Explorer, or the kernel debugger. Using the ker-
nel debugger, you can list the active sessions with the !session command as follows:

lkd> !session
Sessions on machine: 3
Valid Sessions: 0 1 3
Current Session 1

Then you can set the active session using the !session –s command and display the address
of the session data structures and the processes in that session with the !sprocess command:

lkd> !session -s 3
Sessions on machine: 3
Implicit process is now 84173500

234 Windows Internals, Sixth Edition, Part 2

Using session 3

lkd> !sprocess
Dumping Session 3

_MM_SESSION_SPACE 9a83c000
_MMSESSION 9a83cd00
PROCESS 84173500 SessionId: 3 Cid: 0d78 Peb: 7ffde000 ParentCid: 0e80
 DirBase: 3ef53500 ObjectTable: 8588d820 HandleCount: 76.
 Image: csrss.exe

PROCESS 841a6030 SessionId: 3 Cid: 0c6c Peb: 7ffdc000 ParentCid: 0e80
 DirBase: 3ef53520 ObjectTable: 85897208 HandleCount: 94.
 Image: winlogon.exe

PROCESS 841d9cf0 SessionId: 3 Cid: 0d38 Peb: 7ffd6000 ParentCid: 0c6c
 DirBase: 3ef53540 ObjectTable: 8589d248 HandleCount: 165.
 Image: LogonUI.exe

...

To view the details of the session, dump the MM_SESSION_SPACE structure using the dt
command, as follows:

lkd> dt nt!_MM_SESSION_SPACE 9a83c000
 +0x000 ReferenceCount : 0n3
 +0x004 u : <unnamed-tag>
 +0x008 SessionId : 3
 +0x00c ProcessReferenceToSession : 0n4
 +0x010 ProcessList : _LIST_ENTRY [0x841735e4 - 0x841d9dd4]
 +0x018 LastProcessSwappedOutTime : _LARGE_INTEGER 0x0
 +0x020 SessionPageDirectoryIndex : 0x31fa3
 +0x024 NonPagablePages : 0x19
 +0x028 CommittedPages : 0x867
 +0x02c PagedPoolStart : 0x80000000 Void
 +0x030 PagedPoolEnd : 0xffbfffff Void
 +0x034 SessionObject : 0x854e2040 Void
 +0x038 SessionObjectHandle : 0x8000020c Void
 +0x03c ResidentProcessCount : 0n3
 +0x040 SessionPoolAllocationFailures : [4] 0
 +0x050 ImageList : _LIST_ENTRY [0x8519bef8 - 0x85296370]
 +0x058 LocaleId : 0x409
 +0x05c AttachCount : 0
 +0x060 AttachGate : _KGATE
 +0x070 WsListEntry : _LIST_ENTRY [0x82772408 - 0x97044070]
 +0x080 Lookaside : [25] _GENERAL_LOOKASIDE
...

 CHAPTER 10 Memory Management 235

EXPERIMENT: Viewing Session Space Utilization
You can view session space memory utilization with the !vm 4 command in the kernel debug-
ger. For example, the following output was taken from a 32-bit Windows client system with the
default two sessions created at system startup:

lkd> !vm 4
.
.
 Terminal Server Memory Usage By Session:

 Session ID 0 @ 9a8c7000:
 Paged Pool Usage: 2372K
 Commit Usage: 4832K

 Session ID 1 @ 9a881000:
 Paged Pool Usage: 14120K
 Commit Usage: 16704K

System Page Table Entries
System page table entries (PTEs) are used to dynamically map system pages such as I/O space, kernel
stacks, and the mapping for memory descriptor lists. System PTEs aren’t an infinite resource. On 32-
bit Windows, the number of available system PTEs is such that the system can theoretically describe
2 GB of contiguous system virtual address space. On 64-bit Windows, system PTEs can describe up to
128 GB of contiguous virtual address space.

EXPERIMENT: Viewing System PTE Information
You can see how many system PTEs are available by examining the value of the Memory: Free
System Page Table Entries counter in Performance Monitor or by using the !sysptes or !vm com-
mand in the debugger. You can also dump the _MI_SYSTEM_PTE_TYPE structure associated with
the MiSystemPteInfo global variable. This will also show you how many PTE allocation failures
occurred on the system—a high count indicates a problem and possibly a system PTE leak.

0: kd> !sysptes

System PTE Information
 Total System Ptes 307168

 starting PTE: c0200000

 free blocks: 32 total free: 3856 largest free block: 542

236 Windows Internals, Sixth Edition, Part 2

Kernel Stack PTE Information
Unable to get syspte index array - skipping bins

 starting PTE: c0200000

 free blocks: 165 total free: 1503 largest free block: 75

0: kd> ? nt!MiSystemPteInfo
Evaluate expression: -2100014016 = 82d45440

0: kd> dt _MI_SYSTEM_PTE_TYPE 82d45440
nt!_MI_SYSTEM_PTE_TYPE
 +0x000 Bitmap : _RTL_BITMAP
 +0x008 Flags : 3
 +0x00c Hint : 0x2271f

 +0x010 BasePte : 0xc0200000 _MMPTE

 +0x014 FailureCount : 0x82d45468 -> 0

 +0x018 Vm : 0x82d67300 _MMSUPPORT

 +0x01c TotalSystemPtes : 0n7136

 +0x020 TotalFreeSystemPtes : 0n4113

 +0x024 CachedPteCount : 0n0

 +0x028 PteFailures : 0

 +0x02c SpinLock : 0

 +0x02c GlobalMutex : (null)

If you are seeing lots of system PTE failures, you can enable system PTE tracking by creat-
ing a new DWORD value in the HKLM\SYSTEM\CurrentControlSet\Control\Session Manager\
Memory Management key called TrackPtes and setting its value to 1. You can then use
!sysptes 4 to show a list of allocators, as shown here:

lkd>!sysptes 4
0x1ca2 System PTEs allocated to mapping locked pages

VA MDL PageCount Caller/CallersCaller
ecbfdee8 f0ed0958 2 netbt!DispatchIoctls+0x56a/netbt!NbtDispatchDevCtrl+0xcd
f0a8d050 f0ed0510 1 netbt!DispatchIoctls+0x64e/netbt!NbtDispatchDevCtrl+0xcd
ecef5000 1 20 nt!MiFindContiguousMemory+0x63
ed447000 0 2 Ntfs!NtfsInitializeVcb+0x30e/Ntfs!NtfsInitializeDevice+0x95
ee1ce000 0 2 Ntfs!NtfsInitializeVcb+0x30e/Ntfs!NtfsInitializeDevice+0x95
ed9c4000 1 ca nt!MiFindContiguousMemory+0x63
eda8e000 1 ca nt!MiFindContiguousMemory+0x63
efb23d68 f8067888 2 mrxsmb!BowserMapUsersBuffer+0x28
efac5af4 f8b15b98 2 ndisuio!NdisuioRead+0x54/nt!NtReadFile+0x566
f0ac688c f848ff88 1 ndisuio!NdisuioRead+0x54/nt!NtReadFile+0x566
efac7b7c f82fc2a8 2 ndisuio!NdisuioRead+0x54/nt!NtReadFile+0x566
ee4d1000 1 38 nt!MiFindContiguousMemory+0x63
efa4f000 0 2 Ntfs!NtfsInitializeVcb+0x30e/Ntfs!NtfsInitializeDevice+0x95
efa53000 0 2 Ntfs!NtfsInitializeVcb+0x30e/Ntfs!NtfsInitializeDevice+0x95
eea89000 0 1 TDI!DllInitialize+0x4f/nt!MiResolveImageReferences+0x4bc
ee798000 1 20 VIDEOPRT!pVideoPortGetDeviceBase+0x1f1
f0676000 1 10 hal!HalpGrowMapBuffers+0x134/hal!HalpAllocateAdapterEx+0x1ff
f0b75000 1 1 cpqasm2+0x2af67/cpqasm2+0x7847
f0afa000 1 1 cpqasm2+0x2af67/cpqasm2+0x6d82

 CHAPTER 10 Memory Management 237

64-Bit Address Space Layouts
The theoretical 64-bit virtual address space is 16 exabytes (18,446,744,073,709,551,616 bytes, or
approximately 18.44 billion billion bytes). Unlike on x86 systems, where the default address space is
divided in two parts (half for a process and half for the system), the 64-bit address is divided into a
number of different size regions whose components match conceptually the portions of user, system,
and session space. The various sizes of these regions, listed in Table 10-8, represent current imple-
mentation limits that could easily be extended in future releases. Clearly, 64 bits provides a tremen-
dous leap in terms of address space sizes.

TABLE 10-8 64-Bit Address Space Sizes

Region IA64 x64

Process Address Space 7,152 GB 8,192 GB

System PTE Space 128 GB 128 GB

System Cache 1 TB 1 TB

Paged Pool 128 GB 128 GB

Nonpaged Pool 75% of physical memory 75% of physical memory

Also, on 64-bit Windows, another useful feature of having an image that is large address space aware
is that while running on 64-bit Windows (under Wow64), such an image will actually receive all 4 GB of
user address space available—after all, if the image can support 3-GB pointers, 4-GB pointers should
not be any different, because unlike the switch from 2 GB to 3 GB, there are no additional bits involved.
Figure 10-11 shows TestLimit, running as a 32-bit application, reserving address space on a 64-bit
Windows machine, followed by the 64-bit version of TestLimit leaking memory on the same machine.

FIGURE 10-11 32-bit and 64-bit TestLimit reserving address space on a 64-bit Windows computer

Note that these results depend on the two versions of TestLimit having been linked with the
/LARGEADDRESSAWARE option. Had they not been, the results would have been about 2 GB for each.
64-bit applications linked without /LARGEADDRESSAWARE are constrained to the first 2 GB of the
process virtual address space, just like 32-bit applications.

238 Windows Internals, Sixth Edition, Part 2

The detailed IA64 and x64 address space layouts vary slightly. The IA64 address space layout is
shown in Figure 10-12, and the x64 address space layout is shown in Figure 10-13.

..

0000000000000000

000006FBFFFEFFFF

User mode addresses: 0TB – 7GB

000006FBFFFF0000 64KB no access region
000006FC00000000 Alternate 4KB-page mappings

for x86 process emulation. Spans
8MB to allow for 4GB VA space.

000006FC00800000

000006FFFFFFFFFF

Hyperspace: working set lists
and per process memory

management structures mapped
in this 16GB region.

0000070000000000

000007FFFFFFFFFF

Page table self-mapping structures

1FFFFF0000000000
8GB leaf-level page table map

for user space
1FFFFF01FFFFFFFF

1FFFFFFFFFF00000 8KB parent directory (1st level)

1FFFFFFFC0000000

1FFFFFFFC07FFFFF

8MB page directory (2nd level)
table map for user space

..

..
2000000000000000

Win32k.sys
Session data structures.
This is an 8TB region.

3FFFFF0000000000

3FFFFF01FFFFFFFF

8GB leaf-level page table map
for session space

3FFFFFFFFFF00000
8KB parent directory (1st level)

8000000000000000
Physically addressable memory

for 50 bits of address space
mapped with VHPT 8KB pages

8004000000000000

E000000080000000 The HAL, kernel, initial drivers,
NLS data, and registry load in
this region, which physically

addresses memory

Kernel mode access only

9FFFFF0000000000 VHPT 64KB page for KSEG3 space
(not used)

3FFFFFFFC0000000

3FFFFFFFC07FFFFF

8MB page directory (2nd level)
table map for session space

..

..

E0000000FF002000

E0000000FFFFFFFF

Reserved for the HAL

E000000200000000

E000000E00000000

The system cache working set
information resides in this

16GB region.

E000002E00000000

Start of paged system area.
Kernel mode access only.

128GB.

E000012600000000

MM_SYSTEM_SPACE_START
for a length of

MI_DYNAMIC_KERNEL_VA_BYTES
is managed by the

MISystemVaBitMap. This is
typically 1TB and is used

for the system cache, system
PTEs, and special pool.

Initial and expansion nonpaged
pool. Kernel mode access only.

Up to 128GB.

8GB leaf-level page table map
for kernel space

FFFFFF0000000000

FFFFFF01FFFFFFFF

FFFFFFFFC0000000

FFFFFFFFC07FFFFF

8MB page directory (2nd level)
table map for kernel space

FFFFFFFFFFF00000 8KB parent directory (1st level)

Shared system pageE0000000FFFE0000

..

Note: MM_SYSTEM_SPACE_START was
deliberately assigned far apart from the top
of virtual memory so a machine with a large
number of bits of physical addressing that
has RAM present at the very top can fit (i.e.,
a PFN database virtual span of ~6TB is
required for 50-bit physical addressing using
an 8KB page size with 8-byte PTEs).

..

..
PFN database

Note: There is actually no gap between
MM_SYSTEM_SPACE_END and the PTE_KBASE
because only the low 43 bits of the VA
are decoded.

..

..

E000070000000000

E000000000000000

FIGURE 10-12 IA64 address space layout

 CHAPTER 10 Memory Management 239

Start of system space

0000000000000000
User mode addresses: 8TB minus 64KB

000007FFFFFF0000

000007FFFFFEFFFF

000007FFFFFFFFFF
64KB no access region

FFFFF68000000000 512GB four-level page table map
FFFFF70000000000 Hyperspace: working set lists and per

process memory management struc-
tures mapped in this 512GB region

FFFFF80000000000
Mappings initialized by the loader.

This is a 512GB region.
FFFFF88000000000 Start of system PTEs area.

Kernel mode access only. 128GB.

FFFFF78000000000 Shared system page
FFFFF78000001000 The system cache working set

information resides in this
512GB – 4K region

FFFF080000000000

..

Note: The ranges below are sign-extended for >43 bits and therefore can be
used with interlocked slists. The system address space above is NOT...

..

FFFFF98000000000

Win32k.sys. Session data structures.
This is a 512GB region.

PFN database

MM_SYSTEM_SPACE_START for a length
of MI_DYNAMIC_KERNEL_VA_BYTES is
managed by the MiSystemVaBitMap.

This is typically 1TB and is used for the
system cache, system PTEs,

and special pool.
FFFFFA8000000000

FFFFFFFF00C00000

Initial and expansion nonpaged pool.
Kernel mode access only.

Up to 128GB.

FFFFFFFFFFFFFFFF

Minimum 4MB reserved for the HAL.
Loader/HAL can consume additional
virtual accesss memory by leaving it

mapped at kernel bootup.

Note: A large VA range is deliberately reserved here to support machines with
a large number of bits of physical addressing with RAM present at the very
top (i.e., a PFN database virtual span of ~6TB is required for 49-bit physical
addressing using a 4KB page size with 8 byte PTEs)...

..

..

FFFFF90000000000

FFFFF8A000000000 Start of paged system area.
Kernel mode access only. 128GB.

FIGURE 10-13 x64 address space layout

240 Windows Internals, Sixth Edition, Part 2

x64 Virtual Addressing Limitations
As discussed previously, 64 bits of virtual address space allow for a possible maximum of 16 exabytes
(EB) of virtual memory, a notable improvement over the 4 GB offered by 32-bit addressing. With such
a copious amount of memory, it is obvious that today’s computers, as well as tomorrow’s foreseeable
machines, are not even close to requiring support for that much memory.

Accordingly, to simplify chip architecture and avoid unnecessary overhead, particularly in address
translation (to be described later), AMD’s and Intel’s current x64 processors implement only 256 TB of
virtual address space. That is, only the low-order 48 bits of a 64-bit virtual address are implemented.
However, virtual addresses are still 64 bits wide, occupying 8 bytes in registers or when stored in
memory. The high-order 16 bits (bits 48 through 63) must be set to the same value as the highest
order implemented bit (bit 47), in a manner similar to sign extension in two’s complement arithmetic.
An address that conforms to this rule is said to be a “canonical” address.

Under these rules, the bottom half of the address space thus starts at 0x0000000000000000,
as expected, but it ends at 0x00007FFFFFFFFFFF. The top half of the address space starts at
0xFFFF800000000000 and ends at 0xFFFFFFFFFFFFFFFF. Each “canonical” portion is 128 TB. As
newer processors implement more of the address bits, the lower half of memory will expand up-
ward, toward 0x7FFFFFFFFFFFFFFF, while the upper half of memory will expand downward, toward
0x8000000000000000 (a similar split to today’s memory space but with 32 more bits).

Windows x64 16-TB Limitation
Windows on x64 has a further limitation: of the 256 TB of virtual address space available on x64 pro-
cessors, Windows at present allows only the use of a little more than 16 TB. This is split into two 8-TB
regions, the user mode, per-process region starting at 0 and working toward higher addresses (end-
ing at 0x000007FFFFFFFFFF), and a kernel-mode, systemwide region starting at “all Fs” and working
toward lower addresses, ending at 0xFFFFF80000000000 for most purposes. This section describes
the origin of this 16-TB limit.

A number of Windows mechanisms have made, and continue to make, assumptions about usable
bits in addresses. Pushlocks, fast references, Patchguard DPC contexts, and singly linked lists are com-
mon examples of data structures that use bits within a pointer for nonaddressing purposes. Singly
linked lists, combined with the lack of a CPU instruction in the original x64 CPUs required to “port”
the data structure to 64-bit Windows, are responsible for this memory addressing limit on Windows
for x64.

Here is the SLIST_HEADER, the data structure Windows uses to represent an entry inside a list:

typedef union _SLIST_HEADER {
 ULONGLONG Alignment;
 struct {
 SLIST_ENTRY Next;
 USHORT Depth;
 USHORT Sequence;
 } DUMMYSTRUCTNAME;
} SLIST_HEADER, *PSLIST_HEADER;

 CHAPTER 10 Memory Management 241

Note that this is an 8-byte structure, guaranteed to be aligned as such, composed of three ele-
ments: the pointer to the next entry (32 bits, or 4 bytes) and depth and sequence numbers, each 16
bits (or 2 bytes). To create lock-free push and pop operations, the implementation makes use of an
instruction present on Pentium processors or higher—CMPXCHG8B (Compare and Exchange 8 bytes),
which allows the atomic modification of 8 bytes of data. By using this native CPU instruction, which
also supports the LOCK prefix (guaranteeing atomicity on a multiprocessor system), the need for a
spinlock to combine two 32-bit accesses is eliminated, and all operations on the list become lock free
(increasing speed and scalability).

On 64-bit computers, addresses are 64 bits, so the pointer to the next entry should logically be
64 bits. If the depth and sequence numbers remain within the same parameters, the system must
provide a way to modify at minimum 64+32 bits of data—or better yet, 128 bits, in order to increase
the entropy of the depth and sequence numbers. However, the first x64 processors did not imple-
ment the essential CMPXCHG16B instruction to allow this. The implementation, therefore, was written
to pack as much information as possible into only 64 bits, which was the most that could be modified
atomically at once. The 64-bit SLIST_HEADER thus looks like this:

struct { // 8-byte header
 ULONGLONG Depth:16;
 ULONGLONG Sequence:9;
 ULONGLONG NextEntry:39;
} Header8;

The first change is the reduction of the space for the sequence number to 9 bits instead of 16
bits, reducing the maximum sequence number the list can achieve. This leaves only 39 bits for the
pointer, still far from 64 bits. However, by forcing the structure to be 16-byte aligned when allocated,
4 more bits can be used because the bottom bits can now always be assumed to be 0. This gives 43
bits for addresses, but there is one more assumption that can be made. Because the implementation
of linked lists is used either in kernel mode or user mode but cannot be used across address spaces,
the top bit can be ignored, just as on 32-bit machines. The code will assume the address to be kernel
mode if called in kernel mode and vice versa. This allows us to address up to 44 bits of memory in the
 NextEntry pointer and is the defining constraint of the addressing limit in Windows.

Forty-four bits is a much better number than 32. It allows 16 TB of virtual memory to be described
and thus splits Windows into two even chunks of 8 TB for user-mode and kernel-mode memory.
Nevertheless, this is still 16 times smaller than the CPU’s own limit (48 bits is 256 TB), and even farther
still from the maximum that 64 bits can describe. So, with scalability in mind, some other bits do
exist in the SLIST_HEADER that define the type of header being dealt with. This means that when
the day comes when all x64 CPUs support 128-bit Compare and Exchange, Windows can easily take

242 Windows Internals, Sixth Edition, Part 2

advantage of it (and to do so before then would mean distributing two different kernel images).
Here’s a look at the full 8-byte header:

struct { // 8-byte header
 ULONGLONG Depth:16;
 ULONGLONG Sequence:9;
 ULONGLONG NextEntry:39;
 ULONGLONG HeaderType:1; // 0: 8-byte; 1: 16-byte
 ULONGLONG Init:1; // 0: uninitialized; 1: initialized
 ULONGLONG Reserved:59;
 ULONGLONG Region:3;
} Header8;

Note how the HeaderType bit is overlaid with the Depth bits and allows the implementation to deal
with 16-byte headers whenever support becomes available. For the sake of completeness, here is the
definition of the 16-byte header:

struct { // 16-byte header
 ULONGLONG Depth:16;
 ULONGLONG Sequence:48;
 ULONGLONG HeaderType:1; // 0: 8-byte; 1: 16-byte
 ULONGLONG Init:1; // 0: uninitialized; 1: initialized
 ULONGLONG Reserved:2;
 ULONGLONG NextEntry:60; // last 4 bits are always 0’s
} Header16;

Notice how the NextEntry pointer has now become 60 bits, and because the structure is still 16-
byte aligned, with the 4 free bits, leads to the full 64 bits being addressable.

Conversely, kernel-mode data structures that do not involve SLISTs are not limited to the 8-TB
address space range. System page table entries, hyperspace, and the cache working set all occupy
virtual addresses below 0xFFFFF80000000000 because these structures do not use SLISTs.

Dynamic System Virtual Address Space Management
Thirty-two-bit versions of Windows manage the system address space through an internal kernel
virtual allocator mechanism that we’ll describe in this section. Currently, 64-bit versions of Windows
have no need to use the allocator for virtual address space management (and thus bypass the cost),
because each region is statically defined as shown in Table 10-8 earlier.

When the system initializes, the MiInitializeDynamicVa function sets up the basic dynamic ranges
(the ranges currently supported are described in Table 10-9) and sets the available virtual address to
all available kernel space. It then initializes the address space ranges for boot loader images, process
space (hyperspace), and the HAL through the MiIntializeSystemVaRange function, which is used to set
hard-coded address ranges. Later, when nonpaged pool is initialized, this function is used again to re-
serve the virtual address ranges for it. Finally, whenever a driver loads, the address range is relabeled
to a driver image range (instead of a boot loaded range).

After this point, the rest of the system virtual address space can be dynamically requested and
released through MiObtainSystemVa (and its analogous MiObtainSessionVa) and MiReturnSystemVa.

 CHAPTER 10 Memory Management 243

Operations such as expanding the system cache, the system PTEs, nonpaged pool, paged pool, and/or
special pool; mapping memory with large pages; creating the PFN database; and creating a new ses-
sion all result in dynamic virtual address allocations for a specific range. Each time the kernel virtual
address space allocator obtains virtual memory ranges for use by a certain type of virtual address, it
updates the MiSystemVaType array, which contains the virtual address type for the newly allocated
range. The values that can appear in MiSystemVaType are shown in Table 10-9.

TABLE 10-9 System Virtual Address Types

Region Description Limitable

MiVaSessionSpace (0x1) Addresses for session space Yes

MiVaProcessSpace (0x2) Addresses for process address space No

MiVaBootLoaded (0x3) Addresses for images loaded by the boot loader No

MiVaPfnDatabase (0x4) Addresses for the PFN database No

MiVaNonPagedPool (0x5) Addresses for the nonpaged pool Yes

MiVaPagedPool (0x6) Addresses for the paged pool Yes

MiVaSpecialPool (0x7) Addresses for the special pool No

MiVaSystemCache (0x8) Addresses for the system cache Yes

MiVaSystemPtes (0x9) Addresses for system PTEs Yes

MiVaHal (0xA) Addresses for the HAL No

MiVaSessionGlobalSpace (0xB) Addresses for session global space No

MiVaDriverImages (0xC) Addresses for loaded driver images No

Although the ability to dynamically reserve virtual address space on demand allows better man-
agement of virtual memory, it would be useless without the ability to free this memory. As such, when
paged pool or the system cache can be shrunk, or when special pool and large page mappings are
freed, the associated virtual address is freed. (Another case is when the boot registry is released.) This
allows dynamic management of memory depending on each component’s use. Additionally, compo-
nents can reclaim memory through MiReclaimSystemVa, which requests virtual addresses associated
with the system cache to be flushed out (through the dereference segment thread) if available virtual
address space has dropped below 128 MB. (Reclaiming can also be satisfied if initial nonpaged pool
has been freed.)

In addition to better proportioning and better management of virtual addresses dedicated to dif-
ferent kernel memory consumers, the dynamic virtual address allocator also has advantages when it
comes to memory footprint reduction. Instead of having to manually preallocate static page table en-
tries and page tables, paging-related structures are allocated on demand. On both 32-bit and 64-bit
systems, this reduces boot-time memory usage because unused addresses won’t have their page ta-
bles allocated. It also means that on 64-bit systems, the large address space regions that are reserved
don’t need to have their page tables mapped in memory, which allows them to have arbitrarily large
limits, especially on systems that have little physical RAM to back the resulting paging structures.

244 Windows Internals, Sixth Edition, Part 2

EXPERIMENT: Querying System Virtual Address Usage
You can look at the current usage and peak usage of each system virtual address type by using
the kernel debugger. For each system virtual address type described in Table 10-9, the Mi-
System VaTypeCount, MiSystemVaTypeCountFailures, and MiSystemVaTypeCountPeak arrays in
the kernel contain the sizes, count failures, and peak sizes for each type. Here’s how you can
dump the usage for the system, followed by the peak usage (you can use a similar technique for
the failure counts):

lkd> dd /c 1 MiSystemVaTypeCount l c
81f4f880 00000000
81f4f884 00000028
81f4f888 00000008
81f4f88c 0000000c
81f4f890 0000000b
81f4f894 0000001a
81f4f898 0000002f
81f4f89c 00000000
81f4f8a0 000001b6
81f4f8a4 00000030
81f4f8a8 00000002
81f4f8ac 00000006
lkd> dd /c 1 MiSystemVaTypeCountPeak l c
81f4f840 00000000
81f4f844 00000038
81f4f848 00000000
81f4f84c 00000000
81f4f850 0000003d
81f4f854 0000001e
81f4f858 00000032
81f4f85c 00000000
81f4f860 00000238
81f4f864 00000031
81f4f868 00000000
81f4f86c 00000006

Theoretically, the different virtual address ranges assigned to components can grow arbitrarily in
size as long as enough system virtual address space is available. In practice, on 32-bit systems, the
kernel allocator implements the ability to set limits on each virtual address type for the purposes
of both reliability and stability. (On 64-bit systems, kernel address space exhaustion is currently
not a concern.) Although no limits are imposed by default, system administrators can use the reg-
istry to modify these limits for the virtual address types that are currently marked as limitable (see
Table 10-9).

If the current request during the MiObtainSystemVa call exceeds the available limit, a failure is
marked (see the previous experiment) and a reclaim operation is requested regardless of available
memory. This should help alleviate memory load and might allow the virtual address allocation to
work during the next attempt. (Recall, however, that reclaiming affects only system cache and non-
paged pool).

 CHAPTER 10 Memory Management 245

EXPERIMENT: Setting System Virtual Address Limits
The MiSystemVaTypeCountLimit array contains limitations for system virtual address usage that
can be set for each type. Currently, the memory manager allows only certain virtual address
types to be limited, and it provides the ability to use an undocumented system call to set limits
for the system dynamically during run time. (These limits can also be set through the registry,
as described at http://msdn.microsoft.com/en-us/library/bb870880(VS.85).aspx.) These limits can
be set for those types marked in Table 10-9.

You can use the MemLimit utility (http://www.winsid erss.com/tools/memlimit.html) from
Winsider Seminars & Solutions to query and set the different limits for these types, and also
to see the current and peak virtual address space usage. Here’s how you can query the current
limits with the –q flag:

C:\ >memlimit.exe -q

MemLimit v1.00 - Query and set hard limits on system VA space consumption
Copyright (C) 2008 Alex Ionescu
www.alex-ionescu.com

System Va Consumption:

Type Current Peak Limit
Non Paged Pool 102400 KB 0 KB 0 KB
Paged Pool 59392 KB 83968 KB 0 KB
System Cache 534528 KB 536576 KB 0 KB
System PTEs 73728 KB 75776 KB 0 KB
Session Space 75776 KB 90112 KB 0 KB

As an experiment, use the following command to set a limit of 100 MB for paged pool:

memlimit.exe -p 100M

And now try running the testlimit –h experiment from Chapter 3 (in Part 1) again, which
attempted to create 16 million handles. Instead of reaching the 16 million handle count, the
process will fail, because the system will have run out of address space available for paged pool
allocations.

System Virtual Address Space Quotas
The system virtual address space limits described in the previous section allow for limiting systemwide
virtual address space usage of certain kernel components, but they work only on 32-bit systems when
applied to the system as a whole. To address more specific quota requirements that system admin-
istrators might have, the memory manager also collaborates with the process manager to enforce
either systemwide or user-specific quotas for each process.

The PagedPoolQuota, NonPagedPoolQuota, PagingFileQuota, and WorkingSetPagesQuota values
in the HKLM\SYSTEM\CurrentControlSet\Control\Session Manager\Memory Management key can
be configured to specify how much memory of each type a given process can use. This information is

http://msdn.microsoft.com/en-us/library/bb870880(VS.85).aspx
http://www.winsid-erss.com/tools/memlimit.html

246 Windows Internals, Sixth Edition, Part 2

read at initialization, and the default system quota block is generated and then assigned to all system
processes (user processes will get a copy of the default system quota block unless per-user quotas
have been configured as explained next).

To enable per-user quotas, subkeys under the registry key HKLM\SYSTEM\CurrentControlSet\
Session Manager\Quota System can be created, each one representing a given user SID. The values
mentioned previously can then be created under this specific SID subkey, enforcing the limits only for
the processes created by that user. Table 10-10 shows how to configure these values, which can be
configured at run time or not, and which privileges are required.

TABLE 10-10 Process Quota Types

Value Name Description Value Type Dynamic Privilege

PagedPoolQuota Maximum size of
paged pool that can
be allocated by this
process

Size in MB Only for
processes
running with the
system token

SeIncreaseQuotaPrivilege

NonPagedPoolQuota Maximum size of
nonpaged pool that
can be allocated by
this process

Size in MB Only for
processes
running with the
system token

SeIncreaseQuotaPrivilege

PagingFileQuota Maximum number of
pages that a process
can have backed by
the page file

Pages Only for
processes
running with the
system token

SeIncreaseQuotaPrivilege

WorkingSetPagesQuota Maximum number
of pages that a
process can have in
its working set (in
physical memory)

Pages Yes SeIncreaseBasePriorityPrivilege
unless operation is a purge
request

User Address Space Layout
Just as address space in the kernel is dynamic, the user address space is also built dynamically—the
addresses of the thread stacks, process heaps, and loaded images (such as DLLs and an application’s
executable) are dynamically computed (if the application and its images support it) through a mecha-
nism known as Address Space Layout Randomization, or ASLR.

At the operating system level, user address space is divided into a few well-defined regions of
memory, shown in Figure 10-14. The executable and DLLs themselves are present as memory mapped
image files, followed by the heap(s) of the process and the stack(s) of its thread(s). Apart from these
regions (and some reserved system structures such as the TEBs and PEB), all other memory alloca-
tions are run-time dependent and generated. ASLR is involved with the location of all these run-time-
dependent regions and, combined with DEP, provides a mechanism for making remote exploitation of
a system through memory manipulation harder to achieve. Since Windows code and data are placed
at dynamic locations, an attacker cannot typically hardcode a meaningful offset into either a program
or a system-supplied DLL.

 CHAPTER 10 Memory Management 247

Thread stack

Dynamic-base DLLs

Executable
Randomly chosen
executable load address

Process heapUser
address

space

Kernel
address

space

Randomly chosen
image load address

Thread stack

Thread stack

FIGURE 10-14 User address space layout with ASLR enabled

EXPERIMENT: Analyzing User Virtual Address Space
The VMMap utility from Sysinternals can show you a detailed view of the virtual memory being
utilized by any process on your machine, divided into categories for each type of allocation,
summarized as follows:

 ■ Image Displays memory allocations used to map the executable and its dependencies
(such as dynamic libraries) and any other memory mapped image (portable executable
format) files

 ■ Private Displays memory allocations marked as private, such as internal data structures,
other than the stack and heap

 ■ Shareable Displays memory allocations marked as shareable, typically including shared
memory (but not memory mapped files, which are either Image or Mapped File)

 ■ Mapped File Displays memory allocations for memory mapped data files

 ■ Heap Displays memory allocated for the heap(s) that this process owns

248 Windows Internals, Sixth Edition, Part 2

 ■ Stack Displays memory allocated for the stack of each thread in this process

 ■ System Displays kernel memory allocated for the process (such as the process object)

The following screen shot shows a typical view of Explorer as seen through VMMap.

Depending on the type of memory allocation, VMMap can show additional information,
such as file names (for mapped files), heap IDs (for heap allocations), and thread IDs (for stack
allocations). Furthermore, each allocation’s cost is shown both in committed memory and work-
ing set memory. The size and protection of each allocation is also displayed.

ASLR begins at the image level, with the executable for the process and its dependent DLLs.
Any image file that has specified ASLR support in its PE header (IMAGE_DLL_CHARACTERISTICS_
DYNAMIC_BASE), typically specified by using the /DYNAMICBASE linker flag in Microsoft Visual
 Studio, and contains a relocation section will be processed by ASLR. When such an image is found,
the system selects an image offset valid globally for the current boot. This offset is selected from a
bucket of 256 values, all of which are 64-KB aligned.

Image Randomization
For executables, the load offset is calculated by computing a delta value each time an executable is
loaded. This value is a pseudo-random 8-bit number from 0x10000 to 0xFE0000, calculated by tak-
ing the current processor’s time stamp counter (TSC), shifting it by four places, and then performing
a division modulo 254 and adding 1. This number is then multiplied by the allocation granularity of

 CHAPTER 10 Memory Management 249

64 KB discussed earlier. By adding 1, the memory manager ensures that the value can never be 0, so
executables will never load at the address in the PE header if ASLR is being used. This delta is then
added to the executable’s preferred load address, creating one of 256 possible locations within 16 MB
of the image address in the PE header.

For DLLs, computing the load offset begins with a per-boot, systemwide value called the image
bias, which is computed by MiInitializeRelocations and stored in MiImageBias. This value corresponds
to the time stamp counter (TSC) of the current CPU when this function was called during the boot
cycle, shifted and masked into an 8-bit value, which provides 256 possible values. Unlike executables,
this value is computed only once per boot and shared across the system to allow DLLs to remain
shared in physical memory and relocated only once. If DLLs were remapped at different locations
inside different processes, the code could not be shared. The loader would have to fix up address
references differently for each process, thus turning what had been shareable read-only code into
process-private data. Each process using a given DLL would have to have its own private copy of the
DLL in physical memory.

Once the offset is computed, the memory manager initializes a bitmap called the MiImageBitMap.
This bitmap is used to represent ranges from 0x50000000 to 0x78000000 (stored in MiImage-
BitMapHighVa), and each bit represents one unit of allocation (64 KB, as mentioned earlier). When-
ever the memory manager loads a DLL, the appropriate bit is set to mark its location in the system;
when the same DLL is loaded again, the memory manager shares its section object with the already
relocated information.

As each DLL is loaded, the system scans the bitmap from top to bottom for free bits. The MiImage-
Bias value computed earlier is used as a start index from the top to randomize the load across differ-
ent boots as suggested. Because the bitmap will be entirely empty when the first DLL (which is always
Ntdll.dll) is loaded, its load address can easily be calculated: 0x78000000 – MiImageBias * 0x10000.
Each subsequent DLL will then load in a 64-KB chunk below. Because of this, if the address of Ntdll.dll
is known, the addresses of other DLLs could easily be computed. To mitigate this possibility, the order
in which known DLLs are mapped by the Session Manager during initialization is also randomized
when Smss loads.

Finally, if no free space is available in the bitmap (which would mean that most of the region de-
fined for ASLR is in use, the DLL relocation code defaults back to the executable case, loading the DLL
at a 64-KB chunk within 16 MB of its preferred base address.

Stack Randomization
The next step in ASLR is to randomize the location of the initial thread’s stack (and, subsequently, of
each new thread). This randomization is enabled unless the flag StackRandomizationDisabled was
enabled for the process and consists of first selecting one of 32 possible stack locations separated
by either 64 KB or 256 KB. This base address is selected by finding the first appropriate free memory

250 Windows Internals, Sixth Edition, Part 2

region and then choosing the xth available region, where x is once again generated based on the cur-
rent processor’s TSC shifted and masked into a 5-bit value (which allows for 32 possible locations).

Once this base address has been selected, a new TSC-derived value is calculated, this one 9 bits
long. The value is then multiplied by 4 to maintain alignment, which means it can be as large as 2,048
bytes (half a page). It is added to the base address to obtain the final stack base.

Heap Randomization
Finally, ASLR randomizes the location of the initial process heap (and subsequent heaps) when created
in user mode. The RtlCreateHeap function uses another pseudo-random, TSC-derived value to deter-
mine the base address of the heap. This value, 5 bits this time, is multiplied by 64 KB to generate the
final base address, starting at 0, giving a possible range of 0x00000000 to 0x001F0000 for the initial
heap. Additionally, the range before the heap base address is manually deallocated in an attempt to
force an access violation if an attack is doing a brute-force sweep of the entire possible heap address
range.

ASLR in Kernel Address Space
ASLR is also active in kernel address space. There are 64 possible load addresses for 32-bit drivers
and 256 for 64-bit drivers. Relocating user-space images requires a significant amount of work area
in kernel space, but if kernel space is tight, ASLR can use the user-mode address space of the System
process for this work area.

Controlling Security Mitigations
As we've seen, ASLR and many of the other security mitigations in Windows are optional because of
their potential compatibility effects: ASLR applies only to images with the IMAGE_DLL_CHARACTER-
ISTICS_DYNAMIC_BASE bit in their image headers, hardware no-execute (data execution protection)
can be controlled by a combination of boot options and linker options, and so on. To allow both
enterprise customers and individual users more visibility and control of these features, Microsoft
publishes the Enhanced Mitigation Experience Toolkit (EMET). EMET offers centralized control of the
mitigations built into Windows and also adds several more mitigations not yet part of the Windows
product. Additionally, EMET provides notification capabilities through the Event Log to let admin-
istrators know when certain software has experienced access faults because mitigations have been
applied. Finally, EMET also enables manual opt-out for certain applications that might exhibit compat-
ibility issues in certain environments, even though they were opted in by the developer.

 CHAPTER 10 Memory Management 251

EXPERIMENT: Looking at ASLR Protection on Processes
You can use Process Explorer from Sysinternals to look over your processes (and, just as impor-
tant, the DLLs they load) to see if they support ASLR. Note that even if just one DLL loaded by a
process does not support ASLR, it can make the process much more vulnerable to attacks.

To look at the ASLR status for processes, right-click on any column in the process tree,
choose Select Columns, and then check ASLR Enabled on the Process Image tab. Notice that
not all in-box Windows programs and services are running with ASLR enabled, and there is one
visible example of a third-party application that does not have ASLR enabled either.

In the example, we have highlighted the Notepad.exe process. In this case, its load address is
0xFE0000. If you were to close all instances of Notepad and then start another, you would find
it at a different load address. If you shut down and reboot the system and then try the experi-
ment again, you would find that the ASLR-enabled DLLs are at different load addresses after
each boot.

Address Translation

Now that you’ve seen how Windows structures the virtual address space, let’s look at how it maps
these address spaces to real physical pages. User applications and system code reference virtual
addresses. This section starts with a detailed description of 32-bit x86 address translation (in both
non-PAE and PAE modes) and continues with a brief description of the differences on the 64-bit IA64
and x64 platforms. In the next section, we’ll describe what happens when such a translation doesn’t
resolve to a physical memory address (paging) and explain how Windows manages physical memory
via working sets and the page frame database.

252 Windows Internals, Sixth Edition, Part 2

x86 Virtual Address Translation
Using data structures the memory manager creates and maintains called page tables, the CPU trans-
lates virtual addresses into physical addresses. Each page of virtual address space is associated with a
system-space structure called a page table entry (PTE), which contains the physical address to which
the virtual one is mapped. For example, Figure 10-15 shows how three consecutive virtual pages
might be mapped to three physically discontiguous pages on an x86 system. There may not even be
any PTEs for regions that have been marked as reserved or committed but never accessed, because
the page table itself might be allocated only when the first page fault occurs.

Virtual
pages

Page table
entries

Physical memory

FFFFFFFF

C1000000

C0000000

80000000
7FFFFFFF

00000000

FIGURE 10-15 Mapping virtual addresses to physical memory (x86)

The dashed line connecting the virtual pages to the PTEs in Figure 10-15 represents the indirect
relationship between virtual pages and physical memory.

Note Even kernel-mode code (such as device drivers) cannot reference physical memory
addresses directly, but it may do so indirectly by first creating virtual addresses mapped
to them. For more information, see the memory descriptor list (MDL) support routines de-
scribed in the WDK documentation.

 CHAPTER 10 Memory Management 253

As mentioned previously, Windows on x86 can use either of two schemes for address translation:
non-PAE and PAE. We’ll discuss the non-PAE mode first and cover PAE in the next section. The PAE
material does depend on the non-PAE material, so even if you are primarily interested in PAE, you
should study this section first. The description of x64 address translation similarly builds on the PAE
information.

Non-PAE x86 systems use a two-level page table structure to translate virtual to physical ad-
dresses. A 32-bit virtual address mapped by a normal 4-KB page is interpreted as two fields: the
virtual page number and the byte within the page, called the byte offset. The virtual page number is
further divided into two subfields, called the page directory index and the page table index, as illus-
trated in Figure 10-16. These two fields are used to locate entries in the page directory and in a page
table.

The sizes of these bit fields are dictated by the structures they reference. For example, the byte
offset is 12 bits because it denotes a byte within a page, and pages are 4,096 bytes (212 = 4,096). The
other indexes are 10 bits because the structures they index have 1,024 entries (210 = 1,024).

31
Page directory

index

Virtual page number

Page table
index Byte offset

31

10 bits 10 bits 12 bits

0 (LSB)

FIGURE 10-16 Components of a 32-bit virtual address on x86 systems

The job of virtual address translation is to convert these virtual addresses into physical addresses—
that is, addresses of locations in RAM. The format of a physical address on an x86 non-PAE system is
shown in Figure 10-17.

0000.0000.0000.0000.0000 0000.0000.0000

31 12 11 0

Physical page number
(also known as

“page frame number”)

Byte offset

FIGURE 10-17 Components of a physical address on x86 non-PAE systems

As you can see, the format is very similar to that of a virtual address. Furthermore, the byte offset
value from a virtual address will be the same in the resulting physical address. We can say, then, that
address translation involves converting virtual page numbers to physical page numbers (also referred
to as page frame numbers, or PFNs). The byte offset does not participate in, and does not change as a
result of, address translation. It is simply copied from the virtual address to the physical address,

254 Windows Internals, Sixth Edition, Part 2

Figure 10-18 shows the relationship of these three values and how they are used to perform ad-
dress translation.

KPROCESS

Page directory
index

Page table
index

Byte offset

Physical address

Virtual address

CR3

Page directory
(one per process, 1,024 entries)

Page tables
(up to 512 per process

plus up to 512 systemwide,
1,024 entries per table)

Physical address
space

Desired byte

Desired page

PFN

PFN

PTE

Index

PDE

Index

FIGURE 10-18 Translating a valid virtual address (x86 non-PAE)

The following basic steps are involved in translating a virtual address:

1. The memory management unit (MMU) uses a privileged CPU register, CR3, to obtain the
physical address of the page directory.

2. The page directory index portion of the virtual address is used as an index into the page
directory. This locates the page directory entry (PDE) that contains the location of the page
table needed to map the virtual address. The PDE in turn contains the physical page number,
also called the page frame number, or PFN, of the desired page table, provided the page table
is resident—page tables can be paged out or not yet created, and in those cases, the page
table is first made resident before proceeding. If a flag in the PDE indicates that it describes a
large page, then it simply contains the PFN of the target large page, and the rest of the virtual
address is treated as the byte offset within the large page.

3. The page table index is used as an index into the page table to locate the PTE that describes
the virtual page in question.

 CHAPTER 10 Memory Management 255

4. If the PTE’s valid bit is clear, this triggers a page fault (memory management fault). The oper-
ating system’s memory management fault handler (pager) locates the page and tries to make
it valid; after doing so, this sequence continues at step 5. (See the section “Page Fault Han-
dling.”) If the page cannot or should not be made valid (for example, because of a protection
fault), the fault handler generates an access violation or a bug check.

5. When the PTE describes a valid page (whether immediately or after page fault resolution), the
desired physical address is constructed from the PFN field of the PTE, followed by the byte
offset field from the original virtual address.

Now that you have the overall picture, let’s look at the detailed structure of page directories, page
tables, and PTEs.

Page Directories
On non-PAE x86 systems, each process has a single page directory, a page the memory manager cre-
ates to map the location of all page tables for that process. The physical address of the process page
directory is stored in the kernel process (KPROCESS) block, but it is also mapped virtually at address
0xC0300000 on x86 non-PAE systems. (For more detailed information about the KPROCESS and other
process data structures, refer to Chapter 5, “Processes, Threads, and Jobs” in Part 1.)

The CPU obtains the location of the page directory from a privileged CPU register called CR3.
It contains the page frame number of the page directory. (Since the page directory is itself always
page-aligned, the low-order 12 bits of its address are always zero, so there is no need for CR3 to sup-
ply these.) Each time a context switch occurs to a thread that is in a different process than that of the
currently executing thread, the context switch routine in the kernel loads this register from a field in
the KPROCESS block of the new process. Context switches between threads in the same process don’t
result in reloading the physical address of the page directory because all threads within the same
process share the same process address space and thus use the same page directory and page tables.

The page directory is composed of page directory entries (PDEs), each of which is 4 bytes long.
The PDEs in the page directory describe the state and location of all the possible page tables for the
process. As described later in the chapter, page tables are created on demand, so the page directory
for most processes points only to a small set of page tables. (If a page table does not yet exist, the
VAD tree is consulted to determine whether an access should materialize it.) The format of a PDE isn’t
repeated here because it’s mostly the same as a hardware PTE, which is described shortly.

To describe the full 4-GB virtual address space, 1,024 page tables are required. The process page
directory that maps these page tables contains 1,024 PDEs. Therefore, the page directory index needs
to be 10 bits wide (210 = 1,024).

256 Windows Internals, Sixth Edition, Part 2

EXPERIMENT: Examining the Page Directory and PDEs
You can see the physical address of the currently running process’s page directory by examining
the DirBase field in the !process kernel debugger output:

lkd> !process -1 0
PROCESS 857b3528 SessionId: 1 Cid: 0f70 Peb: 7ffdf000 ParentCid: 0818
 DirBase: 47c9b000 ObjectTable: b4c56c48 HandleCount: 226.
 Image: windbg.exe

You can see the page directory’s virtual address by examining the kernel debugger output
for the PTE of a particular virtual address, as shown here:

lkd> !pte 10004
 VA 00010004
PDE at C0300000 PTE at C0000040
contains 6F06B867 contains 3EF8C847
pfn 6f06b ---DA--UWEV pfn 3ef8c ---D---UWEV

The PTE part of the kernel debugger output is defined in the section “Page Tables and Page
Table Entries.” We will describe this output further in the section on x86 PAE translation.

Because Windows provides a private address space for each process, each process has its own
page directory and page tables to map that process’s private address space. However, the page tables
that describe system space are shared among all processes (and session space is shared only among
processes in a session). To avoid having multiple page tables describing the same virtual memory,
when a process is created, the page directory entries that describe system space are initialized to
point to the existing system page tables. If the process is part of a session, session space page tables
are also shared by pointing the session space page directory entries to the existing session page
tables.

Page Tables and Page Table Entries
Each page directory entry points to a page table. A page table is a simple array of PTEs. The virtual
address’s page table index field (as shown in Figure 10-18) indicates which PTE within the page table
corresponds to and describes the data page in question. The page table index is 10 bits wide, allow-
ing you to reference up to 1,024 4-byte PTEs. Of course, because x86 provides a 4-GB virtual address
space, more than one page table is needed to map the entire address space. To calculate the num-
ber of page tables required to map the entire 4-GB virtual address space, divide 4 GB by the virtual
memory mapped by a single page table. Recall that each page table on an x86 system maps 4 MB of
data pages. Thus, 1,024 page tables (4 GB / 4 MB) are required to map the full 4-GB address space.
This corresponds with the 1,024 entries in the page directory.

You can use the !pte command in the kernel debugger to examine PTEs. (See the experiment
“Translating Addresses.”) We’ll discuss valid PTEs here and invalid PTEs in a later section. Valid PTEs
have two main fields: the page frame number (PFN) of the physical page containing the data or of the
physical address of a page in memory, and some flags that describe the state and protection of the
page, as shown in Figure 10-19.

 CHAPTER 10 Memory Management 257

Software field (write)
Software field (prototype PTE)
Software field (copy-on-write)
Global
Reserved (large page if PDE)
Dirty
Accessed
Cache disabled
Write through
Owner
Write
Valid

Page frame number U P Cw Gl L D A Cd Wt O W V

31 01112 10 9 8 7 6 5 4 3 2 1

FIGURE 10-19 Valid x86 hardware PTEs

As you’ll see later, the bits labeled “Software field” and “Reserved” in Figure 10-19 are ignored by
the MMU, whether or not the PTE is valid. These bits are stored and interpreted by the memory man-
ager. Table 10-11 briefly describes the hardware-defined bits in a valid PTE.

TABLE 10-11 PTE Status and Protection Bits

Name of Bit Meaning

Accessed Page has been accessed.

Cache disabled Disables CPU caching for that page.

Copy-on-write Page is using copy-on-write (described earlier).

Dirty Page has been written to.

Global Translation applies to all processes. (For example, a translation buffer flush won’t affect
this PTE.)

Large page Indicates that the PDE maps a 4-MB page (or 2 MB on PAE systems). See the section
“Large and Small Pages” earlier in the chapter.

Owner Indicates whether user-mode code can access the page or whether the page is limited to
kernel-mode access.

Prototype The PTE is a prototype PTE, which is used as a template to describe shared memory
associated with section objects.

Valid Indicates whether the translation maps to a page in physical memory.

Write through Marks the page as write-through or (if the processor supports the page attribute table)
write-combined. This is typically used to map video frame buffer memory.

Write Indicates to the MMU whether the page is writable.

On x86 systems, a hardware PTE contains two bits that can be changed by the MMU, the Dirty bit
and the Accessed bit. The MMU sets the Accessed bit whenever the page is read or written (provided
it is not already set). The MMU sets the Dirty bit whenever a write operation occurs to the page. The
operating system is responsible for clearing these bits at the appropriate times; they are never cleared
by the MMU.

258 Windows Internals, Sixth Edition, Part 2

The x86 MMU uses a Write bit to provide page protection. When this bit is clear, the page is read-
only; when it is set, the page is read/write. If a thread attempts to write to a page with the Write bit
clear, a memory management exception occurs, and the memory manager’s access fault handler (de-
scribed later in the chapter) must determine whether the thread can be allowed to write to the page
(for example, if the page was really marked copy-on-write) or whether an access violation should be
generated.

Hardware vs. Software Write Bits in Page Table Entries
The additional Write bit implemented in software (as mentioned in Table 10-11) is used to force
updating of the Dirty bit to be synchronized with updates to Windows memory management data.
In a simple implementation, the memory manager would set the hardware Write bit (bit 1) for any
writable page, and a write to any such page will cause the MMU to set the Dirty bit in the page table
entry. Later, the Dirty bit will tell the memory manager that the contents of that physical page must
be written to backing store before the physical page can be used for something else.

In practice, on multiprocessor systems, this can lead to race conditions that are expensive to
resolve. The MMUs of the various processors can, at any time, set the Dirty bit of any PTE that has its
hardware Write bit set. The memory manager must, at various times, update the process working set
list to reflect the state of the Dirty bit in a PTE. The memory manager uses a pushlock to synchronize
access to the working set list. But on a multiprocessor system, even while one processor is holding the
lock, the Dirty bit might be changed by MMUs of other CPUs. This raises the possibility of missing an
update to a Dirty bit.

To avoid this, the Windows memory manager initializes both read-only and writable pages with
the hardware Write bit (bit 1) of their PTEs set to 0 and records the true writable state of the page
in the software Write bit (bit 11). On the first write access to such a page, the processor will raise a
memory management exception because the hardware Write bit is clear, just as it would be for a true
read-only page. In this case, though, the memory manager learns that the page actually is writable
(via the software Write bit), acquires the working set pushlock, sets the Dirty bit and the hardware
Write bit in the PTE, updates the working set list to note that the page has been changed, releases the
working set pushlock, and dismisses the exception. The hardware write operation then proceeds as
usual, but the setting of the Dirty bit is made to happen with the working set list pushlock held.

On subsequent writes to the page, no exceptions occur because the hardware Write bit is set. The
MMU will redundantly set the Dirty bit, but this is benign because the “written-to” state of the page is
already recorded in the working set list. Forcing the first write to a page to go through this exception
handling may seem to be excessive overhead. However, it happens only once per writable page as
long as the page remains valid. Furthermore, the first access to almost any page already goes through
memory management exception handling because pages are usually initialized in the invalid state
(PTE bit 0 is clear). If the first access to a page is also the first write access to the page, the Dirty bit
handling just described will occur within the handling of the first-access page fault, so the additional
overhead is small. Finally, on both uniprocessor and multiprocessor systems, this implementation al-
lows flushing of the translation look-aside buffer (described later) without holding a lock for each page
being flushed.

 CHAPTER 10 Memory Management 259

Byte Within Page
Once the memory manager has determined the physical page number, it must locate the requested
data within that page. This is the purpose of the byte offset field. The byte offset from the original
virtual address is simply copied to the corresponding field in the physical address. On x86 systems,
the byte offset is 12 bits wide, allowing you to reference up to 4,096 bytes of data (the size of a page).
Another way to interpret this is that the byte offset from the virtual address is concatenated to the
physical page number retrieved from the PTE. This completes the translation of a virtual address to a
physical address.

Translation Look-Aside Buffer
As you’ve learned so far, each hardware address translation requires two lookups: one to find the right
entry in the page directory (which provides the location of the page table) and one to find the right
entry in the page table. Because doing two additional memory lookups for every reference to a vir-
tual address would triple the required bandwidth to memory, resulting in poor performance, all CPUs
cache address translations so that repeated accesses to the same addresses don’t have to be repeat-
edly translated. This cache is an array of associative memory called the translation look-aside buffer, or
TLB. Associative memory is a vector whose cells can be read simultaneously and compared to a target
value. In the case of the TLB, the vector contains the virtual-to-physical page mappings of the most
recently used pages, as shown in Figure 10-20, and the type of page protection, size, attributes, and
so on applied to each page. Each entry in the TLB is like a cache entry whose tag holds portions of the
virtual address and whose data portion holds a physical page number, protection field, valid bit, and
usually a dirty bit indicating the condition of the page to which the cached PTE corresponds. If a PTE’s
global bit is set (as is done by Windows for system space pages that are visible to all processes), the
TLB entry isn’t invalidated on process context switches.

Virtual page 5 Page frame 290

Virtual page 64 Invalid

Page frame
1004Virtual page 17

Virtual page 7

Virtual page 6

Virtual page 65

Invalid

Page frame 14

Page frame 801

Simultaneous read
and compare

Virtual page number: 17

Virtual address
Match

TLB

.

.

.

FIGURE 10-20 Accessing the translation look-aside buffer

260 Windows Internals, Sixth Edition, Part 2

Virtual addresses that are used frequently are likely to have entries in the TLB, which provides
extremely fast virtual-to-physical address translation and, therefore, fast memory access. If a virtual
address isn’t in the TLB, it might still be in memory, but multiple memory accesses are needed to find
it, which makes the access time slightly slower. If a virtual page has been paged out of memory or if
the memory manager changes the PTE, the memory manager is required to explicitly invalidate the
TLB entry. If a process accesses it again, a page fault occurs, and the memory manager brings the
page back into memory (if needed) and re-creates its PTE entry (which then results in an entry for it
in the TLB).

Physical Address Extension (PAE)
The Intel x86 Pentium Pro processor introduced a memory-mapping mode called Physical Address
Extension (PAE). With the proper chipset, the PAE mode allows 32-bit operating systems access to up
to 64 GB of physical memory on current Intel x86 processors (up from 4 GB without PAE) and up to
1,024 GB of physical memory when running on x64 processors in legacy mode (although Windows
currently limits this to 64 GB due to the size of the PFN database required to describe so much
memory). When the processor is running in PAE mode, the memory management unit (MMU) divides
virtual addresses mapped by normal pages into four fields, as shown in Figure 10-21. The MMU still
implements page directories and page tables, but under PAE a third level, the page directory pointer
table, exists above them.

One way in which 32-bit applications can take advantage of such large memory configurations is
described in the earlier section “Address Windowing Extensions.” However, even if applications are
not using such functions, the memory manager will use all available physical memory for multiple
processes’ working sets, file cache, and trimmed private data through the use of the system cache,
standby, and modified lists (described in the section “Page Frame Number Database”).

PAE mode is selected at boot time and cannot be changed without rebooting. As explained in
Chapter 2 in Part 1, there is a special version of the 32-bit Windows kernel with support for PAE
called Ntkrnlpa.exe. Thirty-two-bit systems that have hardware support for nonexecutable memory
(described earlier, in the section “No Execute Page Protection”) are booted by default using this PAE
kernel, because PAE mode is required to implement the no-execute feature. To force the loading of
the PAE-enabled kernel, you can set the pae BCD option to ForceEnable.

Note that the PAE kernel is installed on the disk on all 32-bit Windows systems, even systems with
small memory and without hardware no-execute support. This is to allow testing of PAE-related code,
even on small memory systems, and to avoid the need for reinstalling Windows should more RAM be
added later. Another BCD option relevant to PAE is nolowmem, which discards memory below 4 GB
(assuming you have at least 5 GB of physical memory) and relocates device drivers above this range.
This guarantees that drivers will be presented with physical addresses greater than 32 bits, which
makes any possible driver sign extension bugs easier to find.

 CHAPTER 10 Memory Management 261

CR3

PFN

Page directory
(up to 4 per process,
512 entries per table,

8 bytes wide)

Page tables
(512 entries per
table, 8 bytes

wide)

Physical address
space

Page directory pointer table
(one per process, 4 entries)

Page directory
pointer index

Page directory
index

Page table
index

Byte
offset

KPROCESS

Physical address

Index

Desired
page

Desired
byte

Index Index Index

PFN
PFN

PDE

PDE
PTE

31 29 20 11

Virtual address

FIGURE 10-21 Page mappings with PAE

To understand PAE, it is useful to understand the derivation of the sizes of the various structures
and bit fields. Recall that the goal of PAE is to allow addressing of more than 4 GB of RAM. The 4-GB
limit for RAM addresses without PAE comes from the 12-bit byte offset and the 20-bit page frame
number fields of physical addresses: 12 + 20 = 32 bits of physical address, and 232 bytes = 4 GB. (Note
that this is due to a limit of the physical address format and the number of bits allocated for the PFN
within a page table entry. The fact that virtual addresses are 32 bits wide on x86, with or without PAE,
does not limit the physical address space.)

Under PAE, the PFN is expanded to 24 bits. Combined with the 12-bit byte offset, this allows ad-
dressing of 224 + 12 bytes, or 64 GB, of memory.

To provide the 24-bit PFN, PAE expands the PFN fields of page table and page directory entries
from 20 to 24 bits. To allow room for this expansion, the page table and page directory entries are
8 bytes wide instead of 4. (This would seem to expand the PFN field of the PTE and PDE by 32 bits
rather than just 4, but in x86 processors, PFNs are limited to 24 bits. This does leave a large number of
bits in the PDE unused—or, rather, available for future expansion.)

Since both page tables and page directories have to fit in one page, these tables can then have
only 512 entries instead of 1,024. So the corresponding index fields of the virtual address are accord-
ingly reduced from 10 to 9 bits.

262 Windows Internals, Sixth Edition, Part 2

This then leaves the two high-order bits of the virtual address unaccounted for. So PAE expands
the number of page directories from one to four and adds a third-level address translation table,
called the page directory pointer table, or PDPT. This table contains only four entries, 8 bytes each,
which provide the PFNs of the four page directories. The two high-order bits of the virtual address are
used to index into the PDPT and are called the page directory pointer index.

As before, CR3 provides the location of the top-level table, but that is now the PDPT rather than
the page directory. The PDPT must be aligned on a 32-byte boundary and must furthermore reside in
the first 4 GB of RAM (because CR3 on x86 is only a 32-bit register, even with PAE enabled).

Note that PAE mode can address more memory than the standard translation mode not directly
because of the extra level of translation, but because the physical address format has been expanded.
The extra level of translation is required to allow processing of all 32 bits of a virtual address.

EXPERIMENT: Translating Addresses
To clarify how address translation works, this experiment shows a real example of translat-
ing a virtual address on an x86 PAE system, using the available tools in the kernel debugger
to examine the PDPT, page directories, page tables, and PTEs. (It is common for Windows on
today’s x86 processors, even with less than 4 GB of RAM, to run in PAE mode because PAE
mode is required to enable no-execute memory access protection.) In this example, we’ll work
with a process that has virtual address 0x30004, currently mapped to a valid physical address. In
later examples, you’ll see how to follow address translation for invalid addresses with the kernel
debugger.

First let’s convert 0x30004 to binary and break it into the three fields that are used to trans-
late an address. In binary, 0x30004 is 11.0000.0000.0000.0100. Breaking it into the component
fields yields the following:

0.0011.000000.0000.000 0000.0000.0100

31 30 29 21 20 12 11 0

Page directory
index (0)

Page
directory
pointer
index (0)

Page table index
(0x30 or 48 decimal)

Byte offset
 (4)

00

To start the translation process, the CPU needs the physical address of the process’s page
directory pointer table, found in the CR3 register while a thread in that process is running. You
can display this address by looking at the DirBase field in the output of the !process command,
as shown here:

lkd> !process -1 0
PROCESS 852d1030 SessionId: 1 Cid: 0dec Peb: 7ffdf000 ParentCid: 05e8
 DirBase: ced25440 ObjectTable: a2014a08 HandleCount: 221.
 Image: windbg.exe

 CHAPTER 10 Memory Management 263

The DirBase field shows that the page directory pointer table is at physical address
0xced25440. As shown in the preceding illustration, the page directory pointer table index field
in our example virtual address is 0. Therefore, the PDPT entry that contains the physical address
of the relevant page directory is the first entry in the PDPT, at physical address 0xced25440.

As under x86 non-PAE systems, the kernel debugger !pte command displays the PDE and
PTE that describe a virtual address, as shown here:

lkd> !pte 30004
 VA 00030004
PDE at C0600000 PTE at C0000180
contains 000000002EBF3867 contains 800000005AF4D025
pfn 2ebf3 ---DA--UWEV pfn 5af4d ----A--UR-V

The debugger does not show the page directory pointer table, but it is easy to display given
its physical address:

lkd> !dq ced25440 L 4

#ced25440 00000000`2e8ff801 00000000`2c9d8801

#ced25450 00000000`2e6b1801 00000000`2e73a801

Here we have used the debugger extension command !dq. This is similar to the dq command
(display as quadwords—“quadwords” being a name for a 64-bit field; this came from the day
when “words” were often 16 bits), but it lets us examine memory by physical rather than virtual
address. Since we know that the PDPT is only four entries long, we added the L 4 length argu-
ment to keep the output uncluttered.

As illustrated previously, the PDPT index (the two most significant bits) from our example
virtual address equal 0, so the PDPT entry we want is the first displayed quadword. PDPT entries
have a format similar to PD entries and PT entries, so we can see by inspection that this one
contains a PFN of 0x2e8ff, for a physical address of 2e8ff000. That’s the physical address of the
page directory.

The !pte output shows the PDE address as a virtual address, not physical. On x86 systems
with PAE, the first process page directory starts at virtual address 0xC0600000. The page direc-
tory index field of our example virtual address is 0, so we’re looking at the first PDE in the page
directory. Therefore, in this case, the PDE address is the same as the page directory address.

As with non-PAE, the page directory entry provides the PFN of the needed page table; in
this example, the PFN is 0x2ebf3. So the page table starts at physical address 0x2ebf3000. To
this the MMU will add the page table index field (0x30) from the virtual address, multiplied by 8
(the size of a PTE in bytes; this would be 4 on a non-PAE system). The resulting physical address
of the PTE is then 0x2ebf3180.

264 Windows Internals, Sixth Edition, Part 2

The debugger shows that this PTE is at virtual address 0xC0000180. Notice that the byte
offset portion (0x180) is the same as that from the physical address, as is always the case in
address translation. Because the memory manager maps page tables starting at 0xC0000000,
adding 0x180 to 0xC0000000 yields the virtual address shown in the kernel debugger output:
0xC0000180. The debugger shows that the PFN field of the PTE is 0x5af4d.

Finally, we can consider the byte offset from the original address. As described previously,
the MMU will concatenate the byte offset to the PFN from the PTE, giving a physical address
of 0x5af4d004. This is the physical address that corresponds to the original virtual address of
0x30004—at the moment.

The flags bits from the PTE are interpreted to the right of the PFN number. For example,
the PTE that describes the page being referenced has flags of --A--UR-V. Here, A stands for
accessed (the page has been read), U for user-mode accessible (as opposed to kernel-mode
accessible only), R for read-only page (rather than writable), and V for valid (the PTE represents
a valid page in physical memory).

To confirm our calculation of the physical address, we can look at the memory in question
via both its virtual and its physical addresses. First, using the debugger’s dd command (display
dwords) on the virtual address, we see the following:

lkd> dd 30004

00030004 00000020 00000001 00003020 000000dc

00030014 00000000 00000020 00000000 00000014

00030024 00000001 00000007 00000034 0000017c

00030034 00000001 00000000 00000000 00000000

00030044 00000000 00000000 00000002 1a26ef4e

00030054 00000298 00000044 000002e0 00000260

00030064 00000000 f33271ba 00000540 0000004a

00030074 0000058c 0000031e 00000000 2d59495b

And with the !dd command on the physical address just computed, we see the same
contents:

lkd> !dd 5af4d004
#5af4d004 00000020 00000001 00003020 000000dc
#5af4d014 00000000 00000020 00000000 00000014

#5af4d024 00000001 00000007 00000034 0000017c

#5af4d034 00000001 00000000 00000000 00000000

#5af4d044 00000000 00000000 00000002 1a26ef4e

#5af4d054 00000298 00000044 000002e0 00000260

#5af4d064 00000000 f33271ba 00000540 0000004a

#5af4d074 0000058c 0000031e 00000000 2d59495b

We could similarly compare the displays from the virtual and physical addresses of the PTE
and PDE.

 CHAPTER 10 Memory Management 265

x64 Virtual Address Translation
Address translation on x64 is similar to x86 PAE, but with a fourth level added. Each process has a top-
level extended page directory (called the page map level 4 table) that contains the physical locations
of 512 third-level structures, called page parent directories. The page parent directory is analogous
to the x86 PAE page directory pointer table, but there are 512 of them instead of just 1, and each
page parent directory is an entire page, containing 512 entries instead of just 4. Like the PDPT, the
page parent directory’s entries contain the physical locations of second-level page directories, each
of which in turn contains 512 entries providing the locations of the individual page tables. Finally, the
page tables (each of which contain 512 page table entries) contain the physical locations of the pages
in memory. (All of the “physical locations” in the preceding description are stored in these structures
as page frame numbers, or PFNs.)

Current implementations of the x64 architecture limit virtual addresses to 48 bits. The components
that make up this 48-bit virtual address are shown in Figure 10-22. The connections between these
structures are shown in Figure 10-23. Finally, the format of an x64 hardware page table entry is shown
in Figure 10-24.

9 bits

47 39 38 30 29 21 20 12 11 0

9 bits 12 bits

Page table
selector

Page table
entry selector

Byte within
page

x64 64-bit (48-bit in today’s processors)

Page directory
pointer selector

Page map level
4 selector

9 bits9 bits

FIGURE 10-22 x64 virtual address

Page table
selector

Page directory
pointer selector

Page table
entry selector

Byte within
page

Page map
level 4 selector

Page map
level 4

Page directory
pointers

Page
directories

Page
tables

Physical pages
(up to 248)CR3

PFN 0

1

2

3

4

5

6

7

8

9

10

11

12
.
.
.

47 0

FIGURE 10-23 x64 address translation structures

266 Windows Internals, Sixth Edition, Part 2

U P Cw Gl L DNX A Cd Wt O W V

63 62 5152 40 39 12 91011 8 7 6 5 4 23 1 0

Software field (copy-on-write)

Page frame
number

Global

Accessed

Large page
Dirty

Cache disabled

Owner
Write
Valid

Write through

Software field (write)
No execute

Software
(working
set index)

Reserved

Software field (prototype PTE)

x64 PTE

FIGURE 10-24 x64 hardware page table entry

IA64 Virtual Address Translation
The virtual address space for IA64 is divided into eight regions by the hardware. Each region can have
its own set of page tables. Windows uses five of the regions, three of which have page tables. Table
10-12 lists the regions and how they are used.

TABLE 10-12 The IA64 Regions

Region Use

0 User code and data

1 Session space code and data

2 Unused

3 Unused

4 Kseg3, which is a cached, 1-to-1 mapping of physical memory. No page tables are needed
for this region because the necessary TLB inserts are done directly by the memory
manager.

5 Kseg4, which is a noncached, 1-to-1 mapping for physical memory. This is used only in a
few places for accessing I/O locations such as the I/O port range. There are no page tables
needed for this region.

6 Unused

7 Kernel code and data

Address translation by 64-bit Windows on the IA64 platform uses a three-level page table scheme.
Each process has a page directory pointer structure that contains 1,024 pointers to page directories.
Each page directory contains 1,024 pointers to page tables, which in turn point to physical pages.
Figure 10-25 shows the format of an IA64 hardware PTE.

 CHAPTER 10 Memory Management 267

Cw W NX O D A V

4963 53 52

E

13 101112 9 8 7 6 5 24 1 0

Write

Page frame
number
(37 bits)

Execute

Dirty
Owner

Accessed

Reserved
Valid

Cache

Copy-on-write
Reserved

Software
(working
set index)

Reserved

IA64 PTE

Exception

FIGURE 10-25 IA64 page table entry

Page Fault Handling

Earlier, you saw how address translations are resolved when the PTE is valid. When the PTE valid bit is
clear, this indicates that the desired page is for some reason not currently accessible to the process.
This section describes the types of invalid PTEs and how references to them are resolved.

Note Only the 32-bit x86 PTE formats are detailed in this section. PTEs for 64-bit systems
contain similar information, but their detailed layout is not presented.

A reference to an invalid page is called a page fault. The kernel trap handler (introduced in the
section “Trap Dispatching” in Chapter 3 in Part 1) dispatches this kind of fault to the memory manager
fault handler (MmAccessFault) to resolve. This routine runs in the context of the thread that incurred
the fault and is responsible for attempting to resolve the fault (if possible) or raise an appropriate
exception. These faults can be caused by a variety of conditions, as listed in Table 10-13.

TABLE 10-13 Reasons for Access Faults

Reason for Fault Result

Accessing a page that isn’t resident in memory but is
on disk in a page file or a mapped file

Allocate a physical page, and read the desired page
from disk and into the relevant working set

Accessing a page that is on the standby or modified list Transition the page to the relevant process, session,
or system working set

Accessing a page that isn’t committed (for example,
reserved address space or address space that isn’t
allocated)

Access violation

Accessing a page from user mode that can be accessed
only in kernel mode

Access violation

Writing to a page that is read-only Access violation

268 Windows Internals, Sixth Edition, Part 2

Reason for Fault Result

Accessing a demand-zero page Add a zero-filled page to the relevant working set

Writing to a guard page Guard-page violation (if a reference to a user-mode
stack, perform automatic stack expansion)

Writing to a copy-on-write page Make process-private (or session-private) copy of
page, and replace original in process, session, or
system working set

Writing to a page that is valid but hasn’t been written
to the current backing store copy

Set Dirty bit in PTE

Executing code in a page that is marked as no execute Access violation (supported only on hardware
platforms that support no execute protection)

The following section describes the four basic kinds of invalid PTEs that are processed by the ac-
cess fault handler. Following that is an explanation of a special case of invalid PTEs, prototype PTEs,
which are used to implement shareable pages.

Invalid PTEs
If the valid bit of a PTE encountered during address translation is zero, the PTE represents an invalid
page—one that will raise a memory management exception, or page fault, upon reference. The MMU
ignores the remaining bits of the PTE, so the operating system can use these bits to store information
about the page that will assist in resolving the page fault.

The following list details the four kinds of invalid PTEs and their structure. These are often referred
to as software PTEs because they are interpreted by the memory manager rather than the MMU.
Some of the flags are the same as those for a hardware PTE as described in Table 10-11, and some of
the bit fields have either the same or similar meanings to corresponding fields in the hardware PTE.

 ■ Page file The desired page resides within a paging file. As illustrated in Figure 10-26, 4 bits
in the PTE indicate in which of 16 possible page files the page resides, and 20 bits (in x86 non-
PAE; more in other modes) provide the page number within the file. The pager initiates an in-
page operation to bring the page into memory and make it valid. The page file offset is always
non-zero and never all 1s (that is, the very first and last pages in the page file are not used for
paging) in order to allow for other formats, described next.

0

31 412 5 091011 1

Page file offset Protection Page file number

Prototype
Transition

Valid

FIGURE 10-26 A page table entry representing a page in a page file

 CHAPTER 10 Memory Management 269

 ■ Demand zero This PTE format is the same as the page file PTE shown in the previous entry,
but the page file offset is zero. The desired page must be satisfied with a page of zeros. The
pager looks at the zero page list. If the list is empty, the pager takes a page from the free list
and zeroes it. If the free list is also empty, it takes a page from one of the standby lists and
zeroes it.

 ■ Virtual address descriptor This PTE format is the same as the page file PTE shown previ-
ously, but in this case the page file offset field is all 1s. This indicates a page whose definition
and backing store, if any, can be found in the process’s virtual address descriptor (VAD) tree.
This format is used for pages that are backed by sections in mapped files. The pager finds the
VAD that defines the virtual address range encompassing the virtual page and initiates an
in-page operation from the mapped file referenced by the VAD. (VADs are described in more
detail in a later section.)

 ■ Transition The desired page is in memory on either the standby, modified, or modified-no-
write list or not on any list. As shown in Figure 10-27, the PTE contains the page frame number
of the page. The pager will remove the page from the list (if it is on one) and add it to the
process working set.

31 12 5 091011 1234

Page frame number Protection

Prototype
Transition

Valid

1 1 0

Protection
Cache disable
Write through
Owner
Write

FIGURE 10-27 A page table entry representing a page in transition

 ■ Unknown The PTE is zero, or the page table doesn’t yet exist (the page directory entry
that would provide the physical address of the page table contains zero). In both cases, the
memory manager pager must examine the virtual address descriptors (VADs) to determine
whether this virtual address has been committed. If so, page tables are built to represent the
newly committed address space. (See the discussion of VADs later in the chapter.) If not (if the
page is reserved or hasn’t been defined at all), the page fault is reported as an access violation
exception.

Prototype PTEs
If a page can be shared between two processes, the memory manager uses a software structure
called prototype page table entries (prototype PTEs) to map these potentially shared pages. For
 page-file-backed sections, an array of prototype PTEs is created when a section object is first created;

270 Windows Internals, Sixth Edition, Part 2

for mapped files, portions of the array are created on demand as each view is mapped. These proto-
type PTEs are part of the segment structure, described at the end of this chapter.

When a process first references a page mapped to a view of a section object (recall that the VADs
are created only when the view is mapped), the memory manager uses the information in the proto-
type PTE to fill in the real PTE used for address translation in the process page table. When a shared
page is made valid, both the process PTE and the prototype PTE point to the physical page containing
the data. To track the number of process PTEs that reference a valid shared page, a counter in its PFN
database entry is incremented. Thus, the memory manager can determine when a shared page is no
longer referenced by any page table and thus can be made invalid and moved to a transition list or
written out to disk.

When a shareable page is invalidated, the PTE in the process page table is filled in with a special
PTE that points to the prototype PTE entry that describes the page, as shown in Figure 10-28.

0

31 11 078910 1
PTE address

(bits 7 through 27)
PTE address

(bits 0 through 6)

Prototype
Valid

FIGURE 10-28 Structure of an invalid PTE that points to the prototype PTE

Thus, when the page is later accessed, the memory manager can locate the prototype PTE using
the information encoded in this PTE, which in turn describes the page being referenced. A shared
page can be in one of six different states as described by the prototype PTE entry:

 ■ Active/valid The page is in physical memory as a result of another process that accessed it.

 ■ Transition The desired page is in memory on the standby or modified list (or not on any list).

 ■ Modified-no-write The desired page is in memory and on the modified-no-write list. (See
Table 10-19.)

 ■ Demand zero The desired page should be satisfied with a page of zeros.

 ■ Page file The desired page resides within a page file.

 ■ Mapped file The desired page resides within a mapped file.

Although the format of these prototype PTE entries is the same as that of the real PTE entries de-
scribed earlier, these prototype PTEs aren’t used for address translation—they are a layer between the
page table and the page frame number database and never appear directly in page tables.

By having all the accessors of a potentially shared page point to a prototype PTE to resolve faults,
the memory manager can manage shared pages without needing to update the page tables of each
process sharing the page. For example, a shared code or data page might be paged out to disk at
some point. When the memory manager retrieves the page from disk, it needs only to update the
prototype PTE to point to the page’s new physical location—the PTEs in each of the processes sharing

 CHAPTER 10 Memory Management 271

the page remain the same (with the valid bit clear and still pointing to the prototype PTE). Later, as
processes reference the page, the real PTE will get updated.

Figure 10-29 illustrates two virtual pages in a mapped view. One is valid, and the other is invalid.
As shown, the first page is valid and is pointed to by the process PTE and the prototype PTE. The
second page is in the paging file—the prototype PTE contains its exact location. The process PTE (and
any other processes with that page mapped) points to this prototype PTE.

Page directory Page table

Prototype page
table

Physical
memory

PFN database
entry

Valid – PFN n

Invalid – points
to prototype

PTE

Segment
structure

Valid – PFN 5

Invalid – in
page file

PFN n

PFN n

PTE address

Share count=1

PFN

FIGURE 10-29 Prototype page table entries

In-Paging I/O
In-paging I/O occurs when a read operation must be issued to a file (paging or mapped) to satisfy a
page fault. Also, because page tables are pageable, the processing of a page fault can incur additional
I/O if necessary when the system is loading the page table page that contains the PTE or the proto-
type PTE that describes the original page being referenced.

The in-page I/O operation is synchronous—that is, the thread waits on an event until the I/O com-
pletes—and isn’t interruptible by asynchronous procedure call (APC) delivery. The pager uses a spe-
cial modifier in the I/O request function to indicate paging I/O. Upon completion of paging I/O, the
I/O system triggers an event, which wakes up the pager and allows it to continue in-page processing.

While the paging I/O operation is in progress, the faulting thread doesn’t own any critical memory
management synchronization objects. Other threads within the process are allowed to issue virtual
memory functions and handle page faults while the paging I/O takes place. But a number of interest-
ing conditions that the pager must recognize when the I/O completes are exposed:

 ■ Another thread in the same process or a different process could have faulted the same page
(called a collided page fault and described in the next section).

 ■ The page could have been deleted (and remapped) from the virtual address space.

272 Windows Internals, Sixth Edition, Part 2

 ■ The protection on the page could have changed.

 ■ The fault could have been for a prototype PTE, and the page that maps the prototype PTE
could be out of the working set.

The pager handles these conditions by saving enough state on the thread’s kernel stack before
the paging I/O request such that when the request is complete, it can detect these conditions and, if
necessary, dismiss the page fault without making the page valid. When and if the faulting instruction
is reissued, the pager is again invoked and the PTE is reevaluated in its new state.

Collided Page Faults
The case when another thread in the same process or a different process faults a page that is cur-
rently being in-paged is known as a collided page fault. The pager detects and handles collided page
faults optimally because they are common occurrences in multithreaded systems. If another thread
or process faults the same page, the pager detects the collided page fault, noticing that the page
is in transition and that a read is in progress. (This information is in the PFN database entry.) In this
case, the pager may issue a wait operation on the event specified in the PFN database entry, or it can
choose to issue a parallel I/O to protect the file systems from deadlocks (the first I/O to complete
“wins,” and the others are discarded). This event was initialized by the thread that first issued the I/O
needed to resolve the fault.

When the I/O operation completes, all threads waiting on the event have their wait satisfied. The
first thread to acquire the PFN database lock is responsible for performing the in-page completion
operations. These operations consist of checking I/O status to ensure that the I/O operation com-
pleted successfully, clearing the read-in-progress bit in the PFN database, and updating the PTE.

When subsequent threads acquire the PFN database lock to complete the collided page fault, the
pager recognizes that the initial updating has been performed because the read-in-progress bit is
clear and checks the in-page error flag in the PFN database element to ensure that the in-page I/O
completed successfully. If the in-page error flag is set, the PTE isn’t updated and an in-page error
exception is raised in the faulting thread.

Clustered Page Faults
The memory manager prefetches large clusters of pages to satisfy page faults and populate the
system cache. The prefetch operations read data directly into the system’s page cache instead of
into a working set in virtual memory, so the prefetched data does not consume virtual address
space, and the size of the fetch operation is not limited to the amount of virtual address space that
is available. (Also, no expensive TLB-flushing Inter-Processor Interrupt is needed if the page will be
repurposed.) The prefetched pages are put on the standby list and marked as in transition in the PTE.
If a prefetched page is subsequently referenced, the memory manager adds it to the working set.
However, if it is never referenced, no system resources are required to release it. If any pages in the
prefetched cluster are already in memory, the memory manager does not read them again. Instead, it
uses a dummy page to represent them so that an efficient single large I/O can still be issued, as Figure
10-30 shows.

 CHAPTER 10 Memory Management 273

Pages Y and Z are already in memory, so
the corresponding MDL entries point to
the systemwide dummy page.

Virtual address space

A
Y
Z
B

MDL 1 . . . n

A
X (replaces Y)
X (replaces Z)

B

Header

Physical memory

A

Y

Z

B

Systemwide
dummy page X

FIGURE 10-30 Usage of dummy page during virtual address to physical address mapping in an MDL

In the figure, the file offsets and virtual addresses that correspond to pages A, Y, Z, and B are
logically contiguous, although the physical pages themselves are not necessarily contiguous. Pages A
and B are nonresident, so the memory manager must read them. Pages Y and Z are already resident
in memory, so it is not necessary to read them. (In fact, they might already have been modified since
they were last read in from their backing store, in which case it would be a serious error to overwrite
their contents.) However, reading pages A and B in a single operation is more efficient than perform-
ing one read for page A and a second read for page B. Therefore, the memory manager issues a
single read request that comprises all four pages (A, Y, Z, and B) from the backing store. Such a read
request includes as many pages as make sense to read, based on the amount of available memory,
the current system usage, and so on.

When the memory manager builds the memory descriptor list (MDL) that describes the request, it
supplies valid pointers to pages A and B. However, the entries for pages Y and Z point to a single sys-
temwide dummy page X. The memory manager can fill the dummy page X with the potentially stale
data from the backing store because it does not make X visible. However, if a component accesses the
Y and Z offsets in the MDL, it sees the dummy page X instead of Y and Z.

The memory manager can represent any number of discarded pages as a single dummy page, and
that page can be embedded multiple times in the same MDL or even in multiple concurrent MDLs
that are being used for different drivers. Consequently, the contents of the locations that represent
the discarded pages can change at any time.

Page Files
Page files are used to store modified pages that are still in use by some process but have had to be
written to disk (because they were unmapped or memory pressure resulted in a trim). Page file space
is reserved when the pages are initially committed, but the actual optimally clustered page file loca-
tions cannot be chosen until pages are written out to disk.

When the system boots, the Session Manager process (described in Chapter 13, “Startup and
Shutdown”) reads the list of page files to open by examining the registry value HKLM\SYSTEM\
CurrentControlSet\Control\Session Manager\Memory Management\PagingFiles. This multistring

274 Windows Internals, Sixth Edition, Part 2

registry value contains the name, minimum size, and maximum size of each paging file. Windows
supports up to 16 paging files. On x86 systems running the normal kernel, each page file can be a
maximum of 4,095 MB. On x86 systems running the PAE kernel and x64 systems, each page file can
be 16 terabytes (TB) while the maximum is 32 TB on IA64 systems. Once open, the page files can’t
be deleted while the system is running because the System process (described in Chapter 2 in Part 1)
maintains an open handle to each page file. The fact that the paging files are open explains why the
built-in defragmentation tool cannot defragment the paging file while the system is up. To defrag-
ment your paging file, use the freeware Pagedefrag tool from Sysinternals. It uses the same approach
as other third-party defragmentation tools—it runs its defragmentation process early in the boot
process before the page files are opened by the Session Manager.

Because the page file contains parts of process and kernel virtual memory, for security reasons the
system can be configured to clear the page file at system shutdown. To enable this, set the registry
value HKLM\SYSTEM\CurrentControlSet\Control\Session Manager\Memory Management\ClearPage-
FileAtShutdown to 1. Otherwise, after shutdown, the page file will contain whatever data happened
to have been paged out while the system was up. This data could then be accessed by someone who
gained physical access to the machine.

If the minimum and maximum paging file sizes are both zero, this indicates a system-managed
paging file, which causes the system to choose the page file size as follows:

 ■ Minimum size: set to the amount of RAM or 1 GB, whichever is larger.

 ■ Maximum size: set to 3 * RAM or 4 GB, whichever is larger.

As you can see, by default the initial page file size is proportional to the amount of RAM. This
policy is based on the assumption that machines with more RAM are more likely to be running work-
loads that commit large amounts of virtual memory.

EXPERIMENT: Viewing Page Files
To view the list of page files, look in the registry at HKLM\SYSTEM\CurrentControlSet\Control\
Session Manager\Memory Management\PagingFiles. This entry contains the paging file con-
figuration settings modified through the Advanced System Settings dialog box. Open Control
Panel, click System And Security, and then System. This is the System Properties dialog box, also
reachable by right-clicking on Computer in Explorer and selecting Properties. From there, click
Advanced System Settings, then Settings in the Performance area. In the Performance Options
dialog box, click the Advanced tab, and then click Change in the Virtual Memory area.

To add a new page file, Control Panel uses the (internal only) NtCreatePagingFile system service
defined in Ntdll.dll. Page files are always created as noncompressed files, even if the directory they are
in is compressed. To keep new page files from being deleted, a handle is duplicated into the System
process so that even after the creating process closes the handle to the new page file, a handle is
nevertheless always open to it.

 CHAPTER 10 Memory Management 275

Commit Charge and the System Commit Limit
We are now in a position to more thoroughly discuss the concepts of commit charge and the system
commit limit.

Whenever virtual address space is created, for example by a VirtualAlloc (for committed memory)
or MapViewOfFile call, the system must ensure that there is room to store it, either in RAM or in
backing store, before successfully completing the create request. For mapped memory (other than
sections mapped to the page file), the file associated with the mapping object referenced by the
MapViewOfFile call provides the required backing store.

All other virtual allocations rely for storage on system-managed shared resources: RAM and the
paging file(s). The purpose of the system commit limit and commit charge is to track all uses of these
resources to ensure that they are never overcommitted—that is, that there is never more virtual
address space defined than there is space to store its contents, either in RAM or in backing store
(on disk).

Note This section makes frequent references to paging files. It is possible, though not gen-
erally recommended, to run Windows without any paging files. Every reference to paging
files here may be considered to be qualified by “if one or more paging files exist.”

Conceptually, the system commit limit represents the total virtual address space that can be
created in addition to virtual allocations that are associated with their own backing store—that is,
in addition to sections mapped to files. Its numeric value is simply the amount of RAM available to
Windows plus the current sizes of any page files. If a page file is expanded, or new page files are cre-
ated, the commit limit increases accordingly. If no page files exist, the system commit limit is simply
the total amount of RAM available to Windows.

Commit charge is the systemwide total of all “committed” memory allocations that must be kept in
either RAM or in a paging file. From the name, it should be apparent that one contributor to commit
charge is process-private committed virtual address space. However, there are many other contribu-
tors, some of them not so obvious.

Windows also maintains a per-process counter called the process page file quota. Many of the
allocations that contribute to commit charge contribute to the process page file quota as well. This
represents each process’s private contribution to the system commit charge. Note, however, that this
does not represent current page file usage. It represents the potential or maximum page file usage,
should all of these allocations have to be stored there.

The following types of memory allocations contribute to the system commit charge and, in many
cases, to the process page file quota. (Some of these will be described in detail in later sections of this
chapter.)

 ■ Private committed memory is memory allocated with the VirtualAlloc call with the COMMIT
option. This is the most common type of contributor to the commit charge. These allocations
are also charged to the process page file quota.

276 Windows Internals, Sixth Edition, Part 2

 ■ Page-file-backed mapped memory is memory allocated with a MapViewOfFile call that refer-
ences a section object, which in turn is not associated with a file. The system uses a portion
of the page file as the backing store instead. These allocations are not charged to the process
page file quota.

 ■ Copy-on-write regions of mapped memory, even if it is associated with ordinary mapped files.
The mapped file provides backing store for its own unmodified content, but should a page in
the copy-on-write region be modified, it can no longer use the original mapped file for back-
ing store. It must be kept in RAM or in a paging file. These allocations are not charged to the
process page file quota.

 ■ Nonpaged and paged pool and other allocations in system space that are not backed by ex-
plicitly associated files. Note that even the currently free regions of the system memory pools
contribute to commit charge. The nonpageable regions are counted in the commit charge,
even though they will never be written to the page file because they permanently reduce the
amount of RAM available for private pageable data. These allocations are not charged to the
process page file quota.

 ■ Kernel stacks.

 ■ Page tables, most of which are themselves pageable, and they are not backed by mapped files.
Even if not pageable, they occupy RAM. Therefore, the space required for them contributes to
commit charge.

 ■ Space for page tables that are not yet actually allocated. As we’ll see later, where large areas of
virtual space have been defined but not yet referenced (for example, private committed virtual
space), the system need not actually create page tables to describe it. But the space for these
as-yet-nonexistent page tables is charged to commit charge to ensure that the page tables can
be created when they are needed.

 ■ Allocations of physical memory made via the Address Windowing Extension (AWE) APIs.

For many of these items, the commit charge may represent the potential use of storage rather
than the actual. For example, a page of private committed memory does not actually occupy either a
physical page of RAM or the equivalent page file space until it’s been referenced at least once. Until
then, it is a demand-zero page (described later). But commit charge accounts for such pages when the
virtual space is first created. This ensures that when the page is later referenced, actual physical stor-
age space will be available for it.

A region of a file mapped as copy-on-write has a similar requirement. Until the process writes
to the region, all pages in it are backed by the mapped file. But the process may write to any of the
pages in the region at any time, and when that happens, those pages are thereafter treated as private
to the process. Their backing store is, thereafter, the page file. Charging the system commit for them
when the region is first created ensures that there will be private storage for them later, if and when
the write accesses occur.

A particularly interesting case occurs when reserving private memory and later committing it.
When the reserved region is created with VirtualAlloc, system commit charge is not charged for the

 CHAPTER 10 Memory Management 277

actual virtual region. It is, however, charged for any new page table pages that will be required to de-
scribe the region, even though these might not yet exist. If the region or a part of it is later commit-
ted, system commit is charged to account for the size of the region (as is the process page file quota).

To put it another way, when the system successfully completes (for example) a VirtualAlloc or
MapViewOfFile call, it makes a “commitment” that the needed storage will be available when needed,
even if it wasn’t needed at that moment. Thus, a later memory reference to the allocated region
can never fail for lack of storage space. (It could fail for other reasons, such as page protection, the
region being deallocated, and so on.) The commit charge mechanism allows the system to keep this
commitment.

The commit charge appears in the Performance Monitor counters as Memory: Committed Bytes.
It is also the first of the two numbers displayed on Task Manager’s Performance tab with the legend
Commit (the second being the commit limit), and it is displayed by Process Explorer’s System Informa-
tion Memory tab as Commit Charge—Current.

The process page file quota appears in the performance counters as Process: Page File Bytes. The
same data appears in the Process: Private Bytes performance counter. (Neither term exactly describes
the true meaning of the counter.)

If the commit charge ever reaches the commit limit, the memory manager will attempt to increase
the commit limit by expanding one or more page files. If that is not possible, subsequent attempts
to allocate virtual memory that uses commit charge will fail until some existing committed memory
is freed. The performance counters listed in Table 10-14 allow you to examine private committed
memory usage on a systemwide, per-process, or per-page-file, basis.

TABLE 10-14 Committed Memory and Page File Performance Counters

Performance Counter Description

Memory: Committed Bytes Number of bytes of virtual (not reserved) memory that has been committed.
This number doesn’t necessarily represent page file usage because it includes
private committed pages in physical memory that have never been paged
out. Rather, it represents the charged amount that must be backed by page
file space and/or RAM.

Memory: Commit Limit Number of bytes of virtual memory that can be committed without having to
extend the paging files; if the paging files can be extended, this limit is soft.

Process: Page File Quota The process’s contribution to Memory: Committed Bytes.

Process: Private Bytes Same as Process: Page File Quota

Process: Working Set—Private The subset of Process: Page File Quota that is currently in RAM and can be
referenced without a page fault. Also a subset of Process: Working Set.

Process: Working Set The subset of Process: Virtual Bytes that is currently in RAM and can be
referenced without a page fault.

Process: Virtual Bytes The total virtual memory allocation of the process, including mapped regions,
private committed regions, and private reserved regions.

Paging File: % Usage Percentage of the page file space that is currently in use.

Paging File: % Usage Peak The highest observed value of Paging File: % Usage

278 Windows Internals, Sixth Edition, Part 2

Commit Charge and Page File Size
The counters in Table 10-14 can assist you in choosing a custom page file size. The default policy
based on the amount of RAM works acceptably for most machines, but depending on the workload it
can result in a page file that’s unnecessarily large, or not large enough.

To determine how much page file space your system really needs based on the mix of applica-
tions that have run since the system booted, examine the peak commit charge in the Memory tab
of Process Explorer’s System Information display. This number represents the peak amount of page
file space since the system booted that would have been needed if the system had to page out the
majority of private committed virtual memory (which rarely happens).

If the page file on your system is too big, the system will not use it any more or less—in other
words, increasing the size of the page file does not change system performance, it simply means the
system can have more committed virtual memory. If the page file is too small for the mix of applica-
tions you are running, you might get the “system running low on virtual memory” error message. In
this case, first check to see whether a process has a memory leak by examining the process private
bytes count. If no process appears to have a leak, check the system paged pool size—if a device
driver is leaking paged pool, this might also explain the error. (See the “Troubleshooting a Pool Leak”
experiment in the “Kernel-Mode Heaps (System Memory Pools)” section for how to troubleshoot a
pool leak.)

EXPERIMENT: Viewing Page File Usage with Task Manager
You can also view committed memory usage with Task Manager by clicking its Performance
tab. You’ll see the following counters related to page files:

 CHAPTER 10 Memory Management 279

The system commit total is displayed in the lower-right System area as two numbers. The
first number represents potential page file usage, not actual page file usage. It is how much
page file space would be used if all of the private committed virtual memory in the system had
to be paged out all at once. The second number displayed is the commit limit, which displays
the maximum virtual memory usage that the system can support before running out of virtual
memory (it includes virtual memory backed in physical memory as well as by the paging files).
The commit limit is essentially the size of RAM plus the current size of the paging files. It there-
fore does not account for possible page file expansion.

Process Explorer’s System Information display shows an additional item of information about
system commit usage, namely the percentage of the peak as compared to the limit and the cur-
rent usage as compared to the limit:

Stacks

Whenever a thread runs, it must have access to a temporary storage location in which to store func-
tion parameters, local variables, and the return address after a function call. This part of memory
is called a stack. On Windows, the memory manager provides two stacks for each thread, the user
stack and the kernel stack, as well as per-processor stacks called DPC stacks. We have already de-
scribed how the stack can be used to generate stack traces and how exceptions and interrupts store
structures on the stack, and we have also talked about how system calls, traps, and interrupts cause

280 Windows Internals, Sixth Edition, Part 2

the thread to switch from a user stack to its kernel stack. Now, we’ll look at some extra services the
memory manager provides to efficiently use stack space.

User Stacks
When a thread is created, the memory manager automatically reserves a predetermined amount
of virtual memory, which by default is 1 MB. This amount can be configured in the call to the
CreateThread or CreateRemoteThread function or when compiling the application, by using the
/STACK:reserve switch in the Microsoft C/C++ compiler, which will store the information in the image
header. Although 1 MB is reserved, only the first page of the stack will be committed (unless the PE
header of the image specifies otherwise), along with a guard page. When a thread’s stack grows large
enough to touch the guard page, an exception will occur, causing an attempt to allocate another
guard. Through this mechanism, a user stack doesn’t immediately consume all 1 MB of committed
memory but instead grows with demand. (However, it will never shrink back.)

EXPERIMENT: Creating the Maximum Number of Threads
With only 2 GB of user address space available to each 32-bit process, the relatively large
memory that is reserved for each thread’s stack allows for an easy calculation of the maximum
number of threads that a process can support: a little less than 2,048, for a total of nearly 2 GB
of memory (unless the increaseuserva BCD option is used and the image is large address space
aware). By forcing each new thread to use the smallest possible stack reservation size, 64 KB, the
limit can grow to about 30,400 threads, which you can test for yourself by using the TestLimit
utility from Sysinternals. Here is some sample output:

C:\>testlimit -t
Testlimit - tests Windows limits
By Mark Russinovich

Creating threads ...
Created 30399 threads. Lasterror: 8

If you attempt this experiment on a 64-bit Windows installation (with 8 TB of user address
space available), you would expect to see potentially hundreds of thousands of threads created
(as long as sufficient memory were available). Interestingly, however, TestLimit will actually cre-
ate fewer threads than on a 32-bit machine, which has to do with the fact that Testlimit.exe is
a 32-bit application and thus runs under the Wow64 environment. (See Chapter 3 in Part 1 for
more information on Wow64.) Each thread will therefore have not only its 32-bit Wow64 stack
but also its 64-bit stack, thus consuming more than twice the memory, while still keeping only
2 GB of address space. To properly test the thread-creation limit on 64-bit Windows, use the
Testlimit64.exe binary instead.

Note that you will need to terminate TestLimit with Process Explorer or Task Manager— using
Ctrl+C to break the application will not function because this operation itself creates a new
thread, which will not be possible once memory is exhausted.

 CHAPTER 10 Memory Management 281

Kernel Stacks
Although user stack sizes are typically 1 MB, the amount of memory dedicated to the kernel stack is
significantly smaller: 12 KB on x86 and 16 KB on x64, followed by another guard PTE (for a total of
16 or 20 KB of virtual address space). Code running in the kernel is expected to have less recursion
than user code, as well as contain more efficient variable use and keep stack buffer sizes low. Because
kernel stacks live in system address space (which is shared by all processes), their memory usage has a
bigger impact of the system.

Although kernel code is usually not recursive, interactions between graphics system calls handled
by Win32k.sys and its subsequent callbacks into user mode can cause recursive re-entries in the ker-
nel on the same kernel stack. As such, Windows provides a mechanism for dynamically expanding and
shrinking the kernel stack from its initial size of 16 KB. As each additional graphics call is performed
from the same thread, another 16-KB kernel stack is allocated (anywhere in system address space; the
memory manager provides the ability to jump stacks when nearing the guard page). Whenever each
call returns to the caller (unwinding), the memory manager frees the additional kernel stack that had
been allocated, as shown in Figure 10-31.

This mechanism allows reliable support for recursive system calls, as well as efficient use of system
address space, and is also provided for use by driver developers when performing recursive callouts
through the KeExpandKernelStackAndCallout API, as necessary.

Unwind when nested
callback is complete

16 KB kernel-mode stack

Additional 16 KB stack

Additional 16 KB stack

FIGURE 10-31 Kernel stack jumping

282 Windows Internals, Sixth Edition, Part 2

EXPERIMENT: Viewing Kernel Stack Usage
You can use the MemInfo tool from Winsider Seminars & Solutions to display the physical mem-
ory currently being occupied by kernel stacks. The –u flag displays physical memory usage for
each component, as shown here:

C:\>MemInfo.exe -u | findstr /i "Kernel Stack"
 Kernel Stack: 980 (3920 kb)

Note the kernel stack after repeating the previous TestLimit experiment:

C:\>MemInfo.exe -u | findstr /i "Kernel Stack"
 Kernel Stack: 92169 (368676 kb)

Running TestLimit a few more times would easily exhaust physical memory on a 32-bit sys-
tem, and this limitation results in one of the primary limits on systemwide 32-bit thread count.

DPC Stack
Finally, Windows keeps a per-processor DPC stack available for use by the system whenever DPCs
are executing, an approach that isolates the DPC code from the current thread’s kernel stack (which
is unrelated to the DPC’s actual operation because DPCs run in arbitrary thread context). The DPC
stack is also configured as the initial stack for handling the SYSENTER or SYSCALL instruction during
a system call. The CPU is responsible for switching the stack when SYSENTER or SYSCALL is executed,
based on one of the model-specific registers (MSRs), but Windows does not want to reprogram the
MSR for every context switch, because that is an expensive operation. Windows therefore configures
the per-processor DPC stack pointer in the MSR.

Virtual Address Descriptors

The memory manager uses a demand-paging algorithm to know when to load pages into memory,
waiting until a thread references an address and incurs a page fault before retrieving the page from
disk. Like copy-on-write, demand paging is a form of lazy evaluation—waiting to perform a task until
it is required.

The memory manager uses lazy evaluation not only to bring pages into memory but also to
construct the page tables required to describe new pages. For example, when a thread commits a
large region of virtual memory with VirtualAlloc or VirtualAllocExNuma, the memory manager could
immediately construct the page tables required to access the entire range of allocated memory. But
what if some of that range is never accessed? Creating page tables for the entire range would be a
wasted effort. Instead, the memory manager waits to create a page table until a thread incurs a page
fault, and then it creates a page table for that page. This method significantly improves performance
for processes that reserve and/or commit a lot of memory but access it sparsely.

The virtual address space that would be occupied by such as-yet-nonexistent page tables is
charged to the process page file quota and to the system commit charge. This ensures that space will

 CHAPTER 10 Memory Management 283

be available for them should they be actually created. With the lazy-evaluation algorithm, allocating
even large blocks of memory is a fast operation. When a thread allocates memory, the memory man-
ager must respond with a range of addresses for the thread to use. To do this, the memory manager
maintains another set of data structures to keep track of which virtual addresses have been reserved
in the process’s address space and which have not. These data structures are known as virtual address
descriptors (VADs). VADs are allocated in nonpaged pool.

Process VADs
For each process, the memory manager maintains a set of VADs that describes the status of the
process’s address space. VADs are organized into a self-balancing AVL tree (named after its inventors,
Adelson-Velskii and Landis) that optimally balances the tree. This results in, on average, the fewest
number of comparisons when searching for a VAD corresponding with a virtual address. There is one
virtual address descriptor for each virtually contiguous range of not-free virtual addresses that all
have the same characteristics (reserved versus committed versus mapped, memory access protection,
and so on). A diagram of a VAD tree is shown in Figure 10-32.

Range: 20000000 through 2000FFFF
Protection: Read/write
Inheritance: Yes

Range: 00002000 through 0000FFFF
Protection: Read-only
Inheritance: No

Range: 4E000000 through 4F000000
Protection: Copy-on-write
Inheritance: Yes

Range: 32000000 through 3300FFFF
Protection: Read-only
Inheritance: No

Range: 7AAA0000 through 7AAA00FF
Protection: Read/write
Inheritance: No

FIGURE 10-32 Virtual address descriptors

When a process reserves address space or maps a view of a section, the memory manager creates
a VAD to store any information supplied by the allocation request, such as the range of addresses
being reserved, whether the range will be shared or private, whether a child process can inherit the
contents of the range, and the page protection applied to pages in the range.

When a thread first accesses an address, the memory manager must create a PTE for the page
containing the address. To do so, it finds the VAD whose address range contains the accessed address
and uses the information it finds to fill in the PTE. If the address falls outside the range covered by the
VAD or in a range of addresses that are reserved but not committed, the memory manager knows
that the thread didn’t allocate the memory before attempting to use it and therefore generates an
access violation.

284 Windows Internals, Sixth Edition, Part 2

EXPERIMENT: Viewing Virtual Address Descriptors
You can use the kernel debugger’s !vad command to view the VADs for a given process. First
find the address of the root of the VAD tree with the !process command. Then specify that ad-
dress to the !vad command, as shown in the following example of the VAD tree for a process
running Notepad.exe:

lkd> !process 0 1 notepad.exe
PROCESS 8718ed90 SessionId: 1 Cid: 1ea68 Peb: 7ffdf000 ParentCid: 0680
 DirBase: ce2aa880 ObjectTable: ee6e01b0 HandleCount: 48.
 Image: notepad.exe
 VadRoot 865f10e0 Vads 51 Clone 0 Private 210. Modified 0. Locked 0.

lkd> !vad 865f10e0
VAD level start end commit
8a05bf88 (6) 10 1f 0 Mapped READWRITE
88390ad8 (5) 20 20 1 Private READWRITE
87333740 (6) 30 33 0 Mapped READONLY
86d09d10 (4) 40 41 0 Mapped READONLY
882b49a0 (6) 50 50 1 Private READWRITE
...
Total VADs: 51 average level: 5 maximum depth: 6

Rotate VADs
A video card driver must typically copy data from the user-mode graphics application to various
other system memory, including the video card memory and the AGP port’s memory, both of which
have different caching attributes as well as addresses. In order to quickly allow these different views
of memory to be mapped into a process, and to support the different cache attributes, the memory
manager implements rotate VADs, which allow video drivers to transfer data directly by using the
GPU and to rotate unneeded memory in and out of the process view pages on demand. Fig ure 10-33
shows an example of how the same virtual address can rotate between video RAM and virtual
memory.

Virtual address space
Page table

Video RAM or AGP

User’s data

User’s virtual
address

Entry for user’s
virtual address

Page-file-backed page

User’s data

FIGURE 10-33 Rotate virtual address descriptors

 CHAPTER 10 Memory Management 285

NUMA

Each new release of Windows provides new enhancements to the memory manager to better make
use of Non Uniform Memory Architecture (NUMA) machines, such as large server systems (but also
Intel i7 and AMD Opteron SMP workstations). The NUMA support in the memory manager adds intel-
ligent knowledge of node information such as location, topology, and access costs to allow applica-
tions and drivers to take advantage of NUMA capabilities, while abstracting the underlying hardware
details.

When the memory manager is initializing, it calls the MiComputeNumaCosts function to perform
various page and cache operations on different nodes and then computes the time it took for those
operations to complete. Based on this information, it builds a node graph of access costs (the distance
between a node and any other node on the system). When the system requires pages for a given
operation, it consults the graph to choose the most optimal node (that is, the closest). If no memory is
available on that node, it chooses the next closest node, and so on.

Although the memory manager ensures that, whenever possible, memory allocations come
from the ideal processor’s node (the ideal node) of the thread making the allocation, it also pro-
vides functions that allow applications to choose their own node, such as the VirtualAllocExNuma,
 CreateFileMappingNuma, MapViewOfFileExNuma, and AllocateUserPhysicalPagesNuma APIs.

The ideal node isn’t used only when applications allocate memory but also during kernel op-
eration and page faults. For example, when a thread is running on a nonideal processor and
takes a page fault, the memory manager won’t use the current node but will instead allocate
memory from the thread’s ideal node. Although this might result in slower access time while the
thread is still running on this CPU, overall memory access will be optimized as the thread mi-
grates back to its ideal node. In any case, if the ideal node is out of resources, the closest node to
the ideal node is chosen and not a random other node. Just like user-mode applications, how-
ever, drivers can specify their own node when using APIs such as MmAllocatePagesforMdlEx or
MmAllocateContiguousMemorySpecifyCacheNode.

Various memory manager pools and data structures are also optimized to take advantage of
NUMA nodes. The memory manager tries to evenly use physical memory from all the nodes on the
system to hold the nonpaged pool. When a nonpaged pool allocation is made, the memory man-
ager looks at the ideal node and uses it as an index to choose a virtual memory address range inside
nonpaged pool that corresponds to physical memory belonging to this node. In addition, per-NUMA
node pool freelists are created to efficiently leverage these types of memory configurations. Apart
from nonpaged pool, the system cache and system PTEs are also similarly allocated across all nodes,
as well as the memory manager’s look-aside lists.

Finally, when the system needs to zero pages, it does so in parallel across different NUMA nodes
by creating threads with NUMA affinities that correspond to the nodes in which the physical memory
is located. The logical prefetcher and Superfetch (described later) also use the ideal node of the target
process when prefetching, while soft page faults cause pages to migrate to the ideal node of the
faulting thread.

286 Windows Internals, Sixth Edition, Part 2

Section Objects

As you’ll remember from the section on shared memory earlier in the chapter, the section object,
which the Windows subsystem calls a file mapping object, represents a block of memory that two or
more processes can share. A section object can be mapped to the paging file or to another file on
disk.

The executive uses sections to load executable images into memory, and the cache manager
uses them to access data in a cached file. (See Chapter 11 for more information on how the cache
manager uses section objects.) You can also use section objects to map a file into a process address
space. The file can then be accessed as a large array by mapping different views of the section object
and reading or writing to memory rather than to the file (an activity called mapped file I/O). When
the program accesses an invalid page (one not in physical memory), a page fault occurs and the
memory manager automatically brings the page into memory from the mapped file (or page file). If
the application modifies the page, the memory manager writes the changes back to the file during its
normal paging operations (or the application can flush a view by using the Windows FlushViewOfFile
function).

Section objects, like other objects, are allocated and deallocated by the object manager. The
object manager creates and initializes an object header, which it uses to manage the objects; the
memory manager defines the body of the section object. The memory manager also implements
services that user-mode threads can call to retrieve and change the attributes stored in the body of
section objects. The structure of a section object is shown in Figure 10-34.

Object type

Object body attributes

Services

Section

Maximum size
Page protection
Paging file/Mapped file
Based/Not based

Create section
Open section
Extend section
Map/Unmap view
Query section

FIGURE 10-34 A section object

Table 10-15 summarizes the unique attributes stored in section objects.

 CHAPTER 10 Memory Management 287

TABLE 10-15 Section Object Body Attributes

Attribute Purpose

Maximum size The largest size to which the section can grow in bytes; if mapping a file, the
maximum size is the size of the file.

Page protection Page-based memory protection assigned to all pages in the section when it is
created.

Paging file/Mapped file Indicates whether the section is created empty (backed by the paging file—as
explained earlier, page-file-backed sections use page-file resources only when the
pages need to be written out to disk) or loaded with a file (backed by the mapped
file).

Based/Not based Indicates whether a section is a based section, which must appear at the same
virtual address for all processes sharing it, or a nonbased section, which can
appear at different virtual addresses for different processes.

EXPERIMENT: Viewing Section Objects
With the Object Viewer (Winobj.exe from Sysinternals), you can see the list of sections that have
names. You can list the open handles to section objects with any of the tools described in the
“Object Manager” section in Chapter 3 in Part 1 that list the open handle table. (As explained
in Chapter 3, these names are stored in the object manager directory \Sessions\x\BaseNamed-
Objects, where x is the appropriate Session directory. Unnamed section objects are not visible.

As mentioned earlier, you can use Process Explorer from Sysinternals to see files mapped
by a process. Select DLLs from the Lower Pane View entry of the View menu, and enable the
Mapping Type column in the DLL section of View | Select Columns. Files marked as “Data” in the
Mapping column are mapped files (rather than DLLs and other files the image loader loads as
modules). We saw this example earlier:

288 Windows Internals, Sixth Edition, Part 2

The data structures maintained by the memory manager that describe mapped sections are shown
in Figure 10-35. These structures ensure that data read from mapped files is consistent, regardless of
the type of access (open file, mapped file, and so on).

For each open file (represented by a file object), there is a single section object pointers structure.
This structure is the key to maintaining data consistency for all types of file access as well as to provid-
ing caching for files. The section object pointers structure points to one or two control areas. One
control area is used to map the file when it is accessed as a data file, and one is used to map the file
when it is run as an executable image.

A control area in turn points to subsection structures that describe the mapping information for
each section of the file (read-only, read/write, copy-on-write, and so on). The control area also points
to a segment structure allocated in paged pool, which in turn points to the prototype PTEs used to
map to the actual pages mapped by the section object. As described earlier in the chapter, process
page tables point to these prototype PTEs, which in turn map the pages being referenced.

File object

File object

VAD
Section
object

Segment

Prototype
PTEs

PFN
database

entry
Next

subsection

Subsection

Data section
control area

Image section control area
(if file is an executable image)

Page
directory Page table

Section object
pointers

FIGURE 10-35 Internal section structures

Although Windows ensures that any process that accesses (reads or writes) a file will always see the
same, consistent data, there is one case in which two copies of pages of a file can reside in physical
memory (but even in this case, all accessors get the latest copy and data consistency is maintained).
This duplication can happen when an image file has been accessed as a data file (having been read
or written) and then run as an executable image (for example, when an image is linked and then

 CHAPTER 10 Memory Management 289

run—the linker had the file open for data access, and then when the image was run, the image loader
mapped it as an executable). Internally, the following actions occur:

1. If the executable file was created using the file mapping APIs (or the cache manager), a data
control area is created to represent the data pages in the image file being read or written.

2. When the image is run and the section object is created to map the image as an executable,
the memory manager finds that the section object pointers for the image file point to a data
control area and flushes the section. This step is necessary to ensure that any modified pages
have been written to disk before accessing the image through the image control area.

3. The memory manager then creates a control area for the image file.

4. As the image begins execution, its (read-only) pages are faulted in from the image file (or cop-
ied directly over from the data file if the corresponding data page is resident).

Because the pages mapped by the data control area might still be resident (on the standby list),
this is the one case in which two copies of the same data are in two different pages in memory.
However, this duplication doesn’t result in a data consistency issue because, as mentioned, the data
control area has already been flushed to disk, so the pages read from the image are up to date (and
these pages are never written back to disk).

EXPERIMENT: Viewing Control Areas
To find the address of the control area structures for a file, you must first get the address of the
file object in question. You can obtain this address through the kernel debugger by dumping
the process handle table with the !handle command and noting the object address of a file
object. Although the kernel debugger !file command displays the basic information in a file
object, it doesn’t display the pointer to the section object pointers structure. Then, using the dt
command, format the file object to get the address of the section object pointers structure. This
structure consists of three pointers: a pointer to the data control area, a pointer to the shared
cache map (explained in Chapter 11), and a pointer to the image control area. From the section
object pointers structure, you can obtain the address of a control area for the file (if one exists)
and feed that address into the !ca command.

For example, if you open a PowerPoint file and display the handle table for that process
 using !handle, you will find an open handle to the PowerPoint file as shown here. (For informa-
tion on using !handle, see the “Object Manager” section in Chapter 3 in Part 1.)

lkd> !handle 1 f 86f57d90 File
.
.
0324: Object: 865d2768 GrantedAccess: 00120089 Entry: c848e648
Object: 865d2768 Type: (8475a2c0) File
 ObjectHeader: 865d2750 (old version)
 HandleCount: 1 PointerCount: 1
 Directory Object: 00000000 Name: \Users\Administrator\Documents\Downloads\
SVR-T331_WH07 (1).pptx {HarddiskVolume3}

290 Windows Internals, Sixth Edition, Part 2

Taking the file object address (865d2768) and formatting it with dt results in this:

lkd> dt nt!_FILE_OBJECT 865d2768
 +0x000 Type : 5
 +0x002 Size : 128
 +0x004 DeviceObject : 0x84a62320 _DEVICE_OBJECT
 +0x008 Vpb : 0x84a60590 _VPB
 +0x00c FsContext : 0x8cee4390
 +0x010 FsContext2 : 0xbf910c80
 +0x014 SectionObjectPointer : 0x86c45584 _SECTION_OBJECT_POINTERS

Then taking the address of the section object pointers structure (0x86c45584) and format-
ting it with dt results in this:

lkd> dt 0x86c45584 nt!_SECTION_OBJECT_POINTERS
 +0x000 DataSectionObject : 0x863d3b00
 +0x004 SharedCacheMap : 0x86f10ec0
 +0x008 ImageSectionObject : (null)

Finally, use !ca to display the control area using the address:

lkd> !ca 0x863d3b00

ControlArea @ 863d3b00
 Segment b1de9d48 Flink 00000000 Blink 8731f80c
 Section Ref 1 Pfn Ref 48 Mapped Views 2
 User Ref 0 WaitForDel 0 Flush Count 0
 File Object 86cf6188 ModWriteCount 0 System Views 2
 WritableRefs 0
 Flags (c080) File WasPurged Accessed

 No name for file

Segment @ b1de9d48
 ControlArea 863d3b00 ExtendInfo 00000000
 Total Ptes 100
 Segment Size 100000 Committed 0
 Flags (c0000) ProtectionMask

Subsection 1 @ 863d3b48
 ControlArea 863d3b00 Starting Sector 0 Number Of Sectors 100
 Base Pte bf85e008 Ptes In Subsect 100 Unused Ptes 0
 Flags d Sector Offset 0 Protection 6
 Accessed
 Flink 00000000 Blink 8731f87c MappedViews 2

 CHAPTER 10 Memory Management 291

Another technique is to display the list of all control areas with the !memusage command.
The following excerpt is from the output of this command:

lkd> !memusage
 loading PFN database
loading (100% complete)
Compiling memory usage data (99% Complete).
 Zeroed: 2654 (10616 kb)
 Free: 584 (2336 kb)
 Standby: 402938 (1611752 kb)
 Modified: 12732 (50928 kb)
 ModifiedNoWrite: 3 (12 kb)
 Active/Valid: 431478 (1725912 kb)
 Transition: 1186 (4744 kb)
 Bad: 0 (0 kb)
 Unknown: 0 (0 kb)
 TOTAL: 851575 (3406300 kb)
 Building kernel map
 Finished building kernel map
Scanning PFN database - (100% complete)

 Usage Summary (in Kb):
Control Valid Standby Dirty Shared Locked PageTables name
86d75f18 0 64 0 0 0 0 mapped_file(netcfgx.dll)
8a124ef8 0 4 0 0 0 0 No Name for File
8747af80 0 52 0 0 0 0 mapped_file(iebrshim.dll)
883a2e58 24 8 0 0 0 0 mapped_file(WINWORD.EXE)
86d6eae0 0 16 0 0 0 0 mapped_file(oem13.CAT)
84b19af8 8 0 0 0 0 0 No Name for File
b1672ab0 4 0 0 0 0 0 No Name for File
88319da8 0 20 0 0 0 0 mapped_file(Microsoft-Windows-MediaPlayer-
Package~31bf3856ad364e35~x86~en-US~6.0.6001.18000.cat)
8a04db00 0 48 0 0 0 0 mapped_file(eapahost.dll)

The Control column points to the control area structure that describes the mapped file. You
can display control areas, segments, and subsections with the kernel debugger !ca command.
For example, to dump the control area for the mapped file Winword.exe in this example, type
the !ca command followed by the Control number, as shown here:

lkd> !ca 883a2e58

ControlArea @ 883a2e58
 Segment ee613998 Flink 00000000 Blink 88a985a4
 Section Ref 1 Pfn Ref 8 Mapped Views 1
 User Ref 2 WaitForDel 0 Flush Count 0
 File Object 88b45180 ModWriteCount 0 System Views ffff
 WritableRefs 80000006
 Flags (40a0) Image File Accessed

 File: \PROGRA~1\MICROS~1\Office12\WINWORD.EXE

292 Windows Internals, Sixth Edition, Part 2

Segment @ ee613998
 ControlArea 883a2e58 BasedAddress 2f510000
 Total Ptes 57
 Segment Size 57000 Committed 0
 Image Commit 1 Image Info ee613c80
 ProtoPtes ee6139c8
 Flags (20000) ProtectionMask

Subsection 1 @ 883a2ea0
 ControlArea 883a2e58 Starting Sector 0 Number Of Sectors 2
 Base Pte ee6139c8 Ptes In Subsect 1 Unused Ptes 0
 Flags 2 Sector Offset 0 Protection 1

Subsection 2 @ 883a2ec0
 ControlArea 883a2e58 Starting Sector 2 Number Of Sectors a
 Base Pte ee6139d0 Ptes In Subsect 2 Unused Ptes 0
 Flags 6 Sector Offset 0 Protection 3

Subsection 3 @ 883a2ee0
 ControlArea 883a2e58 Starting Sector c Number Of Sectors 1
 Base Pte ee6139e0 Ptes In Subsect 1 Unused Ptes 0
 Flags a Sector Offset 0 Protection 5

Subsection 4 @ 883a2f00
 ControlArea 883a2e58 Starting Sector d Number Of Sectors 28b
 Base Pte ee6139e8 Ptes In Subsect 52 Unused Ptes 0
 Flags 2 Sector Offset 0 Protection 1

Subsection 5 @ 883a2f20
 ControlArea 883a2e58 Starting Sector 298 Number Of Sectors 1
 Base Pte ee613c78 Ptes In Subsect 1 Unused Ptes 0
 Flags 2 Sector Offset 0 Protection 1

Driver Verifier

As introduced in Chapter 8, “I/O System,” Driver Verifier is a mechanism that can be used to help find
and isolate commonly found bugs in device driver or other kernel-mode system code. This section
describes the memory management–related verification options Driver Verifier provides (the options
related to device drivers are described in Chapter 8).

The verification settings are stored in the registry under HKLM\SYSTEM\CurrentControlSet\
Control\Session Manager\Memory Management. The value VerifyDriverLevel contains a bitmask that
represents the verification types enabled. The VerifyDrivers value contains the names of the drivers to
validate. (These values won’t exist in the registry until you select drivers to verify in the Driver Verifier
Manager.) If you choose to verify all drivers, VerifyDrivers is set to an asterisk (*) character. Depending
on the settings you have made, you might need to reboot the system for the selected verification to
occur.

 CHAPTER 10 Memory Management 293

Early in the boot process, the memory manager reads the Driver Verifier registry values to deter-
mine which drivers to verify and which Driver Verifier options you enabled. (Note that if you boot
in safe mode, any Driver Verifier settings are ignored.) Subsequently, if you’ve selected at least one
driver for verification, the kernel checks the name of every device driver it loads into memory against
the list of drivers you’ve selected for verification. For every device driver that appears in both places,
the kernel invokes the VfLoadDriver function, which calls other internal Vf* functions to replace the
driver’s references to a number of kernel functions with references to Driver Verifier–equivalent ver-
sions of those functions. For example, ExAllocatePool is replaced with a call to VerifierAllocatePool. The
windowing system driver (Win32k.sys) also makes similar changes to use Driver Verifier–equivalent
functions.

Now that we’ve reviewed how Driver Verifier is set up, we’ll examine the six memory-related verifi-
cation options that can be applied to device drivers: Special Pool, Pool Tracking, Force IRQL Checking,
Low Resources Simulation, Miscellaneous Checks, and Automatic Checks

Special Pool The Special Pool option causes the pool allocation routines to bracket pool allocations
with an invalid page so that references before or after the allocation will result in a kernel-mode ac-
cess violation, thus crashing the system with the finger pointed at the buggy driver. Special pool also
causes some additional validation checks to be performed when a driver allocates or frees memory.

When special pool is enabled, the pool allocation routines allocate a region of kernel memory for
Driver Verifier to use. Driver Verifier redirects memory allocation requests that drivers under verifica-
tion make to the special pool area rather than to the standard kernel-mode memory pools. When a
device driver allocates memory from special pool, Driver Verifier rounds up the allocation to an even-
page boundary. Because Driver Verifier brackets the allocated page with invalid pages, if a device
driver attempts to read or write past the end of the buffer, the driver will access an invalid page, and
the memory manager will raise a kernel-mode access violation.

Figure 10-36 shows an example of the special pool buffer that Driver Verifier allocates to a device
driver when Driver Verifier checks for overrun errors.

Page 0

Page 2

Page 1 Random signature

Invalid page

Invalid page

Driver buffer

FIGURE 10-36 Layout of special pool allocations

By default, Driver Verifier performs overrun detection. It does this by placing the buffer that the
device driver uses at the end of the allocated page and fills the beginning of the page with a random

294 Windows Internals, Sixth Edition, Part 2

pattern. Although the Driver Verifier Manager doesn’t let you specify underrun detection, you can
set this type of detection manually by adding the DWORD registry value HKLM\SYSTEM\Current-
ControlSet\Control\Session Manager\Memory Management\PoolTagOverruns and setting it to 0 (or
by running the Gflags utility and selecting the Verify Start option instead of the default option, Verify
End). When Windows enforces underrun detection, Driver Verifier allocates the driver’s buffer at the
beginning of the page rather than at the end.

The overrun-detection configuration includes some measure of underrun detection as well. When
the driver frees its buffer to return the memory to Driver Verifier, Driver Verifier ensures that the pat-
tern preceding the buffer hasn’t changed. If the pattern is modified, the device driver has underrun
the buffer and written to memory outside the buffer.

Special pool allocations also check to ensure that the processor IRQL at the time of an allocation
and deallocation is legal. This check catches an error that some device drivers make: allocating page-
able memory from an IRQL at DPC/dispatch level or above.

You can also configure special pool manually by adding the DWORD registry value HKLM\SYSTEM\
CurrentControlSet\Control\Session Manager\Memory Management\PoolTag, which represents the
allocation tags the system uses for special pool. Thus, even if Driver Verifier isn’t configured to verify
a particular device driver, if the tag the driver associates with the memory it allocates matches what
is specified in the PoolTag registry value, the pool allocation routines will allocate the memory from
special pool. If you set the value of PoolTag to 0x0000002a or to the wildcard (*), all memory that
drivers allocate is from special pool, provided there’s enough virtual and physical memory. (The driv-
ers will revert to allocating from regular pool if there aren’t enough free pages—bounding exists, but
each allocation uses two pages.)

Pool Tracking If pool tracking is enabled, the memory manager checks at driver unload time
whether the driver freed all the memory allocations it made. If it didn’t, it crashes the system, indicat-
ing the buggy driver. Driver Verifier also shows general pool statistics on the Driver Verifier Manager’s
Pool Tracking tab. You can also use the !verifier kernel debugger command. This command shows
more information than Driver Verifier and is useful to driver writers.

Pool tracking and special pool cover not only explicit allocation calls, such as ExAllocatePoolWith-
Tag, but also calls to other kernel APIs that implicitly allocate pool: IoAllocateMdl, IoAllocateIrp, and
other IRP allocation calls; various Rtl string APIs; and IoSetCompletionRoutineEx.

Another driver verified function enabled by the Pool Tracking option has to do with pool quota
charges. The call ExAllocatePoolWithQuotaTag charges the current process’s pool quota for the num-
ber of bytes allocated. If such a call is made from a deferred procedure call (DPC) routine, the process
that is charged is unpredictable because DPC routines may execute in the context of any process. The
Pool Tracking option checks for calls to this routine from DPC routine context.

Driver Verifier can also perform locked memory page tracking, which additionally checks for pages
that have been left locked after an I/O operation and generates the DRIVER_LEFT_LOCKED_PAGES_
IN_PROCESS instead of the PROCESS_HAS_LOCKED_PAGES crash code—the former indicates the
driver responsible for the error as well as the function responsible for the locking of the pages.

 CHAPTER 10 Memory Management 295

Force IRQL Checking One of the most common device driver bugs occurs when a driver accesses
pageable data or code when the processor on which the device driver is executing is at an elevated
IRQL. As explained in Chapter 3 in Part 1, the memory manager can’t service a page fault when the
IRQL is DPC/dispatch level or above. The system often doesn’t detect instances of a device driver
accessing pageable data when the processor is executing at a high IRQL level because the pageable
data being accessed happens to be physically resident at the time. At other times, however, the data
might be paged out, which results in a system crash with the stop code IRQL_NOT_LESS_OR_EQUAL
(that is, the IRQL wasn’t less than or equal to the level required for the operation attempted—in this
case, accessing pageable memory).

Although testing device drivers for this kind of bug is usually difficult, Driver Verifier makes it easy.
If you select the Force IRQL Checking option, Driver Verifier forces all kernel-mode pageable code
and data out of the system working set whenever a device driver under verification raises the IRQL.
The internal function that does this is MiTrimAllSystemPagableMemory. With this setting enabled,
whenever a device driver under verification accesses pageable memory when the IRQL is elevated, the
system instantly detects the violation, and the resulting system crash identifies the faulty driver.

Another common driver crash that results from incorrect IRQL usage occurs when synchronization
objects are part of data structures that are paged and then waited on. Synchronization objects should
never be paged because the dispatcher needs to access them at an elevated IRQL, which would
cause a crash. Driver Verifier checks whether any of the following structures are present in pageable
memory: KTIMER, KMUTEX, KSPIN_LOCK, KEVENT, KSEMAPHORE, ERESOURCE, FAST_MUTEX.

Low Resources Simulation Enabling Low Resources Simulation causes Driver Verifier to randomly
fail memory allocations that verified device drivers perform. In the past, developers wrote many de-
vice drivers under the assumption that kernel memory would always be available and that if memory
ran out, the device driver didn’t have to worry about it because the system would crash anyway.
However, because low-memory conditions can occur temporarily, it’s important that device drivers
properly handle allocation failures that indicate kernel memory is exhausted.

The driver calls that will be injected with random failures include the ExAllocatePool*, MmProbe-
AndLockPages, MmMapLockedPagesSpecifyCache, MmMapIoSpace, MmAllocateContiguousMemory,
MmAllocatePagesForMdl, IoAllocateIrp, IoAllocateMdl, IoAllocateWorkItem, IoAllocateErrorLogEntry,
IOSetCompletionRoutineEx, and various Rtl string APIs that allocate pool. Additionally, you can specify
the probability that allocation will fail (6 percent by default), which applications should be subject to
the simulation (all are by default), which pool tags should be affected (all are by default), and what
delay should be used before fault injection starts (the default is 7 minutes after the system boots,
which is enough time to get past the critical initialization period in which a low-memory condition
might prevent a device driver from loading).

After the delay period, Driver Verifier starts randomly failing allocation calls for device drivers it
is verifying. If a driver doesn’t correctly handle allocation failures, this will likely show up as a system
crash.

296 Windows Internals, Sixth Edition, Part 2

Miscellaneous Checks Some of the checks that Driver Verifier calls “miscellaneous” allow Driver
Verifier to detect the freeing of certain system structures in the pool that are still active. For example,
Driver Verifier will check for:

 ■ Active work items in freed memory (a driver calls ExFreePool to free a pool block in which one
or more work items queued with IoQueueWorkItem are present).

 ■ Active resources in freed memory (a driver calls ExFreePool before calling ExDeleteResource to
destroy an ERESOURCE object).

 ■ Active look-aside lists in freed memory (a driver calls ExFreePool before calling
 ExDeleteNPagedLookasideList or ExDeletePagedLookasideList to delete the look-aside list).

Finally, when verification is enabled, Driver Verifier also performs certain automatic checks that
cannot be individually enabled or disabled. These include:

 ■ Calling MmProbeAndLockPages or MmProbeAndLockProcessPages on a memory descriptor list
(MDL) having incorrect flags. For example, it is incorrect to call MmProbeAndLockPages for an
MDL setup by calling MmBuildMdlForNonPagedPool.

 ■ Calling MmMapLockedPages on an MDL having incorrect flags. For example, it is incorrect to
call MmMapLockedPages for an MDL that is already mapped to a system address. Another
example of incorrect driver behavior is calling MmMapLockedPages for an MDL that was not
locked.

 ■ Calling MmUnlockPages or MmUnmapLockedPages on a partial MDL (created by using
IoBuildPartialMdl).

 ■ Calling MmUnmapLockedPages on an MDL that is not mapped to a system address.

 ■ Allocating synchronization objects such as events or mutexes from NonPagedPoolSession
memory.

Driver Verifier is a valuable addition to the arsenal of verification and debugging tools available to
device driver writers. Many device drivers that first ran with Driver Verifier had bugs that Driver Veri-
fier was able to expose. Thus, Driver Verifier has resulted in an overall improvement in the quality of
all kernel-mode code running in Windows.

 CHAPTER 10 Memory Management 297

Page Frame Number Database

In several previous sections, we’ve concentrated on the virtual view of a Windows process—page
tables, PTEs, and VADs. In the remainder of this chapter, we’ll explain how Windows manages physical
memory, starting with how Windows keeps track of physical memory. Whereas working sets describe
the resident pages owned by a process or the system, the page frame number (PFN) database de-
scribes the state of each page in physical memory. The page states are listed in Table 10-16.

TABLE 10-16 Page States

Status Description

Active (also called Valid) The page is part of a working set (either a process working set, a session
working set, or a system working set), or it’s not in any working set (for
example, nonpaged kernel page) and a valid PTE usually points to it.

Transition A temporary state for a page that isn’t owned by a working set and isn’t on any
paging list. A page is in this state when an I/O to the page is in progress. The
PTE is encoded so that collided page faults can be recognized and handled
properly. (Note that this use of the term “transition” differs from the use of the
word in the section on invalid PTEs; an invalid transition PTE refers to a page on
the standby or modified list.)

Standby The page previously belonged to a working set but was removed (or was
prefetched/clustered directly into the standby list). The page wasn’t modified
since it was last written to disk. The PTE still refers to the physical page but is
marked invalid and in transition.

Modified The page previously belonged to a working set but was removed. However, the
page was modified while it was in use and its current contents haven’t yet been
written to disk or remote storage. The PTE still refers to the physical page but is
marked invalid and in transition. It must be written to the backing store before
the physical page can be reused.

Modified no-write Same as a modified page, except that the page has been marked so that the
memory manager’s modified page writer won’t write it to disk. The cache
manager marks pages as modified no-write at the request of file system drivers.
For example, NTFS uses this state for pages containing file system metadata
so that it can first ensure that transaction log entries are flushed to disk before
the pages they are protecting are written to disk. (NTFS transaction logging is
explained in Chapter 12, “File Systems.”)

Free The page is free but has unspecified dirty data in it. (These pages can’t be given
as a user page to a user process without being initialized with zeros, for security
reasons.)

Zeroed The page is free and has been initialized with zeros by the zero page thread (or
was determined to already contain zeros).

Rom The page represents read-only memory

Bad The page has generated parity or other hardware errors and can’t be used.

The PFN database consists of an array of structures that represent each physical page of memory
on the system. The PFN database and its relationship to page tables are shown in Figure 10-37. As this
figure shows, valid PTEs usually point to entries in the PFN database, and the PFN database entries
(for nonprototype PFNs) point back to the page table that is using them (if it is being used by a page
table). For prototype PFNs, they point back to the prototype PTE.

298 Windows Internals, Sixth Edition, Part 2

Process 2
page table

.

.

.

Process 3
page table

.

.

.

Process 1
page table

Valid

Invalid:
disk address

Invalid:
transition

Valid

Invalid:
disk address

Valid

Valid

Invalid:
transition
Invalid:

disk address

.

.

.

PFN database

In use

Standby list

In use

In use

Modified list

Prototype PTE

Forward pointer

.

.

.

Backward pointer

FIGURE 10-37 Page tables and the page frame number database

 CHAPTER 10 Memory Management 299

Of the page states listed in Table 10-16, six are organized into linked lists so that the memory man-
ager can quickly locate pages of a specific type. (Active/valid pages, transition pages, and overloaded
“bad” pages aren’t in any systemwide page list.) Additionally, the standby state is actually associated
with eight different lists ordered by priority (we’ll talk about page priority later in this section). Figure
10-38 shows an example of how these entries are linked together.

.

.

.

PFN database

Active

Zeroed

Free

Standby

Bad

Modified no-
write

Read only
memory

Modified

Active

Active

FIGURE 10-38 Page lists in the PFN database

In the next section, you’ll find out how these linked lists are used to satisfy page faults and how
pages move to and from the various lists.

300 Windows Internals, Sixth Edition, Part 2

EXPERIMENT: Viewing the PFN Database
You can use the MemInfo tool from Winsider Seminars & Solutions to dump the size of the vari-
ous paging lists by using the –s flag. The following is the output from this command:

C:\>MemInfo.exe -s

MemInfo v2.10 - Show PFN database information
Copyright (C) 2007-2009 Alex Ionescu
www.alex-ionescu.com

Initializing PFN Database... Done

PFN Database List Statistics
 Zeroed: 487 (1948 kb)
 Free: 0 (0 kb)
 Standby: 379745 (1518980 kb)
 Modified: 1052 (4208 kb)
 ModifiedNoWrite: 0 (0 kb)
 Active/Valid: 142703 (570812 kb)
 Transition: 184 (736 kb)
 Bad: 0 (0 kb)
 Unknown: 2 (8 kb)
 TOTAL: 524173 (2096692 kb)

Using the kernel debugger !memusage command, you can obtain similar information, al-
though this will take considerably longer and will require booting into debugging mode.

Page List Dynamics
Figure 10-39 shows a state diagram for page frame transitions. For simplicity, the modified-no-write
list isn’t shown.

Page frames move between the paging lists in the following ways:

 ■ When the memory manager needs a zero-initialized page to service a demand-zero page
fault (a reference to a page that is defined to be all zeros or to a user-mode committed private
page that has never been accessed), it first attempts to get one from the zero page list. If the
list is empty, it gets one from the free page list and zeroes the page. If the free list is empty, it
goes to the standby list and zeroes that page.

One reason zero-initialized pages are required is to meet various security requirements, such
as the Common Criteria. Most Common Criteria profiles specify that user-mode processes
must be given initialized page frames to prevent them from reading a previous process’s
memory contents. Therefore, the memory manager gives user-mode processes zeroed page
frames unless the page is being read in from a backing store. If that’s the case, the memory
manager prefers to use nonzeroed page frames, initializing them with the data off the disk or
remote storage.

 CHAPTER 10 Memory Management 301

Demand-zero
page faults

Page read from
disk or kernel
allocations

Standby
page list

ROM
page list

Process
working

sets

Working set
replacement

Modified
page list

“Soft”
page
faults

Free
page
list

Zero
page
list

Bad
page
list

Zero
page

thread

Modified
page
writer

FIGURE 10-39 State diagram for page frames

The zero page list is populated from the free list by a system thread called the zero page
thread (thread 0 in the System process). The zero page thread waits on a gate object to signal
it to go to work. When the free list has eight or more pages, this gate is signaled. However, the
zero page thread will run only if at least one processor has no other threads running, because
the zero page thread runs at priority 0 and the lowest priority that a user thread can be set
to is 1.

Note Because the zero page thread actually waits on an event dispatcher object,
it receives a priority boost (see the section “Priority Boosts” in Chapter 5 in Part
1), which results in it executing at priority 1 for at least part of the time. This is a
bug in the current implementation.

302 Windows Internals, Sixth Edition, Part 2

Note When memory needs to be zeroed as a result of a physical page alloca-
tion by a driver that calls MmAllocatePagesForMdl or MmAllocatePagesForMdlEx,
by a Windows application that calls AllocateUserPhysicalPages or
AllocateUserPhysicalPagesNuma, or when an application allocates large pages,
the memory manager zeroes the memory by using a higher performing func-
tion called MiZeroInParallel that maps larger regions than the zero page thread,
which only zeroes a page at a time. In addition, on multiprocessor systems, the
memory manager creates additional system threads to perform the zeroing in
parallel (and in a NUMA-optimized fashion on NUMA platforms).

 ■ When the memory manager doesn’t require a zero-initialized page, it goes first to the free list.
If that’s empty, it goes to the zeroed list. If the zeroed list is empty, it goes to the standby lists.
Before the memory manager can use a page frame from the standby lists, it must first back-
track and remove the reference from the invalid PTE (or prototype PTE) that still points to the
page frame. Because entries in the PFN database contain pointers back to the previous user’s
page table page (or to a page of prototype PTE pool for shared pages), the memory manager
can quickly find the PTE and make the appropriate change.

 ■ When a process has to give up a page out of its working set (either because it referenced a
new page and its working set was full or the memory manager trimmed its working set), the
page goes to the standby lists if the page was clean (not modified) or to the modified list if the
page was modified while it was resident.

 ■ When a process exits, all the private pages go to the free list. Also, when the last reference to
a page-file-backed section is closed, and the section has no remaining mapped views, these
pages also go to the free list.

EXPERIMENT: The Free and Zero Page Lists
You can observe the release of private pages at process exit with Process Explorer’s System
Information display. Begin by creating a process with a large number of private pages in its
working set. We did this in an earlier experiment with the TestLimit utility:

C:\temp>testlimit -d 1 -c 800

Testlimit v5.1 - test Windows limits
Copyright (C) 2012 Mark Russinovich
Sysinternals - wwww.sysinternals.com

Leaking private bytes 1 MB at a time ...
Leaked 800 MB of private memory (800 MB total leaked). Lasterror: 0
The operation completed successfully.

 CHAPTER 10 Memory Management 303

The –d option causes TestLimit to not only allocate the memory as private committed, but to
“touch” it—that is, to access it. This causes physical memory to be allocated and assigned to the
process to realize the area of private committed virtual memory. If there is sufficient available
RAM on the system, the entire 800 MB should be in RAM for the process.

This process will now wait until you cause it to exit or terminate (perhaps by using Ctrl+C in
its command window). Open Process Explorer and select View, System Information. Observe the
Free and Zeroed list sizes.

Now terminate or exit the TestLimit process. You may see the free page list briefly increase in
size:

We say “may” because the zero page thread is awakened as soon as there are only eight
pages on the zero list, and it acts very quickly. Notice that in this example, we freed 800 MB of
private memory but only about 138 MB appear here on the free list. Process Explorer updates
this display only once per second, and it is likely that the rest of the pages were already zeroed
and moved to the zeroed page list before it happened to “catch” this state.

If you are able to see the temporary increase in the free list, you will then see it drop to zero,
and a corresponding increase will occur in the zeroed page list. If not, you will simply see the
increase in the zeroed list.

304 Windows Internals, Sixth Edition, Part 2

EXPERIMENT: The Modified and Standby Page Lists
The movement of pages from process working set to the modified page list and then to the
standby page list can also be observed with the Sysinternals tools VMMap and RAMMap and
the live kernel debugger.

The first step is to open RAMMap and observe the state of the quiet system:

This is an x86 system with about 3.4 GB of RAM usable by Windows. The columns in this
display represent the various page states shown in Figure 10-39. (A few of the columns not
important to this discussion have been narrowed for ease of reference.)

The system has about 1.2 GB of RAM free (sum of the free and zeroed page lists). About
1,700 MB is on the standby list (hence part of “available,” but likely containing data recently lost
from processes or being used by Superfetch). About 448 MB is “active,” being mapped directly
to virtual addresses via valid page table entries.

Each row further breaks down into page state by usage or origin (process private, mapped
file, and so on). For example, at the moment, of the active 448 MB, about 138 MB is due to
process private allocations.

Now, as in the previous experiment, use the TestLimit utility to create a process with a large
number of pages in its working set. Again we will use the –d option to cause TestLimit to write
to each page, but this time we will use it without a limit, so as to create as many private modi-
fied pages as possible:

 CHAPTER 10 Memory Management 305

C:\Users\user1>testlimit –d

Testlimit v5.21 - test Windows limits
Copyright (C) 2012 Mark Russinovich
Sysinternals - www.sysinternals.com

Process ID: 1000

Leaking private bytes with touch (MB) ...

Leaked 2017 MB of private memory (2017 MB total leaked). Lasterror: 8

Not enough storage is available to process this command.

TestLimit has now created 2,017 allocations of 1 MB each.

In RAMMap, use the File, Refresh command to update the display (because of the cost of
gathering its information, RAMMap does not update continuously).

You will see that over 2 GB are now active and in the Process Private row. This is due to the
memory allocated and accessed by the TestLimit process. Note also that the standby, zeroed,
and free lists are now much smaller. Most of the RAM allocated to TestLimit came from these
lists.

Next, in RAMMap, check the process’s physical page allocations. Change to the Physical
Pages tab, and set the filter at the bottom to the column Process and the value Testlimit.exe.
This display shows all the physical pages that are part of the process working set.

http://www.sysinternals.com

306 Windows Internals, Sixth Edition, Part 2

We would like to identify a physical page involved in the allocation of virtual address space
done by TestLimit’s –d option. RAMMap does not give an indication about which virtual alloca-
tions are associated with RAMMap’s VirtualAlloc calls. However, we can get a good hint of this
through the VMMap tool. Using VMMap on the same process, we find the following:

 CHAPTER 10 Memory Management 307

In the lower part of the display, we find hundreds of allocations of process private data,
each 1 MB in size and with 1 MB committed. These match the size of the allocations done by
TestLimit. The first of these is highlighted in the preceding screen shot. Note the starting virtual
address, 0x580000.

Now go back to RAMMap’s physical memory display. Arrange the columns to make the Vir-
tual Address column easily visible, click on it to sort by that value, and you can find that virtual
address:

This shows that the virtual page starting at 0x01340000 is currently mapped to physical ad-
dress 0x97D78000.

TestLimit’s –d option writes the program’s own name to the first bytes of each allocation. We
can demonstrate this with the !dc (display characters using physical address) command in the
local kernel debugger:

lkd> !dc 0x97d78000
#97d78000 74736554 696d694c 00000074 00000000 TestLimit.......
#97d78010 00000000 00000000 00000000 00000000
#97d78020 00000000 00000000 00000000 00000000
...

For the final leg of the experiment, we will demonstrate that this data remains intact (for a
while, anyway) after the process working set is reduced and this page is moved to the modified
and then the standby page list.

308 Windows Internals, Sixth Edition, Part 2

In VMMap, having selected the TestLimit process, use the View, Empty Working Set com-
mand to reduce the process’s working set to the bare minimum. VMMap’s display should now
look like this:

Notice that the Working Set bar graph is practically empty. In the middle section, the process
shows a total working set of only 9 MB, and almost all of it is in page tables, with a tiny 32 KB
total paged in of image files and private data. Now return to RAMMap. On the Use Counts tab,
you will find that active pages have been reduced tremendously, with a large number of pages
on the modified list and a significant number on the standby list:

 CHAPTER 10 Memory Management 309

RAMMap’s Processes tab confirms that the TestLimit process contributed most of those
pages to those lists:

Still in RAMMap, show the Physical Pages tab. Sort by Physical Address, and find the page
previously examined (in this case, physical address 0xc09fa000). RAMMap will almost certainly
show that it is on the standby or modified list.

Note that the page is still associated with the TestLimit process and with its virtual address.

310 Windows Internals, Sixth Edition, Part 2

Finally, we can again use the kernel debugger to verify the page has not been overwritten:

lkd> !dc 0x97d78000
#97d78000 74736554 696d694c 00000074 00000000 TestLimit.......
#97d78010 00000000 00000000 00000000 00000000
#97d78020 00000000 00000000 00000000 00000000
...

We can also use the local kernel debugger to show the page frame number, or PFN, entry for
the page. (The PFN database is described earlier in the chapter.)

lkd> !pfn 97d78
 PFN 00097D78 at address 84E9B920
 flink 000A0604 blink / share count 000A05C1 pteaddress C0002C00
 reference count 0000 Cached color 0 Priority 5
 restore pte 00000080 containing page 097D60 Modified M
 Modified

Note that the page is still associated with the TestLimit process and with its virtual address.

Page Priority
Every physical page in the system has a page priority value assigned to it by the memory manager.
The page priority is a number in the range 0 to 7. Its main purpose is to determine the order in which
pages are consumed from the standby list. The memory manager divides the standby list into eight
sublists that each store pages of a particular priority. When the memory manager wants to take a
page from the standby list, it takes pages from low-priority lists first, as shown in Figure 10-40.

Pages removed Prioritized
standby lists

1

0

7

6

5

4

3

2

Pages added

FIGURE 10-40 Prioritized standby lists

Each thread and process in the system is also assigned a page priority. A page’s priority usually
reflects the page priority of the thread that first causes its allocation. (If the page is shared, it reflects

 CHAPTER 10 Memory Management 311

the highest page priority among the sharing threads.) A thread inherits its page-priority value from
the process to which it belongs. The memory manager uses low priorities for pages it reads from disk
speculatively when anticipating a process’s memory accesses.

By default, processes have a page-priority value of 5, but functions allow applications and the
system to change process and thread page-priority values. You can look at the memory priority of
a thread with Process Explorer (per-page priority can be displayed by looking at the PFN entries, as
you’ll see in an experiment later in the chapter). Figure 10-41 shows Process Explorer’s Threads tab
displaying information about Winlogon’s main thread. Although the thread priority itself is high, the
memory priority is still the standard 5.

FIGURE 10-41 Process Explorer’s Threads tab.

The real power of memory priorities is realized only when the relative priorities of pages are un-
derstood at a high level, which is the role of Superfetch, covered at the end of this chapter.

EXPERIMENT: Viewing the Prioritized Standby Lists
You can use the MemInfo tool from Winsider Seminars & Solutions to dump the size of each
standby paging list by using the –c flag. MemInfo will also display the number of repurposed
pages for each standby list—this corresponds to the number of pages in each list that had to be
reused to satisfy a memory allocation, and thus thrown out of the standby page lists. The fol-
lowing is the relevant output from the following command.

312 Windows Internals, Sixth Edition, Part 2

C:\Windows\system32>meminfo -c
MemInfo v2.10 - Show PFN database information
Copyright (C) 2007-2009 Alex Ionescu
www.alex-ionescu.com

Initializing PFN Database... Done

Priority Standby Repurposed
0 - Idle 0 (0 KB) 0 (0 KB)
1 - Very Low 41352 (165408 KB) 0 (0 KB)
2 - Low 7201 (28804 KB) 0 (0 KB)
3 - Background 2043 (8172 KB) 0 (0 KB)
4 - Background 24715 (98860 KB) 0 (0 KB)
5 - Normal 7895 (31580 KB) 0 (0 KB)
6 - Superfetch 23877 (95508 KB) 0 (0 KB)
7 - Superfetch 8435 (33740 KB) 0 (0 KB)
TOTAL 115518 (462072 KB) 0 (0 KB)

You can add the –i flag to MemInfo to continuously display the state of the standby page
lists and repurpose counts, which is useful for tracking memory usage as well as the follow-
ing experiment. Additionally, the System Information panel in Process Explorer (choose View,
System Information) can also be used to display the live state of the prioritized standby lists, as
shown in this screen shot:

On the recently started x64 system used in this experiment (see the previous MemInfo
output), there is no data cached at priority 0, about 165 MB at priority 1, and about 29 MB at
priority 2. Your system probably has some data in those priorities as well.

 CHAPTER 10 Memory Management 313

The following shows what happens when we use the TestLimit tool from Sysinternals to com-
mit and touch 1 GB of memory. Here is the command you use (to leak and touch memory in 20
chunks of 50 MB):

testlimit –d 50 –c 20

Here is the output of MemInfo just before the run:

Priority Standby Repurposed
0 - Idle 0 (0 KB) 2554 (10216 KB)
1 - Very Low 92915 (371660 KB) 141352 (565408 KB)
2 - Low 35783 (143132 KB) 0 (0 KB)
3 - Background 50666 (202664 KB) 0 (0 KB)
4 - Background 15236 (60944 KB) 0 (0 KB)
5 - Normal 34197 (136788 KB) 0 (0 KB)
6 - Superfetch 2912 (11648 KB) 0 (0 KB)
7 - Superfetch 5876 (23504 KB) 0 (0 KB)
TOTAL 237585 (950340 KB) 143906 (575624 KB)

And here is the output after the allocations are done but the TestLimit process still exists:

Priority Standby Repurposed
0 - Idle 0 (0 KB) 2554 (10216 KB)
1 - Very Low 5 (20 KB) 234351 (937404 KB)
2 - Low 0 (0 KB) 35830 (143320 KB)
3 - Background 9586 (38344 KB) 41654 (166616 KB)
4 - Background 15371 (61484 KB) 0 (0 KB)
5 - Normal 34208 (136832 KB) 0 (0 KB)
6 - Superfetch 2914 (11656 KB) 0 (0 KB)
7 - Superfetch 5881 (23524 KB) 0 (0 KB)
TOTAL 67965 (271860 KB) 314389 (1257556 KB)

Note how the lower-priority standby page lists were used first (shown by the repurposed
count) and are now depleted, while the higher lists still contain valuable cached data.

314 Windows Internals, Sixth Edition, Part 2

Modified Page Writer
The memory manager employs two system threads to write pages back to disk and move those
pages back to the standby lists (based on their priority). One system thread writes out modified pages
(MiModifiedPageWriter) to the paging file, and a second one writes modified pages to mapped files
(MiMappedPageWriter). Two threads are required to avoid creating a deadlock, which would occur if
the writing of mapped file pages caused a page fault that in turn required a free page when no free
pages were available (thus requiring the modified page writer to create more free pages). By having
the modified page writer perform mapped file paging I/Os from a second system thread, that thread
can wait without blocking regular page file I/O.

Both threads run at priority 17, and after initialization they wait for separate objects to trigger
their operation. The mapped page writer waits on an event, MmMappedPageWriterEvent. It can be
signaled in the following cases:

 ■ During a page list operation (MiInsertPageInLockedList or MiInsertPageInList). These routines
signal this event if the number of file-system-destined pages on the modified page list has
reached more than 800 and the number of available pages has fallen below 1,024, or if the
number of available pages is less than 256.

 ■ In an attempt to obtain free pages (MiObtainFreePages).

 ■ By the memory manager’s working set manager (MmWorkingSetManager), which runs as part
of the kernel’s balance set manager (once every second). The working set manager signals this
event if the number of file-system-destined pages on the modified page list has reached more
than 800.

 ■ Upon a request to flush all modified pages (MmFlushAllPages).

 ■ Upon a request to flush all file-system-destined modified pages (MmFlushAllFilesystemPages).
Note that in most cases, writing modified mapped pages to their backing store files does not
occur if the number of mapped pages on the modified page list is less than the maximum
“write cluster” size, which is 16 pages. This check is not made in MmFlushAllFilesystemPages or
MmFlushAllPages.

The mapped page writer also waits on an array of MiMappedPageListHeadEvent events associated
with the 16 mapped page lists. Each time a mapped page is dirtied, it is inserted into one of these 16
mapped page lists based on a bucket number (MiCurrentMappedPageBucket). This bucket number
is updated by the working set manager whenever the system considers that mapped pages have
gotten old enough, which is currently 100 seconds (the MiWriteGapCounter variable controls this and
is incremented whenever the working set manager runs). The reason for these additional events is
to reduce data loss in the case of a system crash or power failure by eventually writing out modified
mapped pages even if the modified list hasn’t reached its threshold of 800 pages.

 CHAPTER 10 Memory Management 315

The modified page writer waits on a single gate object (MmModifiedPageWriterGate), which can be
signaled in the following scenarios:

 ■ A request to flush all pages has been received.

 ■ The number of available pages (MmAvailablePages) drops below 128 pages.

 ■ The total size of the zeroed and free page lists has dropped below 20,000 pages, and the
number of modified pages destined for the paging file is greater than the smaller of one-
sixteenth of the available pages or 64 MB (16,384 pages).

 ■ When a working set is being trimmed to accommodate additional pages, if the number of
pages available is less than 15,000.

 ■ During a page list operation (MiInsertPageInLockedList or MiInsertPageInList). These rou-
tines signal this gate if the number of page-file-destined pages on the modified page list has
reached more than 800 and the number of available pages has fallen below 1,024, or if the
number of available pages is less than 256.

Additionally, the modified page writer waits on an event (MiRescanPageFilesEvent) and an internal
event in the paging file header (MmPagingFileHeader), which allows the system to manually request
flushing out data to the paging file when needed.

When invoked, the mapped page writer attempts to write as many pages as possible to disk with
a single I/O request. It accomplishes this by examining the original PTE field of the PFN database ele-
ments for pages on the modified page list to locate pages in contiguous locations on the disk. Once a
list is created, the pages are removed from the modified list, an I/O request is issued, and, at success-
ful completion of the I/O request, the pages are placed at the tail of the standby list corresponding to
their priority.

Pages that are in the process of being written can be referenced by another thread. When this
happens, the reference count and the share count in the PFN entry that represents the physical page
are incremented to indicate that another process is using the page. When the I/O operation com-
pletes, the modified page writer notices that the reference count is no longer 0 and doesn’t place the
page on any standby list.

PFN Data Structures
Although PFN database entries are of fixed length, they can be in several different states, depend-
ing on the state of the page. Thus, individual fields have different meanings depending on the state.
Figure 10-42 shows the formats of PFN entries for different states.

316 Windows Internals, Sixth Edition, Part 2

PFN for a page in a
working set

PFN for a page on the standby
or the modified list

PFN for a page with
an I/O in progress

PFN for a page belonging
to a kernel stack

Kernel stack owner Link to next stack PFN

PTE address | Lock

Share count

Original PTE contents

Flags Type

Reference count

Priority

Caching attributes

Page colorFlagsPFN of PTE

Event address

PTE address | Lock

Share count

Original PTE contents

Flags Type

Reference count

Priority

Caching attributes

Page colorFlagsPFN of PTE

Forward link

PTE address | Lock

Backward link

Original PTE contents

Flags Type

Reference count

Priority

Caching attributes

Page colorFlagsPFN of PTE

Working set index

PTE address | Lock

Share count

Original PTE contents

Flags Type

Reference count

Priority

Caching attributes

Page colorFlagsPFN of PTE

FIGURE 10-42 States of PFN database entries. (Specific layouts are conceptual)

Several fields are the same for several PFN types, but others are specific to a given type of PFN.
The following fields appear in more than one PFN type:

 ■ PTE address Virtual address of the PTE that points to this page. Also, since PTE addresses
will always be aligned on a 4-byte boundary (8 bytes on 64-bit systems), the two low-order
bits are used as a locking mechanism to serialize access to the PFN entry.

 ■ Reference count The number of references to this page. The reference count is incremented
when a page is first added to a working set and/or when the page is locked in memory for I/O
(for example, by a device driver). The reference count is decremented when the share count
becomes 0 or when pages are unlocked from memory. When the share count becomes 0, the
page is no longer owned by a working set. Then, if the reference count is also zero, the PFN
database entry that describes the page is updated to add the page to the free, standby, or
modified list.

 ■ Type The type of page represented by this PFN. (Types include active/valid, standby, modi-
fied, modified-no-write, free, zeroed, bad, and transition.)

 ■ Flags The information contained in the flags field is shown in Table 10-17.

 ■ Priority The priority associated with this PFN, which will determine on which standby list it
will be placed.

 CHAPTER 10 Memory Management 317

 ■ Original PTE contents All PFN database entries contain the original contents of the PTE that
pointed to the page (which could be a prototype PTE). Saving the contents of the PTE allows
it to be restored when the physical page is no longer resident. PFN entries for AWE allocations
are exceptions; they store the AWE reference count in this field instead.

 ■ PFN of PTE Physical page number of the page table page containing the PTE that points to
this page.

 ■ Color Besides being linked together on a list, PFN database entries use an additional field to
link physical pages by “color,” which is the page’s NUMA node number.

 ■ Flags A second flags field is used to encode additional information on the PTE. These flags
are described in Table 10-18.

TABLE 10-17 Flags Within PFN Database Entries

Flag Meaning

Write in progress Indicates that a page write operation is in progress. The first DWORD contains the
address of the event object that will be signaled when the I/O is complete.

Modified state Indicates whether the page was modified. (If the page was modified, its contents must
be saved to disk before removing it from memory.)

Read in progress Indicates that an in-page operation is in progress for the page. The first DWORD
contains the address of the event object that will be signaled when the I/O is complete.

Rom Indicates that this page comes from the computer’s firmware or another piece of read-
only memory such as a device register.

In-page error Indicates that an I/O error occurred during the in-page operation on this page. (In this
case, the first field in the PFN contains the error code.)

Kernel stack Indicates that this page is being used to contain a kernel stack. In this case, the PFN
entry contains the owner of the stack and the next stack PFN for this thread.

Removal requested Indicates that the page is the target of a remove (due to ECC/scrubbing or hot
memory removal).

Parity error Indicates that the physical page contains parity or error correction control errors.

TABLE 10-18 Secondary Flags Within PFN Database Entries

Flag Meaning

PFN image verified The code signature for this PFN (contained in the cryptographic signature catalog for
the image being backed by this PFN) has been verified.

AWE allocation This PFN backs an AWE allocation.

Prototype PTE Indicates that the PTE referenced by the PFN entry is a prototype PTE. (For example,
this page is shareable.)

The remaining fields are specific to the type of PFN. For example, the first PFN in Figure 10-42 rep-
resents a page that is active and part of a working set. The share count field represents the number
of PTEs that refer to this page. (Pages marked read-only, copy-on-write, or shared read/write can be
shared by multiple processes.) For page table pages, this field is the number of valid and transition
PTEs in the page table. As long as the share count is greater than 0, the page isn’t eligible for removal
from memory.

318 Windows Internals, Sixth Edition, Part 2

The working set index field is an index into the process working set list (or the system or session
working set list, or zero if not in any working set) where the virtual address that maps this physi-
cal page resides. If the page is a private page, the working set index field refers directly to the entry
in the working set list because the page is mapped only at a single virtual address. In the case of a
shared page, the working set index is a hint that is guaranteed to be correct only for the first process
that made the page valid. (Other processes will try to use the same index where possible.) The process
that initially sets this field is guaranteed to refer to the proper index and doesn’t need to add a work-
ing set list hash entry referenced by the virtual address into its working set hash tree. This guarantee
reduces the size of the working set hash tree and makes searches faster for these particular direct
entries.

The second PFN in Figure 10-42 is for a page on either the standby or the modified list. In this
case, the forward and backward link fields link the elements of the list together within the list. This
linking allows pages to be easily manipulated to satisfy page faults. When a page is on one of the
lists, the share count is by definition 0 (because no working set is using the page) and therefore can
be overlaid with the backward link. The reference count is also 0 if the page is on one of the lists. If it
is nonzero (because an I/O could be in progress for this page—for example, when the page is being
written to disk), it is first removed from the list.

The third PFN in Figure 10-42 is for a page that belongs to a kernel stack. As mentioned earlier,
kernel stacks in Windows are dynamically allocated, expanded, and freed whenever a callback to user
mode is performed and/or returns, or when a driver performs a callback and requests stack expan-
sion. For these PFNs, the memory manager must keep track of the thread actually associated with the
kernel stack, or if it is free it keeps a link to the next free look-aside stack.

The fourth PFN in Figure 10-42 is for a page that has an I/O in progress (for example, a page read).
While the I/O is in progress, the first field points to an event object that will be signaled when the I/O
completes. If an in-page error occurs, this field contains the Windows error status code representing
the I/O error. This PFN type is used to resolve collided page faults.

In addition to the PFN database, the system variables in Table 10-19 describe the overall state of
physical memory.

TABLE 10-19 System Variables That Describe Physical Memory

Variable Description

MmNumberOfPhysicalPages Total number of physical pages available on the system

MmAvailablePages Total number of available pages on the system—the sum of the pages on
the zeroed, free, and standby lists

MmResidentAvailablePages Total number of physical pages that would be available if every process
was trimmed to its minimum working set size and all modified pages were
flushed to disk

 CHAPTER 10 Memory Management 319

EXPERIMENT: Viewing PFN Entries
You can examine individual PFN entries with the kernel debugger !pfn command. You need
to supply the PFN as an argument. (For example, !pfn 1 shows the first entry, !pfn 2 shows the
second, and so on.) In the following example, the PTE for virtual address 0x50000 is displayed,
followed by the PFN that contains the page directory, and then the actual page:

lkd> !pte 50000
 VA 00050000
PDE at 00000000C0600000 PTE at 00000000C0000280
contains 000000002C9F7867 contains 800000002D6C1867
pfn 2c9f7 ---DA--UWEV pfn 2d6c1 ---DA--UW-V

lkd> !pfn 2c9f7
 PFN 0002C9F7 at address 834E1704
 flink 00000026 blink / share count 00000091 pteaddress C0600000
 reference count 0001 Cached color 0 Priority 5
 restore pte 00000080 containing page 02BAA5 Active M
 Modified

lkd> !pfn 2d6c1
 PFN 0002D6C1 at address 834F7D1C
 flink 00000791 blink / share count 00000001 pteaddress C0000280
 reference count 0001 Cached color 0 Priority 5
 restore pte 00000080 containing page 02C9F7 Active M
 Modified

You can also use the MemInfo tool to obtain information about a PFN. MemInfo can some-
times give you more information than the debugger’s output, and it does not require being
booted into debugging mode. Here’s MemInfo’s output for those same two PFNs:

C:\>meminfo -p 2c9f7

PFN: 2c9f7
PFN List: Active and Valid
PFN Type: Page Table
PFN Priority: 5
Page Directory: 0x866168C8
Physical Address: 0x2C9F7000

C:\>meminfo -p 2d6c1

PFN: 2d6c1
PFN List: Active and Valid
PFN Type: Process Private
PFN Priority: 5
EPROCESS: 0x866168C8 [windbg.exe]
Physical Address: 0x2D6C1000

MemInfo correctly recognized that the first PFN was a page table and that the second PFN
belongs to WinDbg, which was the active process when the !pte 50000 command was used in
the debugger.

320 Windows Internals, Sixth Edition, Part 2

Physical Memory Limits

Now that you’ve learned how Windows keeps track of physical memory, we’ll describe how much of
it Windows can actually support. Because most systems access more code and data than can fit in
physical memory as they run, physical memory is in essence a window into the code and data used
over time. The amount of memory can therefore affect performance, because when data or code that
a process or the operating system needs is not present, the memory manager must bring it in from
disk or remote storage.

Besides affecting performance, the amount of physical memory impacts other resource limits.
For example, the amount of nonpaged pool, operating system buffers backed by physical memory,
is obviously constrained by physical memory. Physical memory also contributes to the system virtual
memory limit, which is the sum of roughly the size of physical memory plus the current configured
size of any paging files. Physical memory also can indirectly limit the maximum number of processes.

Windows support for physical memory is dictated by hardware limitations, licensing, operating
system data structures, and driver compatibility. Table 10-20 lists the currently supported amounts of
physical memory across the various editions of Windows along with the limiting factors.

TABLE 10-20 Physical Memory Support

Version 32-Bit Limit 64-Bit Limit Limiting Factors

Ultimate, Enterprise, and
Professional

4 GB 192 GB Licensing on 64-bit; licensing, hardware
support, and driver compatibility on 32-bit

Home Premium 4 GB 16 GB Licensing on 64-bit; licensing, hardware
support, and driver compatibility on 32-bit

Home Basic 4 GB 8 GB Licensing on 64-bit; licensing, hardware
support, and driver compatibility on 32-bit

Starter 2 GB 2 GB Licensing

Server Datacenter, Enterprise,
and Server for Itanium

N/A 2 TB Testing and available systems

Server Foundation N/A 8 GB Licensing

Server Standard and
Web Server

N/A 32 GB Licensing

Server HPC Edition N/A 128 GB Licensing

The maximum 2-TB physical memory limit doesn’t come from any implementation or hardware
limitation, but because Microsoft will support only configurations it can test. As of this writing, the
largest tested and supported memory configuration was 2 TB.

 CHAPTER 10 Memory Management 321

Windows Client Memory Limits
64-bit Windows client editions support different amounts of memory as a differentiating feature, with
the low end being 2 GB for Starter Edition, increasing to 192 GB for the Ultimate, Enterprise, and Pro-
fessional editions. All 32-bit Windows client editions, however, support a maximum of 4 GB of physical
memory, which is the highest physical address accessible with the standard x86 memory management
mode.

Although client SKUs support PAE addressing modes on x86 systems in order to provide hardware
no-execute protection (which would also enable access to more than 4 GB of physical memory), test-
ing revealed that systems would crash, hang, or become unbootable because some device drivers,
commonly those for video and audio devices found typically on clients but not servers, were not
programmed to expect physical addresses larger than 4 GB. As a result, the drivers truncated such ad-
dresses, resulting in memory corruptions and corruption side effects. Server systems commonly have
more generic devices, with simpler and more stable drivers, and therefore had not generally revealed
these problems. The problematic client driver ecosystem led to the decision for client editions to
ignore physical memory that resides above 4 GB, even though they can theoretically address it. Driver
developers are encouraged to test their systems with the nolowmem BCD option, which will force the
kernel to use physical addresses above 4 GB only if sufficient memory exists on the system to allow it.
This will immediately lead to the detection of such issues in faulty drivers.

32-Bit Client Effective Memory Limits
While 4 GB is the licensed limit for 32-bit client editions, the effective limit is actually lower and de-
pendent on the system’s chipset and connected devices. The reason is that the physical address map
includes not only RAM but device memory, and x86 and x64 systems typically map all device memory
below the 4 GB address boundary to remain compatible with 32-bit operating systems that don’t
know how to handle addresses larger than 4 GB. Newer chipsets do support PAE-based device remap-
ping, but client editions of Windows do not support this feature for the driver compatibility problems
explained earlier (otherwise, drivers would receive 64-bit pointers to their device memory).

If a system has 4 GB of RAM and devices such as video, audio, and network adapters that imple-
ment windows into their device memory that sum to 500 MB, 500 MB of the 4 GB of RAM will reside
above the 4 GB address boundary, as seen in Figure 10-43.

The result is that if you have a system with 3 GB or more of memory and you are running a 32-bit
Windows client, you may not be getting the benefit of all of the RAM. You can see how much RAM
Windows has detected as being installed in the System Properties dialog box, but to see how much
memory is actually available to Windows, you need to look at Task Manager’s Performance page or
the Msinfo32 and Winver utilities. On one particular 4-GB laptop, when booted with 32-bit Windows,
the amount of physical memory available is 3.5 GB, as seen in the Msinfo32 utility:

Installed Physical Memory (RAM) 4.00 GB
Total Physical Memory 3.50 GB

322 Windows Internals, Sixth Edition, Part 2

0

RAM

Device memory

Device memory

4 GB

4.5 GB

RAM

RAM

Inaccessible
RAM

FIGURE 10-43 Physical memory layout on a 4-GB system

You can see the physical memory layout with the MemInfo tool from Winsider Seminars & Solu-
tions. Figure 10-44 shows the output of MemInfo when run on a 32-bit system, using the –r switch to
dump physical memory ranges:

FIGURE 10-44 Memory ranges on a 32-bit Windows system

Note the gap in the memory address range from page 9F0000 to page 100000, and another gap
from DFE6D000 to FFFFFFFF (4 GB). When the system is booted with 64-bit Windows, on the other
hand, all 4 GB show up as available (see Figure 10-45), and you can see how Windows uses the re-
maining 500 MB of RAM that are above the 4-GB boundary.

FIGURE 10-45 Memory ranges on an x64 Windows system

You can use Device Manager on your machine to see what is occupying the various reserved
memory regions that can’t be used by Windows (and that will show up as holes in MemInfo’s output).
To check Device Manager, run Devmgmt.msc, select Resources By Connection on the View menu, and

 CHAPTER 10 Memory Management 323

then expand the Memory node. On the laptop computer used for the output shown in Figure 10-46,
the primary consumer of mapped device memory is, unsurprisingly, the video card, which consumes
256 MB in the range E0000000-EFFFFFFF.

FIGURE 10-46 Hardware-reserved memory ranges on a 32-bit Windows system

Other miscellaneous devices account for most of the rest, and the PCI bus reserves additional
ranges for devices as part of the conservative estimation the firmware uses during boot.

The consumption of memory addresses below 4 GB can be drastic on high-end gaming systems
with large video cards. For example, on a test machine with 8 GB of RAM and two 1-GB video cards,
only 2.2 GB of the memory was accessible by 32-bit Windows. A large memory hole from 8FEF0000
to FFFFFFFF is visible in the MemInfo output from the system on which 64-bit Windows is installed,
shown in Figure 10-47.

FIGURE 10-47 Memory ranges on a 64-bit Windows system

Device Manager revealed that 512 MB of the more than 2-GB gap is for the video cards (256 MB
each) and that the PCI bus driver had reserved more either for dynamic mappings or alignment
requirements, or perhaps because the devices claimed larger areas than they actually needed. Finally,
even systems with as little as 2 GB can be prevented from having all their memory usable under 32-bit
Windows because of chipsets that aggressively reserve memory regions for devices.

324 Windows Internals, Sixth Edition, Part 2

Working Sets

Now that we’ve looked at how Windows keeps track of physical memory, and how much memory it
can support, we’ll explain how Windows keeps a subset of virtual addresses in physical memory.

As you’ll recall, the term used to describe a subset of virtual pages resident in physical memory is
called a working set. There are three kinds of working sets:

 ■ Process working sets contain the pages referenced by threads within a single process.

 ■ System working sets contains the resident subset of the pageable system code (for example,
Ntoskrnl.exe and drivers), paged pool, and the system cache.

 ■ Each session has a working set that contains the resident subset of the kernel-mode ses-
sion-specific data structures allocated by the kernel-mode part of the Windows subsystem
(Win32k.sys), session paged pool, session mapped views, and other session-space device
drivers.

Before examining the details of each type of working set, let’s look at the overall policy for de-
ciding which pages are brought into physical memory and how long they remain. After that, we’ll
explore the various types of working sets.

Demand Paging
The Windows memory manager uses a demand-paging algorithm with clustering to load pages into
memory. When a thread receives a page fault, the memory manager loads into memory the faulted
page plus a small number of pages preceding and/or following it. This strategy attempts to mini-
mize the number of paging I/Os a thread will incur. Because programs, especially large ones, tend
to execute in small regions of their address space at any given time, loading clusters of virtual pages
reduces the number of disk reads. For page faults that reference data pages in images, the cluster size
is three pages. For all other page faults, the cluster size is seven pages.

However, a demand-paging policy can result in a process incurring many page faults when its
threads first begin executing or when they resume execution at a later point. To optimize the startup
of a process (and the system), Windows has an intelligent prefetch engine called the logical prefetcher,
described in the next section. Further optimization and prefetching is performed by another compo-
nent, called Superfetch, that we’ll describe later in the chapter.

Logical Prefetcher
During a typical system boot or application startup, the order of faults is such that some pages are
brought in from one part of a file, then perhaps from a distant part of the same file, then from a
different file, perhaps from a directory, and then again from the first file. This jumping around slows
down each access considerably and, thus, analysis shows that disk seek times are a dominant factor in
slowing boot and application startup times. By prefetching batches of pages all at once, a more sen-
sible ordering of access, without excessive backtracking, can be achieved, thus improving the overall

 CHAPTER 10 Memory Management 325

time for system and application startup. The pages that are needed can be known in advance because
of the high correlation in accesses across boots or application starts.

The prefetcher tries to speed the boot process and application startup by monitoring the data
and code accessed by boot and application startups and using that information at the beginning of
a subsequent boot or application startup to read in the code and data. When the prefetcher is active,
the memory manager notifies the prefetcher code in the kernel of page faults, both those that require
that data be read from disk (hard faults) and those that simply require data already in memory be
added to a process’s working set (soft faults). The prefetcher monitors the first 10 seconds of applica-
tion startup. For boot, the prefetcher by default traces from system start through the 30 seconds fol-
lowing the start of the user’s shell (typically Explorer) or, failing that, up through 60 seconds following
Windows service initialization or through 120 seconds, whichever comes first.

The trace assembled in the kernel notes faults taken on the NTFS master file table (MFT) meta-
data file (if the application accesses files or directories on NTFS volumes), on referenced files, and on
referenced directories. With the trace assembled, the kernel prefetcher code waits for requests from
the prefetcher component of the Superfetch service (%SystemRoot%\System32\Sysmain.dll), running
in a copy of Svchost. The Superfetch service is responsible for both the logical prefetching component
in the kernel and for the Superfetch component that we’ll talk about later. The prefetcher signals the
event \KernelObjects\PrefetchTracesReady to inform the Superfetch service that it can now query
trace data.

Note You can enable or disable prefetching of the boot or application startups by editing
the DWORD registry value HKLM\SYSTEM\CurrentControlSet\Control\Session Manager\
Memory Management\PrefetchParameters\EnablePrefetcher. Set it to 0 to disable
prefetching altogether, 1 to enable prefetching of only applications, 2 for prefetching of
boot only, and 3 for both boot and applications.

The Superfetch service (which hosts the logical prefetcher, although it is a completely separate
component from the actual Superfetch functionality) performs a call to the internal NtQuerySystem-
Information system call requesting the trace data. The logical prefetcher post-processes the trace
data, combining it with previously collected data, and writes it to a file in the %SystemRoot%\Prefetch
folder, which is shown in Figure 10-48. The file’s name is the name of the application to which the
trace applies followed by a dash and the hexadecimal representation of a hash of the file’s path. The
file has a .pf extension; an example would be NOTEPAD.EXE-AF43252301.PF.

There are two exceptions to the file name rule. The first is for images that host other components,
including the Microsoft Management Console (%SystemRoot%\System32\Mmc.exe), the Service
Hosting Process (%SystemRoot%\System32\Svchost.exe), the Run DLL Component (%SystemRoot%\
System32\Rundll32.exe), and Dllhost (%SystemRoot%\System32\Dllhost.exe). Because add-on compo-
nents are specified on the command line for these applications, the prefetcher includes the command
line in the generated hash. Thus, invocations of these applications with different components on the
command line will result in different traces.

326 Windows Internals, Sixth Edition, Part 2

The other exception to the file name rule is the file that stores the boot’s trace, which is always
named NTOSBOOT-B00DFAAD.PF. (If read as a word, “boodfaad” sounds similar to the English words
boot fast.) Only after the prefetcher has finished the boot trace (the time of which was defined earlier)
does it collect page fault information for specific applications.

FIGURE 10-48 Prefetch folder

EXPERIMENT: Looking Inside a Prefetch File
A prefetch file’s contents serve as a record of files and directories accessed during the boot or
an application startup, and you can use the Strings utility from Sysinternals to see the record.
The following command lists all the files and directories referenced during the last boot:

C:\Windows\Prefetch>Strings –n 5 ntosboot-b00dfaad.pf

Strings v2.4
Copyright (C) 1999-2007 Mark Russinovich
Sysinternals - www.sysinternals.com

4NTOSBOOT
\DEVICE\HARDDISKVOLUME1\$MFT
\DEVICE\HARDDISKVOLUME1\WINDOWS\SYSTEM32\DRIVERS\TUNNEL.SYS
\DEVICE\HARDDISKVOLUME1\WINDOWS\SYSTEM32\DRIVERS\TUNMP.SYS
\DEVICE\HARDDISKVOLUME1\WINDOWS\SYSTEM32\DRIVERS\I8042PRT.SYS
\DEVICE\HARDDISKVOLUME1\WINDOWS\SYSTEM32\DRIVERS\KBDCLASS.SYS
\DEVICE\HARDDISKVOLUME1\WINDOWS\SYSTEM32\DRIVERS\VMMOUSE.SYS
\DEVICE\HARDDISKVOLUME1\WINDOWS\SYSTEM32\DRIVERS\MOUCLASS.SYS
\DEVICE\HARDDISKVOLUME1\WINDOWS\SYSTEM32\DRIVERS\PARPORT.SYS
...

 CHAPTER 10 Memory Management 327

When the system boots or an application starts, the prefetcher is called to give it an opportunity
to perform prefetching. The prefetcher looks in the prefetch directory to see if a trace file exists for
the prefetch scenario in question. If it does, the prefetcher calls NTFS to prefetch any MFT metadata
file references, reads in the contents of each of the directories referenced, and finally opens each file
referenced. It then calls the memory manager function MmPrefetchPages to read in any data and
code specified in the trace that’s not already in memory. The memory manager initiates all the reads
asynchronously and then waits for them to complete before letting an application’s startup continue.

EXPERIMENT: Watching Prefetch File Reads and Writes
If you capture a trace of application startup with Process Monitor from Sysinternals on a client
edition of Windows (Windows Server editions disable prefetching by default), you can see the
prefetcher check for and read the application’s prefetch file (if it exists), and roughly 10 seconds
after the application started, see the prefetcher write out a new copy of the file. Here is a cap-
ture of Notepad startup with an Include filter set to “prefetch” so that Process Monitor shows
only accesses to the %SystemRoot%\Prefetch directory:

Lines 1 through 4 show the Notepad prefetch file being read in the context of the Notepad
process during its startup. Lines 5 through 11, which have time stamps 10 seconds later than
the first three lines, show the Superfetch service, which is running in the context of a Svchost
process, write out the updated prefetch file.

To minimize seeking even further, every three days or so, during system idle periods, the Super-
fetch service organizes a list of files and directories in the order that they are referenced during a
boot or application start and stores the list in a file named %SystemRoot%\Prefetch\Layout.ini, shown
in Figure 10-49. This list also includes frequently accessed files tracked by Superfetch.

328 Windows Internals, Sixth Edition, Part 2

FIGURE 10-49 Prefetch defragmentation layout file

Then it launches the system defragmenter with a command-line option that tells the defragmenter
to defragment based on the contents of the file instead of performing a full defrag. The defragmenter
finds a contiguous area on each volume large enough to hold all the listed files and directories that
reside on that volume and then moves them in their entirety into the area so that they are stored one
after the other. Thus, future prefetch operations will even be more efficient because all the data read
in is now stored physically on the disk in the order it will be read. Because the files defragmented for
prefetching usually number only in the hundreds, this defragmentation is much faster than full vol-
ume defragmentations. (See Chapter 12 for more information on defragmentation.)

Placement Policy
When a thread receives a page fault, the memory manager must also determine where in physi-
cal memory to put the virtual page. The set of rules it uses to determine the best position is called a
placement policy. Windows considers the size of CPU memory caches when choosing page frames to
minimize unnecessary thrashing of the cache.

If physical memory is full when a page fault occurs, a replacement policy is used to determine
which virtual page must be removed from memory to make room for the new page. Common
replacement policies include least recently used (LRU) and first in, first out (FIFO). The LRU algorithm
(also known as the clock algorithm, as implemented in most versions of UNIX) requires the virtual
memory system to track when a page in memory is used. When a new page frame is required, the
page that hasn’t been used for the greatest amount of time is removed from the working set. The
FIFO algorithm is somewhat simpler; it removes the page that has been in physical memory for the
greatest amount of time, regardless of how often it’s been used.

 CHAPTER 10 Memory Management 329

Replacement policies can be further characterized as either global or local. A global replacement
policy allows a page fault to be satisfied by any page frame, whether or not that frame is owned by
another process. For example, a global replacement policy using the FIFO algorithm would locate the
page that has been in memory the longest and would free it to satisfy a page fault; a local replace-
ment policy would limit its search for the oldest page to the set of pages already owned by the
process that incurred the page fault. Global replacement policies make processes vulnerable to the
behavior of other processes—an ill-behaved application can undermine the entire operating system
by inducing excessive paging activity in all processes.

Windows implements a combination of local and global replacement policy. When a working set
reaches its limit and/or needs to be trimmed because of demands for physical memory, the memory
manager removes pages from working sets until it has determined there are enough free pages.

Working Set Management
Every process starts with a default working set minimum of 50 pages and a working set maximum
of 345 pages. Although it has little effect, you can change the process working set limits with the
Windows SetProcessWorkingSetSize function, though you must have the “increase scheduling prior-
ity” user right to do this. However, unless you have configured the process to use hard working set
limits, these limits are ignored, in that the memory manager will permit a process to grow beyond its
maximum if it is paging heavily and there is ample memory (and conversely, the memory manager
will shrink a process below its working set minimum if it is not paging and there is a high demand for
physical memory on the system). Hard working set limits can be set using the SetProcessWorkingSet-
SizeEx function along with the QUOTA_LIMITS_HARDWS_MIN_ENABLE flag, but it is almost always
better to let the system manage your working set instead of setting your own hard working set
minimums.

The maximum working set size can’t exceed the systemwide maximum calculated at system ini-
tialization time and stored in the kernel variable MiMaximumWorkingSet, which is a hard upper limit
based on the working set maximums listed in Table 10-21.

TABLE 10-21 Upper Limit for Working Set Maximums

Windows Version Working Set Maximum

x86 2,047.9 MB

x86 versions of Windows booted with increaseuserva 2,047.9 MB+ user virtual address increase (MB)

IA64 7,152 GB

x64 8,192 GB

When a page fault occurs, the process’s working set limits and the amount of free memory on
the system are examined. If conditions permit, the memory manager allows a process to grow to its
working set maximum (or beyond if the process does not have a hard working set limit and there are
enough free pages available). However, if memory is tight, Windows replaces rather than adds pages
in a working set when a fault occurs.

330 Windows Internals, Sixth Edition, Part 2

Although Windows attempts to keep memory available by writing modified pages to disk, when
modified pages are being generated at a very high rate, more memory is required in order to meet
memory demands. Therefore, when physical memory runs low, the working set manager, a routine
that runs in the context of the balance set manager system thread (described in the next section),
initiates automatic working set trimming to increase the amount of free memory available in the sys-
tem. (With the Windows SetProcessWorkingSetSizeEx function mentioned earlier, you can also initiate
working set trimming of your own process—for example, after process initialization.)

The working set manager examines available memory and decides which, if any, working sets
need to be trimmed. If there is ample memory, the working set manager calculates how many pages
could be removed from working sets if needed. If trimming is needed, it looks at working sets that are
above their minimum setting. It also dynamically adjusts the rate at which it examines working sets
as well as arranges the list of processes that are candidates to be trimmed into an optimal order. For
example, processes with many pages that have not been accessed recently are examined first; larger
processes that have been idle longer are considered before smaller processes that are running more
often; the process running the foreground application is considered last; and so on.

When it finds processes using more than their minimums, the working set manager looks for pages
to remove from their working sets, making the pages available for other uses. If the amount of free
memory is still too low, the working set manager continues removing pages from processes’ working
sets until it achieves a minimum number of free pages on the system.

The working set manager tries to remove pages that haven’t been accessed recently. It does this by
checking the accessed bit in the hardware PTE to see whether the page has been accessed. If the bit
is clear, the page is aged, that is, a count is incremented indicating that the page hasn’t been refer-
enced since the last working set trim scan. Later, the age of pages is used to locate candidate pages to
remove from the working set.

If the hardware PTE accessed bit is set, the working set manager clears it and goes on to examine
the next page in the working set. In this way, if the accessed bit is clear the next time the working set
manager examines the page, it knows that the page hasn’t been accessed since the last time it was
examined. This scan for pages to remove continues through the working set list until either the num-
ber of desired pages has been removed or the scan has returned to the starting point. (The next time
the working set is trimmed, the scan picks up where it left off last.)

 CHAPTER 10 Memory Management 331

EXPERIMENT: Viewing Process Working Set Sizes
You can use Performance Monitor to examine process working set sizes by looking at the per-
formance counters shown in the following table.

Counter Description

Process: Working Set Current size of the selected process’s working set in bytes

Process: Working Set Peak Peak size of the selected process’s working set in bytes

Process: Page Faults/sec Number of page faults for the process that occur each second

Several other process viewer utilities (such as Task Manager and Process Explorer) also dis-
play the process working set size.

You can also get the total of all the process working sets by selecting the _Total process
in the instance box in Performance Monitor. This process isn’t real—it’s simply a total of the
process-specific counters for all processes currently running on the system. The total you see is
larger than the actual RAM being used, however, because the size of each process working set
includes pages being shared by other processes. Thus, if two or more processes share a page,
the page is counted in each process’s working set.

EXPERIMENT: Working Set vs. Virtual Size
Earlier in this chapter, we used the TestLimit utility to create two processes, one with a large
amount of memory that was merely reserved, and the other in which the memory was private
committed, and examined the difference between them with Process Explorer. Now we will cre-
ate a third TestLimit process, one that not only commits the memory but also accesses it, thus
bringing it into its working set:

C:\temp>testlimit -d 1 -c 800

Testlimit v5.2 - test Windows limits
Copyright (C) 2012 Mark Russinovich
Sysinternals - wwww.sysinternals.com

Process ID: 700

Leaking private bytes 1 MB at a time...
Leaked 800 MB of private memory (800 MB total leaked). Lasterror: 0
The operation completed successfully.

Now, invoke Process Explorer. Under View, Select Columns, choose the Process Memory tab
and enable the Private Bytes, Virtual Size, Working Set Size, WS Shareable Bytes, and WS Private
Bytes counters. Then find the three instances of TestLimit as shown in the display.

332 Windows Internals, Sixth Edition, Part 2

The new TestLimit process is the third one shown, PID 700. It is the only one of the three that
actually referenced the memory allocated, so it is the only one with a working set that reflects
the size of the test allocation.

Note that this result is possible only on a system with enough RAM to allow the process to
grow to such a size. Even on this system, not quite all of the private bytes (822,064 K) are in the
WS Private portion of the working set. A small number of the private pages have either been
pushed out of the process working set due to replacement or have not been paged in yet.

EXPERIMENT: Viewing the Working Set List in the Debugger
You can view the individual entries in the working set by using the kernel debugger !wsle com-
mand. The following example shows a partial output of the working set list of WinDbg.

lkd> !wsle 7

Working Set @ c0802000
 FirstFree 209c FirstDynamic 6
 LastEntry 242e NextSlot 6 LastInitialized 24b9
 NonDirect 0 HashTable 0 HashTableSize 0

Reading the WSLE data ..

Virtual Address Age Locked ReferenceCount
 c0600203 0 1 1
 c0601203 0 1 1
 c0602203 0 1 1
 c0603203 0 1 1
 c0604213 0 1 1
 c0802203 0 1 1
 2865201 0 0 1
 1a6d201 0 0 1
 3f4201 0 0 1
 707ed101 0 0 1
 2d27201 0 0 1
 2d28201 0 0 1

 CHAPTER 10 Memory Management 333

 772f5101 0 0 1
 2d2a201 0 0 1
 2d2b201 0 0 1
 2d2c201 0 0 1
 779c3101 0 0 1
 c0002201 0 0 1
 7794f101 0 0 1
 7ffd1109 0 0 1
 7ffd2109 0 0 1
 7ffc0009 0 0 1
 7ffb0009 0 0 1
 77940101 0 0 1
 77944101 0 0 1
 112109 0 0 1
 320109 0 0 1
 322109 0 0 1
 77949101 0 0 1
 110109 0 0 1
 77930101 0 0 1
 111109 0 0 1

Notice that some entries in the working set list are page table pages (the ones with ad-
dresses greater than 0xC0000000), some are from system DLLs (the ones in the 0x7nnnnnnn
range), and some are from the code of Windbg.exe itself.

Balance Set Manager and Swapper
Working set expansion and trimming take place in the context of a system thread called the bal-
ance set manager (routine KeBalanceSetManager). The balance set manager is created during system
initialization. Although the balance set manager is technically part of the kernel, it calls the memory
manager’s working set manager (MmWorkingSetManager) to perform working set analysis and
adjustment.

The balance set manager waits for two different event objects: an event that is signaled when a
periodic timer set to fire once per second expires and an internal working set manager event that the
memory manager signals at various points when it determines that working sets need to be adjusted.
For example, if the system is experiencing a high page fault rate or the free list is too small, the mem-
ory manager wakes up the balance set manager so that it will call the working set manager to begin
trimming working sets. When memory is more plentiful, the working set manager will permit faulting
processes to gradually increase the size of their working sets by faulting pages back into memory, but
the working sets will grow only as needed.

When the balance set manager wakes up as the result of its 1-second timer expiring, it takes the
following five steps:

1. It queues a DPC associated to a 1-second timer. The DPC routine is the KiScanReadyQueues
routine, which looks for threads that might warrant having their priority boosted because they
are CPU starved. (See the section “Priority Boosts for CPU Starvation” in Chapter 5 in Part 1.)

334 Windows Internals, Sixth Edition, Part 2

2. Every fourth time the balance set manager wakes up because its 1-second timer has expired,
it signals an event that wakes up another system thread called the swapper (KiSwapperThread)
(routine KeSwapProcessOrStack).

3. The balance set manager then checks the look-aside lists and adjusts their depths if necessary
(to improve access time and to reduce pool usage and pool fragmentation).

4. It adjusts IRP credits to optimize the usage of the per-processor look-aside lists used in IRP
completion. This allows better scalability when certain processors are under heavy I/O load.

5. It calls the memory manager’s working set manager. (The working set manager has its own
internal counters that regulate when to perform working set trimming and how aggressively
to trim.)

The swapper is also awakened by the scheduling code in the kernel if a thread that needs to run
has its kernel stack swapped out or if the process has been swapped out. The swapper looks for
threads that have been in a wait state for 15 seconds (or 3 seconds on a system with less than 12 MB
of RAM). If it finds one, it puts the thread’s kernel stack in transition (moving the pages to the modi-
fied or standby lists) so as to reclaim its physical memory, operating on the principle that if a thread’s
been waiting that long, it’s going to be waiting even longer. When the last thread in a process has
its kernel stack removed from memory, the process is marked to be entirely outswapped. That’s why,
for example, processes that have been idle for a long time (such as Winlogon is after you log on) can
have a zero working set size.

System Working Sets
Just as processes have working sets that manage pageable portions of the process address space, the
pageable code and data in the system address space is managed using three global working sets, col-
lectively known as the system working sets:

 ■ The system cache working set (MmSystemCacheWs) contains pages that are resident in the
system cache.

 ■ The paged pool working set (MmPagedPoolWs) contains pages that are resident in the paged
pool.

 ■ The system PTEs working set (MmSystemPtesWs) contains pageable code and data from
loaded drivers and the kernel image, as well as pages from sections that have been mapped
into the system space.

You can examine the sizes of these working sets or the sizes of the components that contribute
to them with the performance counters or system variables shown in Table 10-22. Keep in mind that
the performance counter values are in bytes, whereas the system variables are measured in terms of
pages.

 CHAPTER 10 Memory Management 335

You can also examine the paging activity in the system cache working set by examining the
Memory: Cache Faults/sec performance counter, which describes page faults that occur in the system
cache working set (both hard and soft). MmSystemCacheWs.PageFaultCount is the system variable
that contains the value for this counter.

TABLE 10-22 System Working Set Performance Counters

Performance Counter (in Bytes) System Variable (in Pages) Description

Memory: Cache Bytes, also
Memory: System Cache Resident
Bytes

MmSystemCacheWs.
WorkingSetSize

Physical memory consumed by the file
system cache.

Memory: Cache Bytes
Peak

MmSystemCacheWs.Peak Peak system working set size.

Memory: System Driver Resident
Bytes

MmSystemDriverPage Physical memory consumed by pageable
device driver code.

Memory: Pool Paged Resident Bytes MmPagedPoolWs.
WorkingSetSize

Physical memory consumed by paged pool.

Memory Notification Events
Windows provides a way for user-mode processes and kernel-mode drivers to be notified when
physical memory, paged pool, nonpaged pool, and commit charge are low and/or plentiful. This in-
formation can be used to determine memory usage as appropriate. For example, if available memory
is low, the application can reduce memory consumption. If available paged pool is high, the driver
can allocate more memory. Finally, the memory manager also provides an event that permits notifica-
tion when corrupted pages have been detected.

User-mode processes can be notified only of low or high memory conditions. An application can
call the CreateMemoryResourceNotification function, specifying whether low or high memory notifi-
cation is desired. The returned handle can be provided to any of the wait functions. When memory
is low (or high), the wait completes, thus notifying the thread of the condition. Alternatively, the
QueryMemoryResourceNotification can be used to query the system memory condition at any time
without blocking the calling thread.

Drivers, on the other hand, use the specific event name that the memory manager has set up in
the \KernelObjects directory, since notification is implemented by the memory manager signaling one
of the globally named event objects it defines, shown in Table 10-23.

336 Windows Internals, Sixth Edition, Part 2

TABLE 10-23 Memory Manager Notification Events

Event Name Description

HighCommitCondition This event is set when the commit charge is near the maximum commit limit. In
other words, memory usage is very high, very little space is available in physical
memory or paging files, and the operating system cannot increase the size of its
paging files.

HighMemoryCondition This event is set whenever the amount of free physical memory exceeds the defined
amount.

HighNonPagedPoolCondition This event is set whenever the amount of nonpaged pool exceeds the defined
amount.

HighPagedPoolCondition This event is set whenever the amount of paged pool exceeds the defined amount.

LowCommitCondition This event is set when the commit charge is low, relative to the current commit
limit. In other words, memory usage is low and a lot of space is available in physical
memory or paging files.

LowMemoryCondition This event is set whenever the amount of free physical memory falls below the
defined amount.

LowNonPagedPoolCondition This event is set whenever the amount of free nonpaged pool falls below the
defined amount.

LowPagedPoolCondition This event is set whenever the amount of free paged pool falls below the defined
amount.

MaximumCommitCondition This event is set when the commit charge is near the maximum commit limit. In
other words, memory usage is very high, very little space is available in physical
memory or paging files, and the operating system cannot increase the size or
number of paging files.

MemoryErrors A bad page (non-zeroed zero page) has been detected.

When a given memory condition is detected, the appropriate event is signaled, thus waking up any
waiting threads.

Note The high and low memory values can be overridden by adding a DWORD reg-
istry value, LowMemoryThreshold or HighMemoryThreshold, under HKLM\SYSTEM\
CurrentControlSet\Session Manager\Memory Management that specifies the number of
megabytes to use as the low or high threshold. The system can also be configured to crash
the system when a bad page is detected, instead of signaling a memory error event, by
setting the PageValidationAction DWORD registry value in the same key.

 CHAPTER 10 Memory Management 337

EXPERIMENT: Viewing the Memory Resource Notification Events
To see the memory resource notification events, run Winobj from Sysinternals and click on the
KernelObjects folder. You will see both the low and high memory condition events shown in the
right pane:

If you double-click either event, you can see how many handles and/or references have been
made to the objects.

To see whether any processes in the system have requested memory resource notification,
search the handle table for references to “LowMemoryCondition” or “HighMemoryCondition.”
You can do this by using Process Explorer’s Find menu and choosing the Handle capability or
by using WinDbg. (For a description of the handle table, see the section “Object Manager” in
Chapter 3 in Part 1.)

338 Windows Internals, Sixth Edition, Part 2

Proactive Memory Management (Superfetch)

Traditional memory management in operating systems has focused on the demand-paging model
we’ve shown until now, with some advances in clustering and prefetching so that disk I/Os can be
optimized at the time of the demand-page fault. Client versions of Windows, however, include a sig-
nificant improvement in the management of physical memory with the implementation of Superfetch,
a memory management scheme that enhances the least-recently accessed approach with historical
file access information and proactive memory management.

The standby list management of previous Windows versions has had two limitations. First, the pri-
oritization of pages relies only on the recent past behavior of processes and does not anticipate their
future memory requirements. Second, the data used for prioritization is limited to the list of pages
owned by a process at any given point in time. These shortcomings can result in scenarios in which
the computer is left unattended for a brief period of time, during which a memory-intensive system
application runs (doing work such as an antivirus scan or a disk defragmentation) and then causes
subsequent interactive application use (or launch) to be sluggish. The same situation can happen
when a user purposely runs a data and/or memory intensive application and then returns to use other
programs, which appear to be significantly less responsive.

This decline in performance occurs because the memory-intensive application forces the code and
data that active applications had cached in memory to be overwritten by the memory-intensive ac-
tivities—applications perform sluggishly as they have to request their data and code from disk. Client
versions of Windows take a big step toward resolving these limitations with Superfetch.

Components
Superfetch is composed of several components in the system that work hand in hand to proactively
manage memory and limit the impact on user activity when Superfetch is performing its work. These
components include:

 ■ Tracer The tracer mechanisms are part of a kernel component (Pf) that allows Superfetch
to query detailed page usage, session, and process information at any time. Superfetch also
makes use of the FileInfo driver (%SystemRoot%\System32\Drivers\Fileinfo.sys) to track file
usage.

 ■ Trace collector and processor This collector works with the tracing components to provide
a raw log based on the tracing data that has been acquired. This tracing data is kept in mem-
ory and handed off to the processor. The processor then hands the log entries in the trace to
the agents, which maintain history files (described next) in memory and persist them to disk
when the service stops (such as during a reboot).

 CHAPTER 10 Memory Management 339

 ■ Agents Superfetch keeps file page access information in history files, which keep track of
virtual offsets. Agents group pages by attributes, such as:

• Page access while the user was active

• Page access by a foreground process

• Hard fault while the user was active

• Page access during an application launch

• Page access upon the user returning after a long idle period

 ■ Scenario manager This component, also called the context agent, manages the three
 Superfetch scenario plans: hibernation, standby, and fast-user switching The kernel-mode part
of the scenario manager provides APIs for initiating and terminating scenarios, managing cur-
rent scenario state, and associating tracing information with these scenarios.

 ■ Rebalancer Based on the information provided by the Superfetch agents, as well as the
current state of the system (such as the state of the prioritized page lists), the rebalancer,
a specialized agent that is located in the Superfetch user-mode service, queries the PFN
database and reprioritizes it based on the associated score of each page, thus building the
prioritized standby lists. The rebalancer can also issue commands to the memory manager
that modify the working sets of processes on the system, and it is the only agent that actually
takes action on the system—other agents merely filter information for the rebalancer to use
in its decisions. Other than reprioritization, the rebalancer also initiates prefetching through
the prefetcher thread, which makes use of FileInfo and kernel services to preload memory with
useful pages.

Finally, all these components make use of facilities inside the memory manager that allow querying
detailed information about the state of each page in the PFN database, the current page counts for
each page list and prioritized list, and more. Figure 10-50 displays an architectural diagram of Super-
fetch’s multiple components. Superfetch components also make use of prioritized I/O (see Chapter 8
for more information on I/O priority) to minimize user impact.

340 Windows Internals, Sixth Edition, Part 2

Page access
trace

File Info
trace

Memory
prioritizer

Prefetch
thread

Working set
complement

Rebalancer
core

Rebalancer

Core
propagation

PFN database
User data

User data

User data

User data

Core

Core

Core

Agent

Agent

Agent

Trace processor

Trace
collector

Section info
database

Log
entries

PFN reprioritizer

Memory
manager

SuperFetch tracer FileInfo
minifilter

File name – key
information

Page access
buffers

Prefetch
requests

Prefetch
requests

PFN
query

requests

PFN set
requests

Completed
page access
and FileInfo

traces

User mode

SuperFetch
prefetcher

Page access
trace

FileInfo
trace

Trace list

Page
access
traces

File key
lookup

PFN
query/set
requests

Kernel mode

FIGURE 10-50 Superfetch architectural diagram

 CHAPTER 10 Memory Management 341

Tracing and Logging
Superfetch makes most of its decisions based on information that has been integrated, parsed, and
post-processed from raw traces and logs, making these two components among the most critical.
Tracing is similar to ETW in some ways because it makes use of certain triggers in code throughout
the system to generate events, but it also works in conjunction with facilities already provided by the
system, such as power manager notification, process callbacks, and file system filtering. The tracer
also makes use of traditional page aging mechanisms that exist in the memory manager, as well as
newer working set aging and access tracking implemented for Superfetch.

Superfetch always keeps a trace running and continuously queries trace data from the system,
which tracks page usage and access through the memory manager’s access bit tracking and work-
ing set aging. To track file-related information, which is as critical as page usage because it allows
prioritization of file data in the cache, Superfetch leverages existing filtering functionality with the
addition of the FileInfo driver. (See Chapter 8 for more information on filter drivers.) This driver sits
on the file system device stack and monitors access and changes to files at the stream level (for more
information on NTFS data streams, see Chapter 12), which provides it with fine-grained understand-
ing of file access. The main job of the FileInfo driver is to associate streams (identified by a unique key,
currently implemented as the FsContext field of the respective file object) with file names so that the
user-mode Superfetch service can identify the specific file steam and offset with which a page in the
standby list belonging to a memory mapped section is associated. It also provides the interface for
prefetching file data transparently, without interfering with locked files and other file system state.
The rest of the driver ensures that the information stays consistent by tracking deletions, renaming
operations, truncations, and the reuse of file keys by implementing sequence numbers.

At any time during tracing, the rebalancer might be invoked to repopulate pages differently. These
decisions are made by analyzing information such as the distribution of memory within working sets,
the zero page list, the modified page list and the standby page lists, the number of faults, the state of
PTE access bits, the per-page usage traces, current virtual address consumption, and working set size.

A given trace can be either a page access trace, in which the tracer keeps track (by using the access
bit) of which pages were accessed by the process (both file page and private memory), or a name
logging trace, which monitors the file-name-to-file-key-mapping updates (which allow Superfetch to
map a page associated with a file object) to the actual file on disk.

Although a Superfetch trace only keeps track of page accesses, the Superfetch service processes
this trace in user mode and goes much deeper, adding its own richer information such as where the
page was loaded from (such as resident memory or a hard page fault), whether this was the initial
access to that page, and what the rate of page access actually is. Additional information, such as the
system state, is also kept, as well as information about in which recent scenarios each traced page was
last referenced. The generated trace information is kept in memory through a logger into data struc-
tures, which identify, in the case of page access traces, a virtual-address-to-working-set pair or, in the
case of a name logging trace, a file-to-offset pair. Superfetch can thus keep track of which range of
virtual addresses for a given process have page-related events and which range of offsets for a given
file have similar events.

342 Windows Internals, Sixth Edition, Part 2

Scenarios
One aspect of Superfetch that is distinct from its primary page repriorization and prefetching mecha-
nisms (covered in more detail in the next section) is its support for scenarios, which are specific ac-
tions on the machine for which Superfetch strives to improve the user experience. These scenarios are
standby and hibernation as well as fast user switching. Each of these scenarios has different goals, but
all are centered around the main purpose of minimizing or removing hard faults.

 ■ For hibernation, the goal is to intelligently decide which pages are saved in the hibernation file
other than the existing working set pages. The goal is to minimize the amount of time that it
takes for the system to become responsive after a resume.

 ■ For standby, the goal is to completely remove hard faults after resume. Because a typical
system can resume in less than 2 seconds, but can take 5 seconds to spin-up the hard drive
after a long sleep, a single hard fault could cause such a delay in the resume cycle. Superfetch
prioritizes pages needed after a standby to remove this chance.

 ■ For fast user switching, the goal is to keep an accurate priority and understanding of each
user’s memory, so that switching to another user will cause the user’s session to be immedi-
ately usable, and not require a large amount of lag time to allow pages to be faulted in.

Scenarios are hardcoded, and Superfetch manages them through the NtSetSystemInformation and
NtQuerySystemInformation APIs that control system state. For Superfetch purposes, a special infor-
mation class, SystemSuperfetchInformation, is used to control the kernel-mode components and to
generate requests such as starting, ending, and querying a scenario or associating one or more traces
with a scenario.

Each scenario is defined by a plan file, which contains, at minimum, a list of pages associated with
the scenario. Page priority values are also assigned according to certain rules we’ll describe next.
When a scenario starts, the scenario manager is responsible for responding to the event by generat-
ing the list of pages that should be brought into memory and at which priority.

Page Priority and Rebalancing
We’ve already seen that the memory manager implements a system of page priorities to define from
which standby list pages will be repurposed for a given operation and in which list a given page
will be inserted. This mechanism provides benefits when processes and threads can have associated
priorities—such that a defragmenter process doesn’t pollute the standby page list and/or steal pages
from an interactive, foreground process—but its real power is unleashed through Superfetch’s page
prioritization schemes and rebalancing, which don’t require manual application input or hardcoded
knowledge of process importance.

Superfetch assigns page priority based on an internal score it keeps for each page, part of which is
based on frequency-based usage. This usage counts how many times a page was used in given rela-
tive time intervals, such as an hour, a day, or a week. Time of use is also kept track of, which records
for how long a given page has not been accessed. Finally, data such as where this page comes from
(which list) and other access patterns are used to compute this final score, which is then translated

 CHAPTER 10 Memory Management 343

into a priority number, which can be anywhere from 1 to 6 (7 is used for another purpose described
later). Going down each level, the lower standby page list priorities are repurposed first, as shown in
the Experiment “Viewing the Prioritized Standby Lists.” Priority 5 is typically used for normal applica-
tions, while priority 1 is meant for background applications that third-party developers can mark as
such. Finally, priority 6 is used to keep a certain number of high-importance pages as far away as pos-
sible from repurposing. The other priorities are a result of the score associated with each page.

Because Superfetch “learns” a user’s system, it can start from scratch with no existing histori-
cal data and slowly build up an understanding of the different page usage accesses associated with
the user. However, this would result in a significant learning curve whenever a new application, user,
or service pack was installed. Instead, by using an internal tool, Microsoft has the ability to pretrain
Superfetch to capture Superfetch data and then turn it into prebuilt traces. Before Windows shipped,
the Superfetch team traced common usages and patterns that all users will probably encounter, such
as clicking the Start menu, opening Control Panel, or using the File Open/Save dialog box. This trace
data was then saved to history files (which ship as resources in Sysmain.dll) and is used to prepopulate
the special priority 7 list, which is where the most critical data is placed and which is very rarely repur-
posed. Pages at priority 7 are file pages kept in memory even after the process has exited and even
across reboots (by being repopulated at the next boot). Finally, pages with priority 7 are static, in that
they are never reprioritized, and Superfetch will never dynamically load pages at priority 7 other than
the static pretrained set.

The prioritized list is loaded into memory (or prepopulated) by the rebalancer, but the actual act
of rebalancing is actually handled by both Superfetch and the memory manager. As shown earlier,
the prioritized standby page list mechanism is internal to the memory manager, and decisions as to
which pages to throw out first and which to protect are innate, based on the priority number. The
rebalancer actually does its job not by manually rebalancing memory but by reprioritizing it, which
will cause the operation of the memory manager to perform the needed tasks. The rebalancer is also
responsible for reading the actual pages from disk, if needed, so that they are present in memory
(prefetching). It then assigns the priority that is mapped by each agent to the score for each page,
and the memory manager will then ensure that the page is treated according to its importance.

The rebalancer can also take action without relying on other agents; for example, if it notices that
the distribution of pages across paging lists is suboptimal or that the number of repurposed pages
across different priority levels is detrimental. The rebalancer also has the ability to cause working set
trimming if needed, which might be required for creating an appropriate budget of pages that will be
used for Superfetch prepopulated cache data. The rebalancer will typically take low-utility pages—
such as those that are already marked as low priority, pages that are zeroed, and pages with valid
contents but not in any working set and have been unused—and build a more useful set of pages in
memory, given the budget it has allocated itself.

Once the rebalancer has decided which pages to bring into memory and at which priority level
they need to be loaded (as well as which pages can be thrown out), it performs the required disk
reads to prefetch them. It also works in conjunction with the I/O manager’s prioritization schemes so
that the I/Os are performed with very low priority and do not interfere with the user. It is important
to note that the actual memory consumption used by prefetching is all backed by standby pages—as

344 Windows Internals, Sixth Edition, Part 2

described earlier in the discussion of page dynamics, standby memory is available memory because it
can be repurposed as free memory for another allocator at any time. In other words, if Superfetch is
prefetching the “wrong data,” there is no real impact to the user, because that memory can be reused
when needed and doesn’t actually consume resources.

Finally, the rebalancer also runs periodically to ensure that pages it has marked as high priority
have actually been recently used. Because these pages will rarely (sometimes never) be repurposed, it
is important not to waste them on data that is rarely accessed but may have appeared to be fre-
quently accessed during a certain time period. If such a situation is detected, the rebalancer runs
again to push those pages down in the priority lists.

In addition to the rebalancer, a special agent called the application launch agent is also involved in
a different kind of prefetching mechanism, which attempts to predict application launches and builds
a Markov chain model that describes the probability of certain application launches given the exis-
tence of other application launches within a time segment. These time segments are divided across
four different periods—morning, noon, evening, and night; roughly 6 hours each—and are also kept
track of separately as weekdays or weekends. For example, if on Saturday and Sunday evening a user
typically launches Outlook (to send email) after having launched Word (to write letters), the applica-
tion launch agent will probably have prefetched Outlook based on the high probability of it running
after Word during weekend evenings.

Because systems today have sufficiently large amounts of memory, on average more than 2 GB
(although Superfetch works well on low-memory systems, too), the actual real amount of memory
that frequently used processes on a machine need resident for optimal performance ends up be-
ing a manageable subset of their entire memory footprint, and Superfetch can often fit all the pages
required into RAM. When it can’t, technologies such as ReadyBoost and ReadyDrive can further avoid
disk usage.

Robust Performance
A final performance enhancing functionality of Superfetch is called robustness, or robust performance.
This component, managed by the user-mode Superfetch service, but ultimately implemented in the
kernel (Pf routines), watches for specific file I/O access that might harm system performance by popu-
lating the standby lists with unneeded data. For example, if a process were to copy a large file across
the file system, the standby list would be populated with the file’s contents, even though that file
might never be accessed again (or not for a long period of time). This would throw out any other data
within that priority (and if this was an interactive and useful program, chances are its priority would’ve
been at least 5).

Superfetch responds to two specific kinds of I/O access patterns: sequential file access (going
through all the data in a file) and sequential directory access (going through every file in a directory).
When Superfetch detects that a certain amount of data (past an internal threshold) has been popu-
lated in the standby list as a result of this kind of access, it applies aggressive deprioritization (robus-
tion) to the pages being used to map this file, within the targeted process only (so as not to penalize
other applications). These pages, so-called robusted, essentially become reprioritized to priority 2.

 CHAPTER 10 Memory Management 345

Because this component of Superfetch is reactive and not predictive, it does take some time
for the robustion to kick in. Superfetch will therefore keep track of this process for the next time it
runs. Once Superfetch has determined that it appears that this process always performs this kind of
sequential access, Superfetch remembers it and robusts the file pages as soon as they’re mapped, in-
stead of waiting on the reactive behavior. At this point, the entire process is now considered robusted
for future file access.

Just by applying this logic, however, Superfetch could potentially hurt many legitimate applications
or user scenarios that perform sequential access in the future. For example, by using the Sysinternals
Strings.exe utility, you can look for a string in all executables that are part of a directory. If there are
many files, Superfetch would likely perform robustion. Now, next time you run Strings with a different
search parameter, it would run just as slowly as it did the first time, even though you’d expect it to run
much faster. To prevent this, Superfetch keeps a list of processes that it watches into the future, as well
as an internal hard-coded list of exceptions. If a process is detected to later re-access robusted files,
robustion is disabled on the process in order to restore expected behavior.

The main point to remember when thinking about robustion, and Superfetch optimizations in gen-
eral, is that Superfetch constantly monitors usage patterns and updates its understanding of the sys-
tem, so that it can avoid fetching useless data. Although changes in a user’s daily activities or applica-
tion startup behavior might cause Superfetch to incorrectly “pollute” the cache with irrelevant data or
to throw out data that Superfetch might think is useless, it will quickly adapt to any pattern changes.
If the user’s actions are erratic and random, the worst that can happen is that the system behaves in a
similar state as if Superfetch was not present at all. If Superfetch is ever in doubt or cannot track data
reliably, it quiets itself and doesn’t make changes to a given process or page.

RAM Optimization Software
While Superfetch provides valuable and realistic optimization of memory usage for the various
scenarios it aims to support, many third-party software manufacturers are involved in the distri-
bution of so-called “RAM Optimization” software, which aims to significantly increase available
memory on a user’s system. These memory optimizers typically present a user interface that
shows a graph labeled “Available Memory,” and a line typically shows the amount of memory
that the optimizer will try to free when it runs. After the optimization job runs, the utility’s avail-
able memory counter often goes up, sometimes dramatically, implying that the tool is actually
freeing up memory for application use. RAM optimizers work by allocating and then freeing
large amounts of virtual memory. The following illustration shows the effect a RAM optimizer
has on a system.

346 Windows Internals, Sixth Edition, Part 2

Before:

Word Explorer File cache Available

During:

Avail. RAM optimizer

Available

After:

Word

File cacheExplorer

Standby
pages

Standby pages

The Before bar depicts the process and system working sets, the pages in standby lists, and
free memory before optimization. The During bar shows that the RAM optimizer creates a high
memory demand, which it does by incurring many page faults in a short time. In response, the
memory manager increases the RAM optimizer’s working set. This working-set expansion oc-
curs at the expense of free memory, followed by standby pages and—when available memory
becomes low—at the expense of other process working sets. The After bar illustrates how, after
the RAM optimizer frees its memory, the memory manager moves all the pages that were as-
signed to the RAM optimizer to the free page list (which ultimately get zeroed by the zero page
thread and moved to the zeroed page list), thus contributing to the free memory value.

Although gaining more free memory might seem like a good thing, gaining free memory
in this way is not. As RAM optimizers force the available memory counter up, they force other
processes’ data and code out of memory. If you’re running Microsoft Word, for example, the
text of open documents and the program code that was part of Word’s working set before the
optimization (and was therefore present in physical memory) must be reread from disk as you
continue to edit your document. Additionally, by depleting the standby lists, valuable cached
data is lost, including much of Superfetch’s cache. The performance degradation can be espe-
cially severe on servers, where the trimming of the system working set causes cached file data
in physical memory to be thrown out, causing hard faults the next time it is accessed.

ReadyBoost
Although RAM today is somewhat easily available and relatively cheap compared to a decade ago, it
still doesn’t beat the cost of secondary storage such as hard disk drives. Unfortunately, hard disks to-
day contain many moving parts, are fragile, and, more importantly, relatively slow compared to RAM,
especially during seeking, so storing active Superfetch data on the drive would be as bad as paging
out a page and hard faulting it inside memory. (Solid state disks offset some of these disadvantages,
but they are pricier and still slow compared to RAM.) On the other hand, portable solid state media

 CHAPTER 10 Memory Management 347

such as USB flash disk (UFD), CompactFlash cards, and Secure Digital cards provide a useful compro-
mise. (In practice, CompactFlash cards and Secure Digital cards are almost always interfaced through
a USB adapter, so they all appear to the system as USB flash disks.) They are cheaper than RAM and
available in larger sizes, but they also have seek times much shorter than hard drives because of the
lack of moving parts.

Random disk I/O is especially expensive because disk head seek time plus rotational latency for
typical desktop hard drives total about 13 milliseconds—an eternity for today’s 3-GHz processors.
Flash memory, however, can service random reads up to 10 times faster than a typical hard disk.
Windows therefore includes a feature called ReadyBoost to take advantage of flash memory storage
devices by creating an intermediate caching layer on them that logically sits between memory and
disks.

ReadyBoost is implemented with the aid of a driver (%SystemRoot%\System32\Drivers\
Rdyboost.sys) that is responsible for writing the cached data to the NVRAM device. When you insert
a USB flash disk into a system, ReadyBoost looks at the device to determine its performance charac-
teristics and stores the results of its test in HKLM\SOFTWARE\Microsoft\Windows NT\CurrentVersion\
Emdmgmt, as shown in Figure 10-51. (Emd is short for External Memory Device, the working name for
ReadyBoost during its development.)

FIGURE 10-51 ReadyBoost device test results in the registry

If the new device is between 256 MB and 32 GB in size, has a transfer rate of 2.5 MB per second
or higher for random 4-KB reads, and has a transfer rate of 1.75 MB per second or higher for random
512-KB writes, then ReadyBoost will ask if you’d like to dedicate some of the space for disk caching. If
you agree, ReadyBoost creates a file named ReadyBoost.sfcache in the root of the device, which it will
use to store cached pages.

After initializing caching, ReadyBoost intercepts all reads and writes to local hard disk volumes
(C:\, for example) and copies any data being read or written into the caching file that the service cre-
ated. There are exceptions such as data that hasn’t been read in a long while, or data that belongs to
Volume Snapshot requests. Data stored on the cached drive is compressed and typically achieves a
2:1 compression ratio, so a 4-GB cache file will usually contain 8 GB of data. Each block is encrypted

348 Windows Internals, Sixth Edition, Part 2

as it is written using Advanced Encryption Standard (AES) encryption with a randomly generated per-
boot session key in order to guarantee the privacy of the data in the cache if the device is removed
from the system.

When ReadyBoost sees random reads that can be satisfied from the cache, it services them from
there, but because hard disks have better sequential read access than flash memory, it lets reads that
are part of sequential access patterns go directly to the disk even if the data is in the cache. Likewise,
when reading the cache, if large I/Os have to be done, the on-disk cache will be read instead.

One disadvantage of depending on flash media is that the user can remove it at any time, which
means the system can never solely store critical data on the media (as we’ve seen, writes always go
to the secondary storage first). A related technology, ReadyDrive, covered in the next section, offers
additional benefits and solves this problem.

ReadyDrive
ReadyDrive is a Windows feature that takes advantage of hybrid hard disk drives (H-HDDs). An
H-HDD is a disk with embedded nonvolatile flash memory (also known as NVRAM). Typical H-HDDs
include between 50 MB and 512 MB of cache, but the Windows cache limit is 2 TB.

Under ReadyDrive, the drive’s flash memory does not simply act as an automatic, transparent
cache, as does the RAM cache common on most hard drives. Instead, Windows uses ATA-8 com-
mands to define the disk data to be held in the flash memory. For example, Windows will save boot
data to the cache when the system shuts down, allowing for faster restarting. It also stores portions of
hibernation file data in the cache when the system hibernates so that the subsequent resume is faster.
Because the cache is enabled even when the disk is spun down, Windows can use the flash memory
as a disk-write cache, which avoids spinning up the disk when the system is running on battery power.
Keeping the disk spindle turned off can save much of the power consumed by the disk drive under
normal usage.

Another consumer of ReadyDrive is Superfetch, since it offers the same advantages as ReadyBoost
with some enhanced functionality, such as not requiring an external flash device and having the
ability to work persistently. Because the cache is on the actual physical hard drive (which typically a
user cannot remove while the computer is running), the hard drive controller typically doesn’t have
to worry about the data disappearing and can avoid making writes to the actual disk, using solely the
cache.

Unified Caching
For simplicity, we have described the conceptual functionality of Superfetch, ReadyBoost, and
ReadyDrive independently. Their storage allocation and content tracking functions, however, are
implemented in unified code in the operating system and are integrated with each other. This unified
caching mechanism is often referred to as the Store Manager, although the Store Manager is really
only one component.

 CHAPTER 10 Memory Management 349

Unified caching was developed to take advantage of the characteristics of the various types of
storage hardware that might exist on a system. For example, Superfetch can use either the flash
memory of a hybrid hard disk drive (if available) or a USB flash disk (if available) instead of using
system RAM. Since an H-HDD’s flash memory can be better expected to be preserved across system
shutdown and bootstrap cycles, it would be preferable for cache data that could help optimize boot
times, while system RAM might be a better choice for other data. (In addition to optimizing boot
times, a hybrid hard disk drive’s NVRAM, if present, is generally preferred as a cache location to a
UFD. A UFD may be unplugged at any time, hence disappearing; thus cache on a UFD must always be
handled as write-through to the actual hard drive. The NVRAM in an H-HDD can be allowed to work
in write-back mode because it is not going to disappear unless the hard drive itself also disappears.)

The overall architecture of the unified caching mechanism is shown in Figure 10-52.

NVRAM on
motherboard

Storemgr.sys
(physical caching)

(filter driver in
disk driver stack)

Stores

Store population
and eviction

SuperFetch service
(sysmain.dll)

Page access histories
and long-term history

User mode
Kernel mode

Store population
 and eviction

Store log

NtosKrnl.exe
(virtual caching)

Memory
management Prefetch Store

manager
Virtual RAM

cache

Virtual cache
Physical cache

Static Volatile

Virtual cache
Physical cache

Static Volatile

Virtual cache
Physical cache

Static Volatile

NVRAM on
hybrid hard drive

USB flash drive

FIGURE 10-52 Architecture of the unified caching mechanism

The fundamental component that implements caching is called a “store.” Each store implements
the functions of adding data to the backing storage (which may be in system RAM or in NVRAM),
reading data from it, or removing data from it.

All data in a store is managed in terms of store pages (often called simply pages). The size of a
store page is the system’s physical and virtual memory page size (4 KB, or 8KB on Itanium platforms),
regardless of the “block size” (sometimes called “sector size”) presented by the underlying storage

350 Windows Internals, Sixth Edition, Part 2

device. This allows store pages to be mapped and moved efficiently between the store, system RAM,
and page files (which have always been organized in blocks of the same size). The recent move toward
“advanced format” hard drives, which export a block size of 4 KB, is a good fit for this approach. Store
pages within a store are identified by “store keys,” whose interpretation is up to the individual store.

When writing to a store, the store is responsible for buffering data so that the I/O to the actual
storage device uses large buffers. This improves performance, as NVRAM devices as well as physical
hard drives perform poorly with small random writes. The store may also perform compression and
encryption before writing to the storage device.

The Store Manager component manages all of the stores and their contents. It is implemented
as a component of the Superfetch service in Sysmain.dll, a set of executive services (SmXxx, such as
SmPageRead) within Ntoskrnl.exe, and a filter driver in the disk storage stack, Storemgr.sys. Logically,
it operates at the level just above all of the stores. Only the Store Manager communicates with stores;
all other components interact with the Store Manager. Requests to the Store Manager look much like
requests from the Store Manager to a store: requests to store data, retrieve data, or remove data from
a store. Requests to the Store Manager to store data, however, include a parameter indicating which
stores are to be written to.

The Store Manager keeps track of which stores contain each cached page. If a cached page is in
one or more stores, requests to retrieve that page are routed by the Store Manager to one store or
another according to which stores are the fastest or the least busy.

The Store Manager categorizes stores in the following ways. First, a store may reside in system
RAM or in some form of nonvolatile RAM (either a UFD or the NVRAM of an H-HDD). Second,
NVRAM stores are further divided into “virtual” and “physical” portions, while a store in system RAM
acts only as a virtual store.

Virtual stores contain only page-file-backed information, including process-private memory and
page-file-backed sections. Physical caches contain pages from disk, with the exception that physical
caches never contain pages from page files. A store in system RAM can, however, contain pages from
page files.

Physical caches are further divided into “static” and “volatile” (or “dynamic”) regions. The contents
of the static region are completely determined by the user-mode Store Manager service. The Store
Manager uses logs of historical access to data to populate the static region. The volatile or dynamic
region of each store, on the other hand, populates itself based on read and write requests that pass
through the disk storage stack, much in the manner of the automatic RAM cache on a traditional hard
drive. Stores that implement a dynamic region are responsible for reporting to the Store Manager any
such automatically cached (and dropped) contents.

This section has provided a brief description of the organization and operation of the unified cach-
ing mechanism. As of this writing, there are no Performance Monitor counters or other means in the
operating system to measure the mechanism’s operation, other than the counters under the Cache
object, which long predate the Store Manager.

 CHAPTER 10 Memory Management 351

Process Reflection
There are often cases where a process exhibits problematic behavior, but because it’s still providing
service, suspending it to generate a full memory dump or interactively debug it is undesirable. The
length of time a process is suspended to generate a dump can be minimized by taking a minidump,
which captures thread registers and stacks along with pages of memory referenced by registers, but
that dump type has a very limited amount of information, which many times is sufficient for diagnos-
ing crashes but not for troubleshooting general problems. With process reflection, the target process
is suspended only long enough to generate a minidump and create a suspended cloned copy of the
target, and then the larger dump that captures all of a process’s valid user-mode memory can be
generated from the clone while the target is allowed to continue executing.

Several Windows Diagnostic Infrastructure (WDI) components make use of process reflection
to capture minimally intrusive memory dumps of processes their heuristics identify as exhibiting
suspicious behavior. For example, the Memory Leak Diagnoser component of Windows Resource
Exhaustion Detection and Resolution (also known as RADAR), generates a reflected memory dump
of a process that appears to be leaking private virtual memory so that it can be sent to Microsoft via
Windows Error Reporting (WER) for analysis. WDI’s hung process detection heuristic does the same
for processes that appear to be deadlocked with one another. Because these components use heuris-
tics, they can’t be certain the processes are faulty and therefore can’t suspend them for long periods
of time or terminate them.

Process reflection’s implementation is driven by the RtlCreateProcessReflection function in Ntdll.dll.
Its first step is to create a shared memory section, populate it with parameters, and map it into the
current and target processes. It then creates two event objects and duplicates them into the target
process so that the current process and target process can synchronize their operations. Next, it
injects a thread into the target process via a call to RtlpCreateUserThreadEx. The thread is directed to
begin execution in Ntdll’s RtlpProcessReflectionStartup function. Because Ntdll.dll is mapped at the
same address, randomly generated at boot, into every process’s address space, the current process
can simply pass the address of the function it obtains from its own Ntdll.dll mapping. If the caller of
RtlCreateProcessReflection specified that it wants a handle to the cloned process, RtlCreateProcess-
Reflection waits for the remote thread to terminate, otherwise it returns to the caller.

The injected thread in the target process allocates an additional event object that it will use to
synchronize with the cloned process once it’s created. Then it calls RtlCloneUserProcess, passing
parameters it obtains from the memory mapping it shares with the initiating process. If the RtlCreate-
ProcessReflection option that specifies the creation of the clone when the process is not executing in
the loader, performing heap operations, modifying the process environment block (PEB), or modify-
ing fiber-local storage is present, then RtlCreateProcessReflection acquires the associated locks before
continuing. This can be useful for debugging because the memory dump’s copy of the data structures
will be in a consistent state.

RtlCloneUserProcess finishes by calling RtlpCreateUserProcess, the user-mode function responsible
for general process creation, passing flags that indicate the new process should be a clone of the cur-
rent one, and RtlpCreateUserProcess in turn calls ZwCreateUserProcess to request the kernel to create
the process.

352 Windows Internals, Sixth Edition, Part 2

When creating a cloned process, ZwCreateUserProcess executes most of the same code paths as
when it creates a new process, with the exception that PspAllocateProcess, which it calls to create the
process object and initial thread, calls MmInitializeProcessAddressSpace with a flag specifying that the
address should be a copy-on-write copy of the target process instead of an initial process address
space. The memory manager uses the same support it provides for the Services for Unix Applica-
tions fork API to efficiently clone the address space. Once the target process continues execution,
any changes it makes to its address space are seen only by it, not the clone, which enables the clone’s
address space to represent a consistent point-in-time view of the target process.

The clone’s execution begins at the point just after the return from RtlpCreateUserProcess. If the
clone’s creation is successful, its thread receives the STATUS_PROCESS_CLONED return code, whereas
the cloning thread receives STATUS_SUCCESS. The cloned process then synchronizes with the target
and, as its final act, calls a function optionally passed to RtlCreateProcessReflection, which must be
implemented in Ntdll.dll. RADAR, for instance, specifies RtlDetectHeapLeaks, which performs heuristic
analysis of the process heaps and reports the results back to the thread that called RtlCreateProcess-
Reflection. If no function was specified, the thread suspends itself or terminates, depending on the
flags passed to RtlCreateProcessReflection.

When RADAR and WDI use process reflection, they call RtlCreateProcessReflection, asking for
the function to return a handle to the cloned process and for the clone to suspend itself after it has
initialized. Then they generate a minidump of the target process, which suspends the target for the
duration of the dump generation, and next they generate a more comprehensive dump of the cloned
process. After they finish generating the dump of the clone, they terminate the clone. The target
process can execute during the time window between the minidump’s completion and the creation
of the clone, but for most scenarios any inconsistencies do not interfere with troubleshooting. The
Procdump utility from Sysinternals also follows these steps when you specify the –r switch to have it
create a reflected dump of a target process.

EXPERIMENT: Using Preflect to Observe the Behavior
of Process Reflection
You can use the Preflect utility, which you can download from the Windows Internals book web-
page, to see the effects of process reflection. First, launch Notepad.exe and obtain its process
ID in a process management utility like Process Explorer or Task Manager. Next, open a com-
mand prompt and execute Preflect with the process ID as the command-line argument. This
creates a cloned copy using process reflection. In Process Explorer, you will see two instances of
Notepad: the one you launched and the cloned child instance that’s highlighted in gray (gray
indicates that all the process’s threads are suspended):

 CHAPTER 10 Memory Management 353

Open the process properties for each instance, switch to the Performance page, and put
them side by side for comparison:

The two instances are easily distinguishable because the target process has been executing
and therefore has a significantly higher cycle count and larger working set, and the clone has
no references to any kernel or window manager objects, as evidenced by its zero kernel handle,
GDI handle, and USER handle counts. Further, if you look at the Threads tab and have config-
ured the Process Explorer symbol options to obtain operating system symbols, you’ll see that
the target process’s thread began executing in Notepad.exe code, whereas the clone’s thread is
the one injected by the target to execute RtlpProcessReflectionStartup.

354 Windows Internals, Sixth Edition, Part 2

Conclusion

In this chapter, we’ve examined how the Windows memory manager implements virtual memory
management. As with most modern operating systems, each process is given access to a private
address space, protecting one process’s memory from another’s but allowing processes to share
memory efficiently and securely. Advanced capabilities, such as the inclusion of mapped files and the
ability to sparsely allocate memory, are also available. The Windows environment subsystem makes
most of the memory manager’s capabilities available to applications through the Windows API.

The next chapter covers a component tightly integrated with the memory manager, the cache
manager.

 355

C H A P T E R 1 1

Cache Manager

The cache manager is a set of kernel-mode functions and system threads that cooperate with the
memory manager to provide data caching for all Windows file system drivers (both local and net-

work). In this chapter, we’ll explain how the cache manager, including its key internal data structures
and functions, works; how it is sized at system initialization time; how it interacts with other elements
of the operating system; and how you can observe its activity through performance counters. We’ll
also describe the five flags on the Windows CreateFile function that affect file caching.

Note None of the cache manager’s internal functions are outlined in this chapter beyond
the depth required to explain how the cache manager works. The programming interfaces
to the cache manager are documented in the Windows Driver Kit (WDK). For more infor-
mation about the WDK, see http://www.microsoft.com/whdc/devtools/wdk/default.mspx.

Key Features of the Cache Manager

The cache manager has several key features:

 ■ Supports all file system types (both local and network), thus removing the need for each file
system to implement its own cache management code

 ■ Uses the memory manager to control which parts of which files are in physical memory (trad-
ing off demands for physical memory between user processes and the operating system)

 ■ Caches data on a virtual block basis (offsets within a file)—in contrast to many caching
systems, which cache on a logical block basis (offsets within a disk volume)—allowing for intel-
ligent read-ahead and high-speed access to the cache without involving file system drivers
(This method of caching, called fast I/O, is described later in this chapter.)

 ■ Supports “hints” passed by applications at file open time (such as random versus sequential
access, temporary file creation, and so on)

 ■ Supports recoverable file systems (for example, those that use transaction logging) to recover
data after a system failure

Although we’ll talk more throughout this chapter about how these features are used in the cache
manager, in this section we’ll introduce you to the concepts behind these features.

http://www.microsoft.com/whdc/devtools/wdk/default.mspx

356 Windows Internals, Sixth Edition, Part 2

Single, Centralized System Cache
Some operating systems rely on each individual file system to cache data, a practice that results either
in duplicated caching and memory management code in the operating system or in limitations on the
kinds of data that can be cached. In contrast, Windows offers a centralized caching facility that caches
all externally stored data, whether on local hard disks, floppy disks, network file servers, or CD-ROMs.
Any data can be cached, whether it’s user data streams (the contents of a file and the ongoing read
and write activity to that file) or file system metadata (such as directory and file headers). As you’ll
discover in this chapter, the method Windows uses to access the cache depends on the type of data
being cached.

The Memory Manager
One unusual aspect of the cache manager is that it never knows how much cached data is actually in
physical memory. This statement might sound strange because the purpose of a cache is to keep a
subset of frequently accessed data in physical memory as a way to improve I/O performance. The rea-
son the cache manager doesn’t know how much data is in physical memory is that it accesses data by
mapping views of files into system virtual address spaces, using standard section objects (file mapping
objects in Windows API terminology). (Section objects are the basic primitive of the memory manager
and are explained in detail in Chapter 10, “Memory Management.”) As addresses in these mapped
views are accessed, the memory manager pages in blocks that aren’t in physical memory. And when
memory demands dictate, the memory manager unmaps these pages out of the cache and, if the
data has changed, pages the data back to the files.

By caching on the basis of a virtual address space using mapped files, the cache manager avoids
generating read or write I/O request packets (IRPs) to access the data for files it’s caching. Instead, it
simply copies data to or from the virtual addresses where the portion of the cached file is mapped
and relies on the memory manager to fault in (or out) the data into (or out of) memory as needed.
This process allows the memory manager to make global trade-offs on how much memory to give to
the system cache versus how much to give to user processes. (The cache manager also initiates I/O,
such as lazy writing, which is described later in this chapter; however, it calls the memory manager to
write the pages.) Also, as you’ll learn in the next section, this design makes it possible for processes
that open cached files to see the same data as do processes that are mapping the same files into their
user address spaces.

Cache Coherency
One important function of a cache manager is to ensure that any process accessing cached data will
get the most recent version of that data. A problem can arise when one process opens a file (and
hence the file is cached) while another process maps the file into its address space directly (using the
Windows MapViewOfFile function). This potential problem doesn’t occur under Windows because
both the cache manager and the user applications that map files into their address spaces use the
same memory management file mapping services. Because the memory manager guarantees that it

 CHAPTER 11 Cache Manager 357

has only one representation of each unique mapped file (regardless of the number of section objects
or mapped views), it maps all views of a file (even if they overlap) to a single set of pages in physical
memory, as shown in Figure 11-1. (For more information on how the memory manager works with
mapped files, see Chapter 10.)

System address
space

View 2

File

View 1

User address
space

System address
space

View 2

User address
space

Control area

Process 1
virtual memory

Physical
memory

Process 2
virtual memory

4 GB

System
cache

2 GB

Mapped file

0

4 GB

System
cache

2 GB

0

Size

0

FIGURE 11-1 Coherent caching scheme

So, for example, if Process 1 has a view (View 1) of the file mapped into its user address space,
and Process 2 is accessing the same view via the system cache, Process 2 will see any changes that
Process 1 makes as they’re made, not as they’re flushed. The memory manager won’t flush all user-
mapped pages—only those that it knows have been written to (because they have the modified bit
set). Therefore, any process accessing a file under Windows always sees the most up-to-date version
of that file, even if some processes have the file open through the I/O system and others have the file
mapped into their address space using the Windows file mapping functions.

358 Windows Internals, Sixth Edition, Part 2

Note Cache coherency in this case refers to coherency between user-mapped data and
cached I/O and not between noncached and cached hardware access and I/Os, which are
almost guaranteed to be incoherent. Also, cache coherency is somewhat more difficult for
network redirectors than for local file systems because network redirectors must imple-
ment additional flushing and purge operations to ensure cache coherency when accessing
network data. See Chapter 12, “File Systems,” for a description of opportunistic locking, the
Windows distributed cache coherency mechanism.

Virtual Block Caching
The Windows cache manager uses a method known as virtual block caching, in which the cache man-
ager keeps track of which parts of which files are in the cache. The cache manager is able to monitor
these file portions by mapping 256-KB views of files into system virtual address spaces, using special
system cache routines located in the memory manager. This approach has the following key benefits:

 ■ It opens up the possibility of doing intelligent read-ahead; because the cache tracks which
parts of which files are in the cache, it can predict where the caller might be going next.

 ■ It allows the I/O system to bypass going to the file system for requests for data that is already
in the cache (fast I/O). Because the cache manager knows which parts of which files are in the
cache, it can return the address of cached data to satisfy an I/O request without having to call
the file system.

Details of how intelligent read-ahead and fast I/O work are provided later in this chapter.

Stream-Based Caching
The cache manager is also designed to do stream caching, as opposed to file caching. A stream is a
sequence of bytes within a file. Some file systems, such as NTFS, allow a file to contain more than one
stream; the cache manager accommodates such file systems by caching each stream independently.
NTFS can exploit this feature by organizing its master file table (described in Chapter 12) into streams
and by caching these streams as well. In fact, although the cache manager might be said to cache
files, it actually caches streams (all files have at least one stream of data) identified by both a file name
and, if more than one stream exists in the file, a stream name.

Note Internally, the cache manager is not aware of file or stream names but uses pointers
to these objects.

 CHAPTER 11 Cache Manager 359

Recoverable File System Support
Recoverable file systems such as NTFS are designed to reconstruct the disk volume structure after a
system failure. This capability means that I/O operations in progress at the time of a system failure
must be either entirely completed or entirely backed out from the disk when the system is restarted.
Half-completed I/O operations can corrupt a disk volume and even render an entire volume inacces-
sible. To avoid this problem, a recoverable file system maintains a log file in which it records every
update it intends to make to the file system structure (the file system’s metadata) before it writes the
change to the volume. If the system fails, interrupting volume modifications in progress, the recover-
able file system uses information stored in the log to reissue the volume updates.

Note The term metadata applies only to changes in the file system structure: file and di-
rectory creation, renaming, and deletion.

To guarantee a successful volume recovery, every log file record documenting a volume update
must be completely written to disk before the update itself is applied to the volume. Because disk
writes are cached, the cache manager and the file system must coordinate metadata updates by
ensuring that the log file is flushed ahead of metadata updates. Overall, the following actions occur in
sequence:

1. The file system writes a log file record documenting the metadata update it intends to make.

2. The file system calls the cache manager to flush the log file record to disk.

3. The file system writes the volume update to the cache—that is, it modifies its cached
metadata.

4. The cache manager flushes the altered metadata to disk, updating the volume structure. (Ac-
tually, log file records are batched before being flushed to disk, as are volume modifications.)

When a file system writes data to the cache, it can supply a logical sequence number (LSN) that
identifies the record in its log file, which corresponds to the cache update. The cache manager keeps
track of these numbers, recording the lowest and highest LSNs (representing the oldest and newest
log file records) associated with each page in the cache. In addition, data streams that are protected
by transaction log records are marked as “no write” by NTFS so that the mapped page writer won’t
inadvertently write out these pages before the corresponding log records are written. (When the
mapped page writer sees a page marked this way, it moves the page to a special list that the cache
manager then flushes at the appropriate time, such as when lazy writer activity takes place.)

When it prepares to flush a group of dirty pages to disk, the cache manager determines the high-
est LSN associated with the pages to be flushed and reports that number to the file system. The file
system can then call the cache manager back, directing it to flush log file data up to the point repre-
sented by the reported LSN. After the cache manager flushes the log file up to that LSN, it flushes the
corresponding volume structure updates to disk, thus ensuring that it records what it’s going to do
before actually doing it. These interactions between the file system and the cache manager guarantee
the recoverability of the disk volume after a system failure.

360 Windows Internals, Sixth Edition, Part 2

Cache Virtual Memory Management

Because the Windows system cache manager caches data on a virtual basis, it uses up regions of sys-
tem virtual address space (instead of physical memory) and manages them in structures called virtual
address control blocks, or VACBs. VACBs define these regions of address space into 256-KB slots called
views. When the cache manager initializes during the bootup process, it allocates an initial array of
VACBs to describe cached memory. As caching requirements grow and more memory is required,
the cache manager allocates more VACB arrays, as needed. It can also shrink virtual address space as
other demands put pressure on the system.

At a file’s first I/O (read or write) operation, the cache manager maps a 256-KB view of the 256-KB-
aligned region of the file that contains the requested data into a free slot in the system cache address
space. For example, if 10 bytes starting at an offset of 300,000 bytes were read into a file, the view
that would be mapped would begin at offset 262144 (the second 256-KB-aligned region of the file)
and extend for 256 KB.

The cache manager maps views of files into slots in the cache’s address space on a round-robin
basis, mapping the first requested view into the first 256-KB slot, the second view into the second
256-KB slot, and so forth, as shown in Figure 11-2. In this example, File B was mapped first, File A
second, and File C third, so File B’s mapped chunk occupies the first slot in the cache. Notice that only
the first 256-KB portion of File B has been mapped, which is due to the fact that only part of the file
has been accessed and because although File C is only 100 KB (and thus smaller than one of the views
in the system cache), it requires its own 256-KB slot in the cache.

The cache manager guarantees that a view is mapped as long as it’s active (although views can
remain mapped after they become inactive). A view is marked active, however, only during a read
or write operation to or from the file. Unless a process opens a file by specifying the FILE_FLAG_
RANDOM_ACCESS flag in the call to CreateFile, the cache manager unmaps inactive views of a file
as it maps new views for the file if it detects that the file is being accessed sequentially. Pages for
unmapped views are sent to the standby or modified lists (depending on whether they have been
changed), and because the memory manager exports a special interface for the cache manager, the
cache manager can direct the pages to be placed at the end or front of these lists. Pages that cor-
respond to views of files opened with the FILE_FLAG_SEQUENTIAL_SCAN flag are moved to the front
of the lists, whereas all others are moved to the end. This scheme encourages the reuse of pages
belonging to sequentially read files and specifically prevents a large file copy operation from affecting
more than a small part of physical memory. The flag also affects unmapping: the cache manager will
aggressively unmap views when this flag is supplied.

If the cache manager needs to map a view of a file and there are no more free slots in the cache, it
will unmap the least recently mapped inactive view and use that slot. If no views are available, an I/O
error is returned, indicating that insufficient system resources are available to perform the operation.
Given that views are marked active only during a read or write operation, however, this scenario is
extremely unlikely because thousands of files would have to be accessed simultaneously for this situa-
tion to occur.

 CHAPTER 11 Cache Manager 361

System cache

View n

View 0
View 1
View 2
View 3
View 4
View 5
View 6
View 7
View 8

Section 0
Section 1

Section 0
Section 1
Section 2

Section 0

File A (500 KB)

File B (750 KB)

File C (100 KB)

FIGURE 11-2 Files of varying sizes mapped into the system cache

Cache Size

In the following sections, we’ll explain how Windows computes the size of the system cache, both
virtually and physically. As with most calculations related to memory management, the size of the
system cache depends on a number of factors.

Cache Virtual Size
On a 32-bit Windows system, the virtual size of the system cache is limited solely by the amount of
kernel-mode virtual address space and the SystemCacheLimit registry key that can be optionally con-
figured. (See Chapter 10 for more information on limiting the size of the kernel virtual address space.)
This means that the cache size is capped by the 2-GB system address space, but it is typically sig-
nificantly smaller because the system address space is shared with other resources, including system
paged table entries (PTEs), nonpaged and paged pool, and page tables. The maximum virtual cache
size is 1,024 GB (1 TB) on 64-bit Windows.

Cache Working Set Size
As mentioned earlier, one of the key differences in the design of the cache manager in Windows
from that of other operating systems is the delegation of physical memory management to the
global memory manager. Because of this, the existing code that handles working set expansion and
trimming, as well as managing the modified and standby lists, is also used to control the size of the
system cache, dynamically balancing demands for physical memory between processes and the oper-
ating system.

The system cache doesn’t have its own working set but rather shares a single system set that
includes cache data, paged pool, pageable Ntoskrnl code, and pageable driver code. As explained in

362 Windows Internals, Sixth Edition, Part 2

the section “System Working Set” in Chapter 10, this single working set is called internally the system
cache working set even though the system cache is just one of the components that contribute to it.
For the purposes of this book, we’ll refer to this working set simply as the system working set. Also
explained in Chapter 10 is the fact that if the LargeSystemCache registry value is 1, the memory man-
ager favors the system working set over that of processes running on the system.

EXPERIMENT: Looking at the Cache’s Working Set
The !filecache debugger command dumps information about the physical memory the cache is
using, the current and peak working set sizes, the number of valid pages associated with views,
and the names of files mapped into views, where applicable, as you can see in the following
output. (File system drivers cache metadata, such as directory structures and volume bitmaps,
by using unnamed file streams.)

lkd> !filecache
***** Dump file cache******
 Reading and sorting 999 VACBs ...
ReadVirtual: 85b77038 not properly sign extended
ReadVirtual: 85ba7010 not properly sign extended
 Processing 998 active VACBs ...
File Cache Information
 Current size 30528 kb
 Peak size 65752 kb
 461 Control Areas
Skipping view @ 91980000 - no VACB, but PTE is a prototype!
 Loading file cache database (100% of 523264 PTEs)
 SkippedPageTableReads = 882
 File cache has 7668 valid pages

 Usage Summary (in Kb):
Control Valid Standby/Dirty Shared Locked FsContext Name
85fa5be0 0 4 0 0 add0dbf8 $Directory
85f971b8 0 8 0 0 ad9bc918 $Directory
87c489f0 4 4 0 0 93b390f8 $Directory
87c4a9c0 4 0 0 0 93b38c30 $Directory
87c451a8 0 4 0 0 93b35780 $Directory
86a83710 4512 45432 0 0 86a90168 $Mft
85f96770 0 8 0 0 ad9c00f8 No Name for File
85e90998 0 512 0 0 abb83510 No Name for File
88062008 4 0 0 0 9e6c40f8 $Directory
87c291e8 44 164 0 0 93b400f8 $Directory
87c27e10 0 16 0 0 93b4bd08 $Directory
87b4bc88 236 84 0 0 93b28d08 $Directory
86ce23a8 12 0 0 0 a2051528 $Directory
87c2bb20 4 0 0 0 93b3b850 $Directory
87d51480 0 4 0 0 824f9830 $Directory
87c8c900 0 4 0 0 825b06d0 utmpx
87c2aa30 44 216 0 0 93b3fc70 $Directory
86ecc168 12 4088 0 0 9c3c5c50 Microsoft-Windows-
 GroupPolicy%4Operational.evtx
...

 CHAPTER 11 Cache Manager 363

Cache Physical Size
While the system working set includes the amount of physical memory that is mapped into views in
the cache’s virtual address space, it does not necessarily reflect the total amount of file data that is
cached in physical memory. There can be a discrepancy between the two values because additional
file data might be in the memory manager’s standby or modified page lists.

Recall from Chapter 10 that during the course of working set trimming or page replacement the
memory manager can move dirty pages from a working set to either the standby list or modified
page list, depending on whether the page contains data that needs to be written to the paging file or
another file before the page can be reused. If the memory manager didn’t implement these lists, any
time a process accessed data previously removed from its working set, the memory manager would
have to hard-fault it in from disk. Instead, if the accessed data is present on either of these lists, the
memory manager simply soft-faults the page back into the process’s working set. Thus, the lists serve
as in-memory caches of data that’s stored in the paging file, executable images, or data files. Thus,
the total amount of file data cached on a system includes not only the system working set but the
combined sizes of the standby and modified page lists as well.

An example illustrates how the cache manager can cause much more file data than that contain-
able in the system working set to be cached in physical memory. Consider a system that acts as a
dedicated file server. A client application accesses file data from across the network, while a server,
such as the file server driver (%SystemRoot%\System32\Drivers\Srv2.sys, described in Chapter 12),
uses cache manager interfaces to read and write file data on behalf of the client. If the client reads
through several thousand files of 1 MB each, the cache manager will have to start reusing views when
it runs out of mapping space (and can’t enlarge the VACB mapping area). For each file read thereafter,
the cache manager unmaps views and remaps them for new files. When the cache manager unmaps
a view, the memory manager doesn’t discard the file data in the cache’s working set that corresponds
to the view, it moves the data to the standby list. In the absence of any other demand for physi-
cal memory, the standby list can consume almost all the physical memory that remains outside the
system working set. In other words, virtually all the server’s physical memory will be used to cache file
data, as shown in Figure 11-3.

Standby list
System working set

assigned to
virtual cache

Other

~7 GB960 MB

8 GB physical memory

FIGURE 11-3 Example in which most of physical memory is being used by the file cache

Because the total amount of file data cached includes the system working set, modified page list,
and standby list—the sizes of which are all controlled by the memory manager—it is in a sense the

364 Windows Internals, Sixth Edition, Part 2

real cache manager. The cache manager subsystem simply provides convenient interfaces for ac-
cessing file data through the memory manager. It also plays an important role with its read-ahead
and write-behind policies in influencing what data the memory manager keeps present in physical
memory, as well as with managing system virtual address views of the space.

To try to accurately reflect the total amount of file data that’s cached on a system, Task Manager
shows a value named Cache in its performance view that reflects the combined size of the system
working set, standby list, and modified page list. Process Explorer, on the other hand, breaks up these
values into Cache WS (system cache working set), Standby, and Modified. Figure 11-4 shows the
system information view in Process Explorer and the Cache WS value in the Physical Memory area in
the lower left of the figure, as well as the size of the standby and modified lists in the Paging Lists area
near the middle of the figure. Note that the Cache value in Task Manager also includes the Paged WS,
Kernel WS, and Driver WS values shown in Process Explorer. When these values were chosen, the vast
majority of System WS came from the Cache WS. This is no longer the case today, but the anachro-
nism remains in Task Manager.

FIGURE 11-4 Process Explorer’s System Information dialog box

Cache Data Structures

The cache manager uses the following data structures to keep track of cached files:

 ■ Each 256-KB slot in the system cache is described by a VACB.

 ■ Each separately opened cached file has a private cache map, which contains information used
to control read-ahead (discussed later in the chapter).

 CHAPTER 11 Cache Manager 365

 ■ Each cached file has a single shared cache map structure, which points to slots in the system
cache that contain mapped views of the file.

These structures and their relationships are described in the next sections.

Systemwide Cache Data Structures
As previously described, the cache manager keeps track of the state of the views in the system cache
by using an array of data structures called virtual address control block (VACB) arrays that are stored
in nonpaged pool. On a 32-bit system, each VACB is 32 bytes in size and a VACB array is 128 KB, re-
sulting in 4,096 VACBs per array. On a 64-bit system, a VACB is 64 bytes, resulting in 2,048 VACBs per
array. The cache manager allocates the initial VACB array during system initialization and links it into
the systemwide list of VACB arrays called CcVacbArrays. Each VACB represents one 256-KB view in the
system cache, as shown in Figure 11-5. The structure of a VACB is shown in Figure 11-6.

VACB array list

VACB n entry

VACB 0 entry
VACB 1 entry
VACB 2 entry
VACB 3 entry
VACB 4 entry
VACB 5 entry
VACB 6 entry
VACB 7 entry

. . .

. . .

. . .

. . .

. . .

. . .

System cache

View n

View 0
View 1
View 2
View 3
View 4
View 5
View 6
View 7

. . .

. . .

. . .

. . .

. . .

. . .

VACB array list

VACB n entry

VACB 0 entry
VACB 1 entry
VACB 2 entry
VACB 3 entry
VACB 4 entry
VACB 5 entry
VACB 6 entry
VACB 7 entry

. . .

. . .

. . .

. . .

. . .

. . .

System cache

View n

View 0
View 1
View 2
View 3
View 4
View 5
View 6
View 7

. . .

. . .

. . .

. . .

. . .

. . .

System VACB array list

VACB 0 array
VACB 1 array

FIGURE 11-5 System VACB array

366 Windows Internals, Sixth Edition, Part 2

Virtual address of data in system cache

Pointer to shared cache map

File offset Active count

Link entry to LRU list head

Pointer to owning VACB array

FIGURE 11-6 VACB structure

Additionally, each VACB array is composed of two kinds of VACB: low priority mapping VACBs and
high priority mapping VACBs. The system allocates 64 initial high priority VACBs for each VACB ar-
ray. High priority VACBs have the distinction of having their views preallocated from system address
space. When the memory manager has no views to give to the cache manager at the time of mapping
some data, and if the mapping request is marked as high priority, the cache manager will use one of
the preallocated views present in a high priority VACB. It uses these high priority VACBs, for example,
for critical file system metadata as well as for purging data from the cache. After high priority VACBs
are gone, however, any operation requiring a VACB view will fail with insufficient resources. Typically,
the mapping priority is set to the default of low, but by using the PIN_HIGH_PRIORITY flag when pin-
ning (described later) cached data, file systems can request a high priority VACB to be used instead, if
one is needed.

As you can see in Figure 11-6, the first field in a VACB is the virtual address of the data in the sys-
tem cache. The second field is a pointer to the shared cache map structure, which identifies which file
is cached. The third field identifies the offset within the file at which the view begins (always based on
256-KB granularity). Given this granularity, the bottom 16 bits of the file offset will always be zero, so
those bits are reused to store the number of references to the view—that is, how many active reads
or writes are accessing the view. The fourth field links the VACB into a list of least-recently-used (LRU)
VACBs when the cache manager frees the VACB; the cache manager first checks this list when allocat-
ing a new VACB. Finally, the fifth field links this VACB to the VACB array header representing the array
in which the VACB is stored.

During an I/O operation on a file, the file’s VACB reference count is incremented, and then it’s
decremented when the I/O operation is over. When the reference count is nonzero the VACB is active.
For access to file system metadata, the active count represents how many file system drivers have the
pages in that view locked into memory.

 CHAPTER 11 Cache Manager 367

EXPERIMENT: Looking at VACBs and VACB Statistics
The cache manager internally keeps track of various values that are useful to developers and
support engineers when debugging crash dumps. All these debugging variables start with the
CcDbg prefix, which makes it easy to see the whole list, thanks to the x command:

lkd> x nt!*ccdbg*
8194ba84 nt!CcDbgNumberOfCcUnmapInactiveViews = <no type information>
8197c740 nt!CcDbgNumberOfFailedMappingsDueToVacbSpace = <no type information>
8197c730 nt!CcDbgNumberOfFailedBitmapAllocations = <no type information>
8197c73c nt!CcDbgNumberOfFailedHighPriorityMappingsDueToMmResources =
 <no type information>
...

Some systems may show differences in variable names due to 32-bit versus 64-bit imple-
mentations. The exact variable names are irrelevant in this experiment—focus instead on the
methodology that is explained. Using these variables and your knowledge of the VACB array
header data structures, you can use the kernel debugger to list all the VACB array headers. The
CcVacbArrays variable is an array of pointers to VACB array headers, which you dereference in or-
der to dump the contents of the _VACB_ARRAY_HEADERs. First, obtain the highest array index:

lkd> dd nt!CcVacbArraysHighestUsedIndex l 1
8194ba7c 00000000

And now you can dereference each index until the maximum index. On this system (and this
is the norm), the highest index is 0, which means there’s only one header to dereference:

lkd> ?? (*((nt!_VACB_ARRAY_HEADER***)@@(nt!CcVacbArrays)))[0]
struct _VACB_ARRAY_HEADER * 0x8315b000
 +0x000 VacbArrayIndex : 0
 +0x004 MappingCount : 0x5ab
 +0x008 HighestMappedIndex : 0x9a9
 +0x00c Reserved : 0

If there were more, you could change the array index at the end of the command with a
higher number, until you reached the highest used index. The output shows that the system has
only one VACB array with 1,451 (0x5ab) active VACBs.

Finally, the CcNumberOfFreeVacbs variable stores the number of VACBs on the free VACB list.
Dumping this variable on the system used for the experiment results in 2,645 (0xa55):

lkd> dd nt!CcNumberOfFreeVacbs l 1
8197c768 00000a55

As expected, the sum of the free (0x5ab—1,451 decimal) and active VACBs (0xa55—2,645
decimal) on a 32-bit system with one VACB array equals 4,096, the number of VACBs in one
VACB array. If the system were to run out of free VACBs, the cache manager would try to al-
locate a new VACB array. Because of the volatile nature of this experiment, your system may
create and/or free additional VACBs between the two steps (dumping the active and then the
free VACBs). This might cause your total of free and active VACBs to not match exactly 4,096.
Try quickly repeating the experiment a couple of times if this happens, although you may never
get stale numbers, especially if there is lots of file system activity on the system.

368 Windows Internals, Sixth Edition, Part 2

Per-File Cache Data Structures
Each open handle to a file has a corresponding file object. (File objects are explained in detail in
Chapter 8, “I/O System.”) If the file is cached, the file object points to a private cache map structure
that contains the location of the last two reads so that the cache manager can perform intelligent
read-ahead (described later, in the section “Intelligent Read-Ahead”). In addition, all the private cache
maps for open instances of a file are linked together.

Each cached file (as opposed to file object) has a shared cache map structure that describes the
state of the cached file, including its size and its valid data length. (The function of the valid data
length field is explained in the section “Write-Back Caching and Lazy Writing.”) The shared cache map
also points to the section object (maintained by the memory manager and which describes the file’s
mapping into virtual memory), the list of private cache maps associated with that file, and any VACBs
that describe currently mapped views of the file in the system cache. (See Chapter 10 for more about
section object pointers.) The relationships among these per-file cache data structures are illustrated in
Figure 11-7.

When asked to read from a particular file, the cache manager must determine the answers to two
questions:

1. Is the file in the cache?

2. If so, which VACB, if any, refers to the requested location?

In other words, the cache manager must find out whether a view of the file at the desired address
is mapped into the system cache. If no VACB contains the desired file offset, the requested data isn’t
currently mapped into the system cache.

To keep track of which views for a given file are mapped into the system cache, the cache manager
maintains an array of pointers to VACBs, which is known as the VACB index array. The first entry in the
VACB index array refers to the first 256 KB of the file, the second entry to the second 256 KB, and so
on. The diagram in Figure 11-8 shows four different sections from three different files that are cur-
rently mapped into the system cache.

When a process accesses a particular file in a given location, the cache manager looks in the ap-
propriate entry in the file’s VACB index array to see whether the requested data has been mapped
into the cache. If the array entry is nonzero (and hence contains a pointer to a VACB), the area of the
file being referenced is in the cache. The VACB, in turn, points to the location in the system cache
where the view of the file is mapped. If the entry is zero, the cache manager must find a free slot in
the system cache (and therefore a free VACB) to map the required view.

As a size optimization, the shared cache map contains a VACB index array that is four entries in
size. Because each VACB describes 256 KB, the entries in this small, fixed-size index array can point to
VACB array entries that together describe a file of up to 1 MB. If a file is larger than 1 MB, a sepa-
rate VACB index array is allocated from nonpaged pool, based on the size of the file divided by 256
KB and rounded up in the case of a remainder. The shared cache map then points to this separate
structure.

 CHAPTER 11 Cache Manager 369

Shared cache map

Entry 3

List of private
cache maps
Open count

File size
Valid data length

Entry 0
Entry 1
Entry 2

Section object pointers

File object

File object

Private cache map

Read-ahead information

Pointer to
additional VACB

index array

Next private
cache map
for this file

Next shared
cache map

VACB

VACB index
array

VACB index array

FIGURE 11-7 Per-file cache data structures

System cache

View n

View 0
View 1
View 2
View 3
View 4
View 5
View 6
View 7
View 8

System VACB array

VACB n

VACB 0
VACB 1
VACB 2
VACB 3
VACB 4
VACB 5
VACB 6
VACB 7

Section 0
Section 1

Section 0
Section 1
Section 2

Section 0

File A (500 KB)

File B (750 KB)

File C (100 KB)

Entry 0
Entry 1

File A VACB
Index array

Entry 2
Entry 3

Entry 0
Entry 1

File B VACB
Index array

Entry 2
Entry 3

Entry 0
Entry 1

File C VACB
Index array

Entry 2
Entry 3

FIGURE 11-8 VACB index arrays

370 Windows Internals, Sixth Edition, Part 2

As a further optimization, the VACB index array allocated from nonpaged pool becomes a sparse
multilevel index array if the file is larger than 32 MB, where each index array consists of 128 entries.
You can calculate the number of levels required for a file with the following formula:

(Number of bits required to represent file size – 18) / 7

Round the result of the equation up to the next whole number. The value 18 in the equation comes
from the fact that a VACB represents 256 KB, and 256 KB is 2 1̂8. The value 7 comes from the fact that
each level in the array has 128 entries and 2 7̂ is 128. Thus, a file that has a size that is the maximum
that can be described with 63 bits (the largest size the cache manager supports) would require only
seven levels. The array is sparse because the only branches that the cache manager allocates are ones
for which there are active views at the lowest-level index array. Figure 11-9 shows an example of a
multilevel VACB array for a sparse file that is large enough to require three levels.

VACB

Shared
cache map

Pointer to
additional VACB

index array

0

127

0

127

0

127

0

127

0

127

0

127

VACB

VACB

FIGURE 11-9 Multilevel VACB arrays

This scheme is required to efficiently handle sparse files that might have extremely large file sizes
with only a small fraction of valid data because only enough of the array is allocated to handle the

 CHAPTER 11 Cache Manager 371

currently mapped views of a file. For example, a 32-GB sparse file for which only 256 KB is mapped
into the cache’s virtual address space would require a VACB array with three allocated index arrays
because only one branch of the array has a mapping and a 32-GB (235 bytes) file requires a three-
level array. If the cache manager didn’t use the multilevel VACB index array optimization for this file,
it would have to allocate a VACB index array with 128,000 entries, or the equivalent of 1,000 VACB
index arrays.

EXPERIMENT: Looking at Shared and Private Cache Maps
You can use the kernel debugger’s dt command to look at the shared and private cache map
data structure definitions and examine the structures on a live system. First, execute the
!filecache command and locate an entry in the VACB output with a file name you recognize. In
this example, the file is the System event log:

8742a008 120 160 0 0 System.evtx

The first address is that of a control area data structure, which the memory manager uses to
keep track of an address range. (See Chapter 10 for more information.) The control area stores
the pointer to the file object that corresponds to the view in the cache. A file object identifies an
instance of an open file. Execute the following command using the address of the control area
of the entry you identified to see the control area structure:

lkd> !ca 8742a008
ControlArea @ 87cd7248
 Segment 824157e0 Flink 00000000 Blink 00000000
 Section Ref 1 Pfn Ref 1117 Mapped Views 3
 User Ref 0 WaitForDel 0 Flush Count 0
 File Object 87bcab60 ModWriteCount 0 System Views 3
 WritableRefs 0
 Flags (c080) File WasPurged Accessed

 \Windows\System32\winevt\Logs\System.evtx

...

Next look at the file object referenced by the control area with this command:

lkd> dt nt!_FILE_OBJECT 87bcab60
 +0x000 Type : 0n5
 +0x002 Size : 0n128
 +0x004 DeviceObject : 0x86a4c4d0 _DEVICE_OBJECT
 +0x008 Vpb : 0x86a0c270 _VPB
 +0x00c FsContext : 0x93b2a8e0 Void
 +0x010 FsContext2 : 0x93b2aa38 Void
 +0x014 SectionObjectPointer : 0x87c1b6f0 _SECTION_OBJECT_POINTERS
 +0x018 PrivateCacheMap : 0x87cd59e8 Void
 +0x01c FinalStatus : 0n0
 +0x020 RelatedFileObject : (null)
 +0x024 LockOperation : 0 ''

...

372 Windows Internals, Sixth Edition, Part 2

The private cache map is at offset 0x18:

lkd> dt nt!_PRIVATE_CACHE_MAP 0x87cd59e8
 +0x000 NodeTypeCode : 0n766
 +0x000 Flags : _PRIVATE_CACHE_MAP_FLAGS
 +0x000 UlongFlags : 0x1402fe
 +0x004 ReadAheadMask : 0xffff
 +0x008 FileObject : 0x87bcab60 _FILE_OBJECT
 +0x010 FileOffset1 : _LARGE_INTEGER 0x1000
 +0x018 BeyondLastByte1 : _LARGE_INTEGER 0x1080
 +0x020 FileOffset2 : _LARGE_INTEGER 0x1000
 +0x028 BeyondLastByte2 : _LARGE_INTEGER 0x1080
...

Finally, you can locate the shared cache map in the SectionObjectPointer field of the file
object and then view its contents:

lkd> dt nt!_SECTION_OBJECT_POINTERS 0x87c1b6f0
 +0x000 DataSectionObject : 0x87cd7248
 +0x004 SharedCacheMap : 0x87cd58f8
 +0x008 ImageSectionObject : (null)

lkd> dt nt!_SHARED_CACHE_MAP 0x87cd58f8
 +0x000 NodeTypeCode : 767
 +0x002 NodeByteSize : 0n352
 +0x004 OpenCount : 1
 +0x008 FileSize : _LARGE_INTEGER 0x1211000
 +0x010 BcbList : _LIST_ENTRY [0x87cd5908 - 0x87cd5908]
 +0x018 SectionSize : _LARGE_INTEGER 0x1300000
 +0x020 ValidDataLength : _LARGE_INTEGER 0x1116200
 +0x028 ValidDataGoal : _LARGE_INTEGER 0x1116200
 +0x030 InitialVacbs : [4] (null)
 +0x040 Vacbs : 0x87dc3a20 -> 0x85ba9df0 _VACB
 +0x044 FileObjectFastRef : _EX_FAST_REF
 +0x048 VacbLock : _EX_PUSH_LOCK
...

Alternatively, you can use the !fileobj command to look up and display much of this informa-
tion automatically. For example, using this command on the same file object referenced earlier
results in the following output:

lkd> !fileobj 87bcab60

\Windows\System32\winevt\Logs\System.evtx

Device Object: 0x86a4c4d0 \Driver\volmgr
Vpb: 0x86a0c270
Event signalled
Access: Read Write SharedRead

 CHAPTER 11 Cache Manager 373

Flags: 0xc3042
 Synchronous IO
 Cache Supported
 Modified
 Size Changed
 Handle Created
 Fast IO Read

FsContext: 0x93b2a8e0 FsContext2: 0x93b2aa38
Private Cache Map: 0x87cd59e8
CurrentByteOffset: 1116180
Cache Data:
 Section Object Pointers: 87c1b6f0
 Shared Cache Map: 87cd58f8 File Offset: 1116180 in VACB number 44
 Vacb: 85ba9d90
 Your data is at: 82756180

File System Interfaces

The first time a file’s data is accessed for a read or write operation, the file system driver is responsible
for determining whether some part of the file is mapped in the system cache. If it’s not, the file system
driver must call the CcInitializeCacheMap function to set up the per-file data structures described in
the preceding section.

Once a file is set up for cached access, the file system driver calls one of several functions to access
the data in the file. There are three primary methods for accessing cached data, each intended for a
specific situation:

 ■ The copy method copies user data between cache buffers in system space and a process buf-
fer in user space.

 ■ The mapping and pinning method uses virtual addresses to read and write data directly from
and to cache buffers.

 ■ The physical memory access method uses physical addresses to read and write data directly
from and to cache buffers.

File system drivers must provide two versions of the file read operation—cached and noncached—
to prevent an infinite loop when the memory manager processes a page fault. When the memory
manager resolves a page fault by calling the file system to retrieve data from the file (via the device
driver, of course), it must specify this noncached read operation by setting the “no cache” flag in
the IRP.

Figure 11-10 illustrates the typical interactions between the cache manager, the memory man-
ager, and file system drivers in response to user read or write file I/O. The cache manager is invoked
by a file system through the copy interfaces (the CcCopyRead and CcCopyWrite paths). To process a
CcFastCopyRead or CcCopyRead read, for example, the cache manager creates a view in the cache to

374 Windows Internals, Sixth Edition, Part 2

map a portion of the file being read and reads the file data into the user buffer by copying from the
view. The copy operation generates page faults as it accesses each previously invalid page in the view,
and in response the memory manager initiates noncached I/O into the file system driver to retrieve
the data corresponding to the part of the file mapped to the page that faulted.

MmFlushSection

File system
driver

Storage
device
driver

Cache
manager

Lazy writer

Read-ahead

Virtual
memory
manager

Page fault
handler

Modified and
mapped page

writer

Page fault

Page faultNtCreateSection

MmCreateSection

CcCopyRead
CcCopyWrite

FastloRead, FastloWrite

loPageRead
loAsynchronousPageWrite

NtReadFile/NtWriteFile

IRP

Noncached
and paging I/O

CcFastCopyRead
CcFastCopyWrite

FIGURE 11-10 File system interaction with cache and memory managers

The next three sections explain these cache access mechanisms, their purpose, and how they’re used.

Copying to and from the Cache
Because the system cache is in system space, it is mapped into the address space of every process.
As with all system space pages, however, cache pages aren’t accessible from user mode because that
would be a potential security hole. (For example, a process might not have the rights to read a file
whose data is currently contained in some part of the system cache.) Thus, user application file reads
and writes to cached files must be serviced by kernel-mode routines that copy data between the
cache’s buffers in system space and the application’s buffers residing in the process address space.

Caching with the Mapping and Pinning Interfaces
Just as user applications read and write data in files on a disk, file system drivers need to read and
write the data that describes the files themselves (the metadata, or volume structure data). Because
the file system drivers run in kernel mode, however, they could, if the cache manager were properly
informed, modify data directly in the system cache. To permit this optimization, the cache manager
provides functions that permit the file system drivers to find where in virtual memory the file system
metadata resides, thus allowing direct modification without the use of intermediary buffers.

If a file system driver needs to read file system metadata in the cache, it calls the cache manager’s
mapping interface to obtain the virtual address of the desired data. The cache manager touches all

 CHAPTER 11 Cache Manager 375

the requested pages to bring them into memory and then returns control to the file system driver.
The file system driver can then access the data directly.

If the file system driver needs to modify cache pages, it calls the cache manager’s pinning services,
which keep the pages active in virtual memory so that they cannot be reclaimed. The pages aren’t ac-
tually locked into memory (such as when a device driver locks pages for direct memory access trans-
fers). Most of the time, a file system driver will mark its metadata stream “no write”, which instructs
the memory manager’s mapped page writer (explained in Chapter 10) to not write the pages to disk
until explicitly told to do so. When the file system driver unpins (releases) them, the cache manager
releases its resources so that it can lazily flush any changes to disk and release the cache view that the
metadata occupied.

The mapping and pinning interfaces solve one thorny problem of implementing a file system:
buffer management. Without directly manipulating cached metadata, a file system must predict the
maximum number of buffers it will need when updating a volume’s structure. By allowing the file
system to access and update its metadata directly in the cache, the cache manager eliminates the
need for buffers, simply updating the volume structure in the virtual memory the memory manager
provides. The only limitation the file system encounters is the amount of available memory.

Caching with the Direct Memory Access Interfaces
In addition to the mapping and pinning interfaces used to access metadata directly in the cache,
the cache manager provides a third interface to cached data: direct memory access (DMA). The DMA
functions are used to read from or write to cache pages without intervening buffers, such as when a
network file system is doing a transfer over the network.

The DMA interface returns to the file system the physical addresses of cached user data (rather
than the virtual addresses, which the mapping and pinning interfaces return), which can then be
used to transfer data directly from physical memory to a network device. Although small amounts of
data (1 KB to 2 KB) can use the usual buffer-based copying interfaces, for larger transfers the DMA
interface can result in significant performance improvements for a network server processing file
requests from remote systems. To describe these references to physical memory, a memory descriptor
list (MDL) is used. (MDLs are introduced in Chapter 10.)

Fast I/O

Whenever possible, reads and writes to cached files are handled by a high-speed mechanism named
fast I/O. Fast I/O is a means of reading or writing a cached file without going through the work of
generating an IRP, as described in Chapter 8. With fast I/O, the I/O manager calls the file system
driver’s fast I/O routine to see whether I/O can be satisfied directly from the cache manager without
generating an IRP.

376 Windows Internals, Sixth Edition, Part 2

Because the cache manager is architected on top of the virtual memory subsystem, file system
drivers can use the cache manager to access file data simply by copying to or from pages mapped to
the actual file being referenced without going through the overhead of generating an IRP.

Fast I/O doesn’t always occur. For example, the first read or write to a file requires setting up the
file for caching (mapping the file into the cache and setting up the cache data structures, as explained
earlier in the section “Cache Data Structures”). Also, if the caller specified an asynchronous read or
write, fast I/O isn’t used because the caller might be stalled during paging I/O operations required
to satisfy the buffer copy to or from the system cache and thus not really providing the requested
asynchronous I/O operation. But even on a synchronous I/O, the file system driver might decide that
it can’t process the I/O operation by using the fast I/O mechanism, say, for example, if the file in ques-
tion has a locked range of bytes (as a result of calls to the Windows LockFile and UnlockFile functions).
Because the cache manager doesn’t know what parts of which files are locked, the file system driver
must check the validity of the read or write, which requires generating an IRP. The decision tree for
fast I/O is shown in Figure 11-11.

No

Generate IRP

NtReadFile

Synchronize
and cached

data?

Fast I/O
possible?

Is file cached?

Cache manager
copies data to or

from process buffer

Cache manager
initializes cache

Cache complete

Yes

No

No Yes

Yes

File system driver Cache manager

Is Sync?

Return pending

Yes

No

Is Sync?No Yes

FIGURE 11-11 Fast I/O decision tree

These steps are involved in servicing a read or a write with fast I/O:

1. A thread performs a read or write operation.

 CHAPTER 11 Cache Manager 377

2. If the file is cached and the I/O is synchronous, the request passes to the fast I/O entry point
of the file system driver stack. If the file isn’t cached, the file system driver sets up the file for
caching so that the next time, fast I/O can be used to satisfy a read or write request.

3. If the file system driver’s fast I/O routine determines that fast I/O is possible, it calls the cache
manager’s read or write routine to access the file data directly in the cache. (If fast I/O isn’t
possible, the file system driver returns to the I/O system, which then generates an IRP for the
I/O and eventually calls the file system’s regular read routine.)

4. The cache manager translates the supplied file offset into a virtual address in the cache.

5. For reads, the cache manager copies the data from the cache into the buffer of the process
requesting it; for writes, it copies the data from the buffer to the cache.

6. One of the following actions occurs:

• For reads where FILE_FLAG_RANDOM_ACCESS wasn’t specified when the file was opened,
the read-ahead information in the caller’s private cache map is updated. Read-ahead may
also be queued for files for which the FO_RANDOM_ACCESS flag is not specified.

• For writes, the dirty bit of any modified page in the cache is set so that the lazy writer will
know to flush it to disk.

• For write-through files, any modifications are flushed to disk.

Read-Ahead and Write-Behind

In this section, you’ll see how the cache manager implements reading and writing file data on behalf
of file system drivers. Keep in mind that the cache manager is involved in file I/O only when a file
is opened without the FILE_FLAG_NO_BUFFERING flag and then read from or written to using the
Windows I/O functions (for example, using the Windows ReadFile and WriteFile functions). Mapped
files don’t go through the cache manager, nor do files opened with the FILE_FLAG_NO_BUFFERING
flag set.

Note When an application uses the FILE_FLAG_NO_BUFFERING flag to open a file, its file
I/O must start at device-aligned offsets and be of sizes that are a multiple of the alignment
size; its input and output buffers must also be device-aligned virtual addresses. For file
systems, this usually corresponds to the sector size (512 bytes on NTFS, typically, and 2,048
bytes on CDFS). One of the benefits of the cache manager, apart from the actual caching
performance, is the fact that it performs intermediate buffering to allow arbitrarily aligned
and sized I/O.

378 Windows Internals, Sixth Edition, Part 2

Intelligent Read-Ahead
The cache manager uses the principle of spatial locality to perform intelligent read-ahead by predict-
ing what data the calling process is likely to read next based on the data that it is reading currently.
Because the system cache is based on virtual addresses, which are contiguous for a particular file, it
doesn’t matter whether they’re juxtaposed in physical memory. File read-ahead for logical block cach-
ing is more complex and requires tight cooperation between file system drivers and the block cache
because that cache system is based on the relative positions of the accessed data on the disk, and, of
course, files aren’t necessarily stored contiguously on disk. You can examine read-ahead activity by
using the Cache: Read Aheads/sec performance counter or the CcReadAheadIos system variable.

Reading the next block of a file that is being accessed sequentially provides an obvious perfor-
mance improvement, with the disadvantage that it will cause head seeks. To extend read-ahead ben-
efits to cases of strided data accesses (both forward and backward through a file), the cache manager
maintains a history of the last two read requests in the private cache map for the file handle being
accessed, a method known as asynchronous read-ahead with history. If a pattern can be determined
from the caller’s apparently random reads, the cache manager extrapolates it. For example, if the
caller reads page 4000 and then page 3000, the cache manager assumes that the next page the caller
will require is page 2000 and prereads it.

Note Although a caller must issue a minimum of three read operations to establish a pre-
dictable sequence, only two are stored in the private cache map.

To make read-ahead even more efficient, the Win32 CreateFile function provides a flag indicating
forward sequential file access: FILE_FLAG_SEQUENTIAL_SCAN. If this flag is set, the cache manager
doesn’t keep a read history for the caller for prediction but instead performs sequential read-ahead.
However, as the file is read into the cache’s working set, the cache manager unmaps views of the file
that are no longer active and, if they are unmodified, directs the memory manager to place the pages
belonging to the unmapped views at the front of the standby list so that they will be quickly reused. It
also reads ahead two times as much data (2 MB instead of 1 MB, for example). As the caller continues
reading, the cache manager prereads additional blocks of data, always staying about one read (of the
size of the current read) ahead of the caller.

The cache manager’s read-ahead is asynchronous because it is performed in a thread separate
from the caller’s thread and proceeds concurrently with the caller’s execution. When called to retrieve
cached data, the cache manager first accesses the requested virtual page to satisfy the request and
then queues an additional I/O request to retrieve additional data to a system worker thread. The
worker thread then executes in the background, reading additional data in anticipation of the caller’s
next read request. The preread pages are faulted into memory while the program continues execut-
ing so that when the caller requests the data it’s already in memory.

For applications that have no predictable read pattern, the FILE_FLAG_RANDOM_ACCESS flag
can be specified when the CreateFile function is called. This flag instructs the cache manager not to

 CHAPTER 11 Cache Manager 379

attempt to predict where the application is reading next and thus disables read-ahead. The flag also
stops the cache manager from aggressively unmapping views of the file as the file is accessed so as
to minimize the mapping/unmapping activity for the file when the application revisits portions of
the file.

Write-Back Caching and Lazy Writing
The cache manager implements a write-back cache with lazy write. This means that data written to
files is first stored in memory in cache pages and then written to disk later. Thus, write operations are
allowed to accumulate for a short time and are then flushed to disk all at once, reducing the overall
number of disk I/O operations.

The cache manager must explicitly call the memory manager to flush cache pages because other-
wise the memory manager writes memory contents to disk only when demand for physical memory
exceeds supply, as is appropriate for volatile data. Cached file data, however, represents nonvolatile
disk data. If a process modifies cached data, the user expects the contents to be reflected on disk in a
timely manner.

Additionally, the cache manager has the ability to veto the memory manager’s mapped writer
thread. Since the modified list (see Chapter 10 for more information) is not sorted in logical block ad-
dress (LBA) order, the cache manager’s attempts to cluster pages for larger sequential I/Os to the disk
are not always successful and actually cause repeated seeks. To combat this effect, the cache manager
has the ability to aggressively veto the mapped writer thread and stream out writes in virtual byte
offset (VBO) order, which is much closer to the LBA order on disk. Since the cache manager now owns
these writes, it can also apply its own scheduling and throttling algorithms to prefer read-ahead over
write-behind and impact the system less.

The decision about how often to flush the cache is an important one. If the cache is flushed too
frequently, system performance will be slowed by unnecessary I/O. If the cache is flushed too rarely,
you risk losing modified file data in the cases of a system failure (a loss especially irritating to users
who know that they asked the application to save the changes) and running out of physical memory
(because it’s being used by an excess of modified pages).

To balance these concerns, once per second the cache manager’s lazy writer function executes on
a system worker thread and queues one-eighth of the dirty pages in the system cache to be written
to disk. If the rate at which dirty pages are being produced is greater than the amount the lazy writer
had determined it should write, the lazy writer writes an additional number of dirty pages that it cal-
culates are necessary to match that rate. System worker threads from the systemwide critical worker
thread pool actually perform the I/O operations. The lazy writer is also aware of when the memory
manager’s mapped page writer is already performing a flush. In these cases, it delays its write-back
capabilities to the same stream to avoid a situation where two flushers are writing to the same file.

380 Windows Internals, Sixth Edition, Part 2

Note The cache manager provides a means for file system drivers to track when and how
much data has been written to a file. After the lazy writer flushes dirty pages to the disk,
the cache manager notifies the file system, instructing it to update its view of the valid data
length for the file. (The cache manager and file systems separately track in memory the
valid data length for a file.)

EXPERIMENT: Watching the Cache Manager in Action
In this experiment, we’ll use Process Monitor to view the underlying file system activity, includ-
ing cache manager read-ahead and write-behind, when Windows Explorer copies a large file (in
this example, a CD-ROM image) from one local directory to another.

First, configure Process Monitor’s filter to include the source and destination file paths, the
Explorer.exe and System processes, and the ReadFile and WriteFile operations. In this example,
the C:\Users\Administrator\Downloads\dump.dmp file was copied to C:\dump.dmp, so the filter
is configured as follows:

 CHAPTER 11 Cache Manager 381

You should see a Process Monitor trace like the one shown here after you copy the file:

The first few entries show the initial I/O processing performed by the copy engine and the
first cache manager operations. Here are some of the things that you can see:

 ■ The initial 1-MB cached read from Explorer at the first entry. The size of this read depends
on an internal matrix calculation based on the file size and can vary from 128 KB to 1 MB.
Because this file was large, the copy engine chose 1 MB.

 ■ The 1-MB read is followed by another 1-MB noncached read. Noncached reads typically
indicate activity due to page faults or cache manager access. A closer look at the stack
trace for these events, which you can see by double-clicking an entry and choosing the
Stack tab, reveals that indeed the CcCopyRead cache manager routine, which is called by

382 Windows Internals, Sixth Edition, Part 2

the NTFS driver’s read routine, causes the memory manager to fault the source data into
physical memory:

 ■ After this 1-MB page fault I/O, the cache manager’s read-ahead mechanism starts read-
ing the file, which includes the System process’s subsequent noncached 1-MB read at
the 1-MB offset. Because of the file size and Explorer’s read I/O sizes, the cache manager
chose 1 MB as the optimal read-ahead size. The stack trace for one of the read-ahead op-
erations, shown next, confirms that one of the cache manager’s worker threads is perform-
ing the read-ahead.

 CHAPTER 11 Cache Manager 383

After this point, Explorer’s 1-MB reads aren’t followed by page faults, because the read-
ahead thread stays ahead of Explorer, prefetching the file data with its 1-MB noncached reads.
However, every once in a while, the read-ahead thread is not able to pick up enough data in
time, and clustered page faults do occur, which appear as Synchronous Paging I/O.

384 Windows Internals, Sixth Edition, Part 2

If you look at the stack for these entries, you’ll see that instead of MmPrefetchForCache-
Manager, the MmAccessFault/MiIssueHardFault routines are called.

As soon as it starts reading, Explorer also starts performing writes to the destination file.
These are sequential, cached 64-KB writes. After about 132 MB of reads, the first WriteFile op-
eration from the System process occurs, shown here:

 CHAPTER 11 Cache Manager 385

The write operation’s stack trace, shown here, indicates that the memory manager’s mapped
page writer thread was actually responsible for the write:

This occurs because for the first couple of megabytes of data, the cache manager hadn’t
started performing write-behind, so the memory manager’s mapped page writer began flush-
ing the modified destination file data. (See Chapter 10 for more information on the mapped
page writer.)

To get a clearer view of the cache manager operations, remove Explorer from the Process
Monitor’s filter so that only the System process operations are visible, as shown next.

386 Windows Internals, Sixth Edition, Part 2

With this view, it’s much easier to see the cache manager’s 1-MB write-behind operations
(the maximum write sizes are 1 MB on client versions of Windows and 32 MB on server ver-
sions; this experiment was performed on a client system). The stack trace for one of the write-
behind operations, shown here, verifies that a cache manager worker thread is performing
write-behind:

As an added experiment, try repeating this process with a remote copy instead (from one
Windows system to another) and by copying files of varying sizes. You’ll notice some different
behaviors by the copy engine and the cache manager, both on the receiving and sending sides.

Disabling Lazy Writing for a File
If you create a temporary file by specifying the flag FILE_ATTRIBUTE_TEMPORARY in a call to the
Windows CreateFile function, the lazy writer won’t write dirty pages to the disk unless there is a se-
vere shortage of physical memory or the file is explicitly flushed. This characteristic of the lazy writer
improves system performance—the lazy writer doesn’t immediately write data to a disk that might
ultimately be discarded. Applications usually delete temporary files soon after closing them.

 CHAPTER 11 Cache Manager 387

Forcing the Cache to Write Through to Disk
Because some applications can’t tolerate even momentary delays between writing a file and seeing
the updates on disk, the cache manager also supports write-through caching on a per–file object
basis; changes are written to disk as soon as they’re made. To turn on write-through caching, set the
FILE_FLAG_WRITE_THROUGH flag in the call to the CreateFile function. Alternatively, a thread can
explicitly flush an open file, by using the Windows FlushFileBuffers function, when it reaches a point at
which the data needs to be written to disk.

Flushing Mapped Files
If the lazy writer must write data to disk from a view that’s also mapped into another process’s ad-
dress space, the situation becomes a little more complicated, because the cache manager will only
know about the pages it has modified. (Pages modified by another process are known only to that
process because the modified bit in the page table entries for modified pages is kept in the process
private page tables.) To address this situation, the memory manager informs the cache manager
when a user maps a file. When such a file is flushed in the cache (for example, as a result of a call to
the Windows FlushFileBuffers function), the cache manager writes the dirty pages in the cache and
then checks to see whether the file is also mapped by another process. When the cache manager sees
that the file is, the cache manager then flushes the entire view of the section to write out pages that
the second process might have modified. If a user maps a view of a file that is also open in the cache,
when the view is unmapped, the modified pages are marked as dirty so that when the lazy writer
thread later flushes the view, those dirty pages will be written to disk. This procedure works as long as
the sequence occurs in the following order:

1. A user unmaps the view.

2. A process flushes file buffers.

If this sequence isn’t followed, you can’t predict which pages will be written to disk.

EXPERIMENT: Watching Cache Flushes
You can see the cache manager map views into the system cache and flush pages to disk by
running the Performance Monitor and adding the Data Maps/sec and Lazy Write Flushes/sec
counters and then copying a large file from one location to another. The generally higher line
in the following screen shot shows Data Maps/sec and the other shows Lazy Write Flushes/sec.
During the file copy, Lazy Write Flushes/sec significantly increased.

388 Windows Internals, Sixth Edition, Part 2

Write Throttling
The file system and cache manager must determine whether a cached write request will affect system
performance and then schedule any delayed writes. First the file system asks the cache manager
whether a certain number of bytes can be written right now without hurting performance by using
the CcCanIWrite function and blocking that write if necessary. For asynchronous I/O, the file system
sets up a callback with the cache manager for automatically writing the bytes when writes are again
permitted by calling CcDeferWrite. Otherwise, it just blocks and waits on CcCanIWrite to continue.
Once it’s notified of an impending write operation, the cache manager determines how many dirty
pages are in the cache and how much physical memory is available. If few physical pages are free, the
cache manager momentarily blocks the file system thread that’s requesting to write data to the cache.
The cache manager’s lazy writer flushes some of the dirty pages to disk and then allows the blocked
file system thread to continue. This write throttling prevents system performance from degrading
because of a lack of memory when a file system or network server issues a large write operation.

Note The effects of write throttling are volume-aware, such that if a user is copying a large
file on, say, a RAID-0 SSD while also transferring a document to a portable USB thumb
drive, writes to the USB disk will not cause write throttling to occur on the SSD transfer.

The dirty page threshold is the number of pages that the system cache will allow to be dirty before
throttling cached writers. This value is computed at system initialization time and depends on the

 CHAPTER 11 Cache Manager 389

product type (client or server). Two other values are also computed—the top dirty page threshold
and the bottom dirty page threshold. Depending on memory consumption and the rate at which
dirty pages are being processed, the lazy writer calls the internal function CcAdjustThrottle, which, on
server systems, performs dynamic adjustment of the current threshold based on the calculated top
and bottom values. This adjustment is made to preserve the read cache in cases of a heavy write load
that will inevitably overrun the cache and become throttled. Table 11-1 lists the algorithms used to
calculate the dirty page thresholds.

TABLE 11-1 Algorithms for Calculating the Dirty Page Thresholds

Product Type Dirty Page Threshold Top Dirty Page Threshold Bottom Dirty Page Threshold

Client Physical pages / 8 Physical pages / 8 Physical pages / 8

Server Physical pages / 2 Physical pages / 2 Physical pages / 8

Write throttling is also useful for network redirectors transmitting data over slow communica-
tion lines. For example, suppose a local process writes a large amount of data to a remote file system
over a 9600-baud line. The data isn’t written to the remote disk until the cache manager’s lazy writer
flushes the cache. If the redirector has accumulated lots of dirty pages that are flushed to disk at
once, the recipient could receive a network timeout before the data transfer completes. By using the
CcSetDirtyPageThreshold function, the cache manager allows network redirectors to set a limit on
the number of dirty cache pages they can tolerate (for each stream), thus preventing this scenario. By
limiting the number of dirty pages, the redirector ensures that a cache flush operation won’t cause a
network timeout.

EXPERIMENT: Viewing the Write-Throttle Parameters
The !defwrites kernel debugger command dumps the values of the kernel variables the cache
manager uses, including the number of dirty pages in the file cache (CcTotalDirtyPages), when
determining whether it should throttle write operations:

lkd>
!defwrites
*** Cache Write Throttle Analysis ***

 CcTotalDirtyPages: 39 (156 Kb)
 CcDirtyPageThreshold: 32753 (131012 Kb)
 MmAvailablePages: 81569 (326276 Kb)
 MmThrottleTop: 450 (1800 Kb)
 MmThrottleBottom: 80 (320 Kb)
 MmModifiedPageListHead.Total: 4337 (17348 Kb)

Write throttles not engaged

This output shows that the number of dirty pages is far from the number that triggers write
throttling (CcDirtyPageThreshold), so the system has not engaged in any write throttling.

390 Windows Internals, Sixth Edition, Part 2

System Threads
As mentioned earlier, the cache manager performs lazy write and read-ahead I/O operations by
submitting requests to the common critical system worker thread pool. However, it does limit the
use of these threads to one less than the total number of critical system worker threads for small and
medium memory systems (two less than the total for large memory systems).

Internally, the cache manager organizes its work requests into four lists (though these are serviced
by the same set of executive worker threads):

 ■ The express queue is used for read-ahead operations.

 ■ The regular queue is used for lazy write scans (for dirty data to flush), write-behinds, and lazy
closes.

 ■ The fast teardown queue is used when the memory manager is waiting for the data sec-
tion owned by the cache manager to be freed so that the file can be opened with an image
section instead, which causes CcWriteBehind to flush the entire file and tear down the shared
cache map.

 ■ The post tick queue is used for the cache manager to internally register for a notification after
each “tick” of the lazy writer thread—in other words, at the end of each pass.

To keep track of the work items the worker threads need to perform, the cache manager creates
its own internal per-processor look-aside list, a fixed-length list—one for each processor—of worker
queue item structures. (Look-aside lists are discussed in Chapter 10.) The number of worker queue
items depends on system size: 32 for small-memory systems, 64 for medium-memory systems, 128
for large-memory client systems, and 256 for large-memory server systems. For cross-processor per-
formance, the cache manager also allocates a global look-aside list at the same sizes as just described.

Conclusion

The cache manager provides a high-speed, intelligent mechanism for reducing disk I/O and increas-
ing overall system throughput. By caching on the basis of virtual blocks, the cache manager can
perform intelligent read-ahead. By relying on the global memory manager’s mapped file primitive
to access file data, the cache manager can provide the special fast I/O mechanism to reduce the CPU
time required for read and write operations and also leave all matters related to physical memory
management to the single Windows global memory manager, thus reducing code duplication and
increasing efficiency.

 391

C H A P T E R 1 2

File Systems

In this chapter, we present an overview of the file system formats supported by Windows. We then
describe the types of file system drivers and their basic operation, including how they interact with

other system components, such as the memory manager and the cache manager. Following that is a
description of how to use Process Monitor from Windows Sysinternals (at http://www.microsoft.com/
technet/sysinternals) to troubleshoot a wide variety of file system access problems.

In the balance of the chapter, we first describe the Common Log File System (CLFS), a transactional
logging virtual file system implemented on the native Windows file system format, NTFS. Then we
focus on the on-disk layout of NTFS and its advanced features, such as compression, recoverability,
quotas, symbolic links, transactions (which use the services provided by CLFS), and encryption.

To fully understand this chapter, you should be familiar with the terminology introduced in
Chapter 9, “Storage Management,” including the terms volume and partition. You’ll also need to be
acquainted with these additional terms:

 ■ Sectors are hardware-addressable blocks on a storage medium. Hard disks usually define a
512-byte sector size, but they are moving to 4,096-byte sectors. (See Chapter 9.) Thus, if the
sector size is 512 bytes and the operating system wants to modify the 632nd byte on a disk, it
must write a 512-byte block of data to the second sector on the disk.

 ■ File system formats define the way that file data is stored on storage media, and they affect a
file system’s features. For example, a format that doesn’t allow user permissions to be associ-
ated with files and directories can’t support security. A file system format can also impose
limits on the sizes of files and storage devices that the file system supports. Finally, some file
system formats efficiently implement support for either large or small files or for large or small
disks. NTFS and exFAT are examples of file system formats that offer a different set of features
and usage scenarios.

 ■ Clusters are the addressable blocks that many file system formats use. Cluster size is always a
multiple of the sector size, as shown in Figure 12-1. File system formats use clusters to manage
disk space more efficiently; a cluster size that is larger than the sector size divides a disk into
more manageable blocks. The potential trade-off of a larger cluster size is wasted disk space,
or internal fragmentation, that results when file sizes aren’t exact multiples of the cluster size.

http://www.microsoft.com/technet/sysinternals
http://www.microsoft.com/technet/sysinternals

392 Windows Internals, Sixth Edition, Part 2

Sector
Cluster (8 sectors)

FIGURE 12-1 Sectors and a cluster on a disk

 ■ Metadata is data stored on a volume in support of file system format management. It isn’t
typically made accessible to applications. Metadata includes the data that defines the place-
ment of files and directories on a volume, for example.

Windows File System Formats

Windows includes support for the following file system formats:

 ■ CDFS

 ■ UDF

 ■ FAT12, FAT16, and FAT32

 ■ exFAT

 ■ NTFS

Each of these formats is best suited for certain environments, as you’ll see in the following sections.

CDFS
CDFS (%SystemRoot%\System32\Drivers\Cdfs.sys), or CD-ROM file system, is a read-only file system
driver that supports a superset of the ISO-9660 format as well as a superset of the Joliet disk format.
While the ISO-9660 format is relatively simple and has limitations such as ASCII uppercase names with
a maximum length of 32 characters, Joliet is more flexible and supports Unicode names of arbitrary
length. If structures for both formats are present on a disk (to offer maximum compatibility), CDFS
uses the Joliet format. CDFS has a couple of restrictions:

 ■ A maximum file size of 4 GB

 ■ A maximum of 65,535 directories

CDFS is considered a legacy format because the industry has adopted the Universal Disk Format
(UDF) as the standard for optical media.

 CHAPTER 12 File Systems 393

UDF
The Windows UDF file system implementation is OSTA (Optical Storage Technology Association)
 UDF-compliant. (UDF is a subset of the ISO-13346 format with extensions for formats such as CD-R
and DVD-R/RW.) OSTA defined UDF in 1995 as a format to replace the ISO-9660 format for magneto-
optical storage media, mainly DVD-ROM. UDF is included in the DVD specification and is more flex-
ible than CDFS. The UDF file system format has the following traits:

 ■ Directory and file names can be 254 ASCII or 127 Unicode characters long.

 ■ Files can be sparse. (Sparse files are defined later in this chapter.)

 ■ File sizes are specified with 64 bits.

 ■ Support for access control lists (ACLs).

 ■ Support for alternate data streams.

The UDF driver supports UDF versions up to 2.60. The UDF format was designed with rewritable
media in mind. The Windows UDF driver (%SystemRoot%\System32\Drivers\Udfs.sys) provides read-
write support for Blu-ray, DVD-RAM, CD-R/RW, and DVD+-R/RW drives when using UDF 2.50 and
read-only support when using UDF 2.60. However, Windows does not implement support for certain
UDF features such as named streams and access control lists.

FAT12, FAT16, and FAT32
Windows supports the FAT file system primarily for compatibility with other operating systems in mul-
tiboot systems, and as a format for flash drives or memory cards. The Windows FAT file system driver
is implemented in %SystemRoot%\System32\Drivers\Fastfat.sys.

The name of each FAT format includes a number that indicates the number of bits that the particu-
lar format uses to identify clusters on a disk. FAT12’s 12-bit cluster identifier limits a partition to stor-
ing a maximum of 212 (4,096) clusters. Windows permits cluster sizes from 512 bytes to 8 KB, which
limits a FAT12 volume size to 32 MB.

Note All FAT file system types reserve the first two clusters and the last 16 clusters of a
volume, so the number of usable clusters for a FAT12 volume, for instance, is slightly less
than 4,096.

FAT16, with a 16-bit cluster identifier, can address 216 (65,536) clusters. On Windows, FAT16 cluster
sizes range from 512 bytes (the sector size) to 64 KB (on disks with a 512-byte sector size), which limits
FAT16 volume sizes to 4 GB. Disks with a sector size of 4,096 bytes allow for clusters of 256 KB. The
cluster size Windows uses depends on the size of a volume. The various sizes are listed in Table 12-1.
If you format a volume that is less than 16 MB as FAT by using the format command or the Disk Man-
agement snap-in, Windows uses the FAT12 format instead of FAT16.

394 Windows Internals, Sixth Edition, Part 2

TABLE 12-1 Default FAT16 Cluster Sizes in Windows

Volume Size Default Cluster Size

<8 MB Not supported

8 MB–32 MB 512 bytes

32 MB–64 MB 1 KB

64 MB–128 MB 2 KB

128 MB–256 MB 4 KB

256 MB–512 MB 8 KB

512 MB–1,024 MB 16 KB

1 GB–2 GB 32 KB

2 GB–4 GB 64 KB

>16 GB Not supported

A FAT volume is divided into several regions, which are shown in Figure 12-2. The file allocation
table, which gives the FAT file system format its name, has one entry for each cluster on a volume.
Because the file allocation table is critical to the successful interpretation of a volume’s contents, the
FAT format maintains two copies of the table so that if a file system driver or consistency-checking
program (such as Chkdsk) can’t access one (because of a bad disk sector, for example), it can read
from the other.

Boot
sector

File allocation
table 1

File allocation
table 2

(duplicate)

Root
directory Other directories and all files

FIGURE 12-2 FAT format organization

Entries in the file allocation table define file-allocation chains (shown in Figure 12-3) for files and
directories, where the links in the chain are indexes to the next cluster of a file’s data. A file’s directory
entry stores the starting cluster of the file. The last entry of the file’s allocation chain is the reserved
value of 0xFFFF for FAT16 and 0xFFF for FAT12. The FAT entries for unused clusters have a value of
0. You can see in Figure 12-3 that FILE1 is assigned clusters 2, 3, and 4; FILE2 is fragmented and uses
clusters 5, 6, and 8; and FILE3 uses only cluster 7. Reading a file from a FAT volume can involve reading
large portions of a file allocation table to traverse the file’s allocation chains.

 CHAPTER 12 File Systems 395

FILE1 0002

0003 0004 0006 0008FFFF FFFF 0000FFFF

FILE2

File directory entries

2 3 4 5 6 7 8 9

0005 FILE3 0007

FIGURE 12-3 Sample FAT file-allocation chains

The root directory of FAT12 and FAT16 volumes is preassigned enough space at the start of a
volume to store 256 directory entries, which places an upper limit on the number of files and direc-
tories that can be stored in the root directory. (There’s no preassigned space or size limit on FAT32
root directories.) A FAT directory entry is 32 bytes and stores a file’s name, size, starting cluster, and
time stamp (last-accessed, created, and so on) information. If a file has a name that is Unicode or that
doesn’t follow the MS-DOS 8.3 naming convention, additional directory entries are allocated to store
the long file name. The supplementary entries precede the file’s main entry. Figure 12-4 shows a sam-
ple directory entry for a file named “The quick brown fox.” The system has created a THEQUI~1.FOX
8.3 representation of the name (that is, you don’t see a “.” in the directory entry because it is assumed
to come after the eighth character) and used two more directory entries to store the Unicode long file
name. Each row in the figure is made up of 16 bytes.

Second (and last) long entry

Short entry
First long entry

0x42 w n . f o 0x0F 0x00 xCheck
sum

0x0000 0xFFFF 0xFFFF 0xFFFF 0xFFFF 0x0000 0xFFFF 0xFFFF

0x01 T h e q 0x0F 0x00 uCheck
sum

i c k b 0x0000 or

T H E Q U I ˜ 1 F O X 0x20 NT Create time

Create date Last access
date 0x0000 Last modi-

fied time
Last modi-
fied date First cluster File size

FIGURE 12-4 FAT directory entry

FAT32 uses 32-bit cluster identifiers but reserves the high 4 bits, so in effect it has 28-bit clus-
ter identifiers. Because FAT32 cluster sizes can be as large as 64 KB, FAT32 has a theoretical ability

396 Windows Internals, Sixth Edition, Part 2

to address 16-terabyte (TB) volumes. Although Windows works with existing FAT32 volumes of
larger sizes (created in other operating systems), it limits new FAT32 volumes to a maximum of 32
GB. FAT32’s higher potential cluster numbers let it manage disks more efficiently than FAT16; it can
handle up to 128-GB volumes with 512-byte clusters. Table 12-2 shows default cluster sizes for FAT32
volumes.

TABLE 12-2 Default Cluster Sizes for FAT32 Volumes

Partition Size Default Cluster Size

<32 MB Not supported

32 MB–64 MB 512 bytes

64 MB–128 MB 1 KB

128 MB–256 MB 2 KB

256 MB–8 GB 4 KB

8 GB–16 GB 8 KB

16 GB–32 GB 16 KB

>32 GB Not supported

Besides the higher limit on cluster numbers, other advantages FAT32 has over FAT12 and FAT16
include the fact that the FAT32 root directory isn’t stored at a predefined location on the volume, the
root directory doesn’t have an upper limit on its size, and FAT32 stores a second copy of the boot sec-
tor for reliability. A limitation FAT32 shares with FAT16 is that the maximum file size is 4 GB because
directories store file sizes as 32-bit values.

exFAT
Designed by Microsoft, the Extended File Allocation Table file system (exFAT, also called FAT64) is an
improvement over the traditional FAT file systems and is specifically designed for flash drives. The
main goal of exFAT is to provide some of the advanced functionality offered by NTFS, but without the
metadata structure overhead and metadata logging that create write patterns not suited for many
flash media devices. (See the description of flash media in Chapter 9). Table 12-3 lists the default
cluster sizes for exFAT.

As the FAT64 name implies, the file size limit is increased to 264, allowing files up to 16 exabytes.
This change is also matched by an increase in the maximum cluster size, which is currently imple-
mented as 32 MB but can be as large as 2255 sectors. exFAT also adds a bitmap that tracks free
clusters, which improves the performance of allocation and deletion operations. Finally, exFAT allows
more than 1,000 files in a single directory. These characteristics result in increased scalability and sup-
port for large disk sizes.

 CHAPTER 12 File Systems 397

TABLE 12-3 Default Cluster Sizes for exFAT Volumes

Volume Size Default Cluster Size

<7 MB Not supported

7 MB–256 MB 4 KB

256 MB–32 GB 32 KB

32 GB–256 TB 128 KB

>256 TB Not supported

Additionally, exFAT implements certain features previously available only in NTFS, such as sup-
port for access control lists (ACLs) and transactions (called Transaction-Safe FAT, or TFAT). While the
Windows Embedded CE implementation of exFAT includes these features, the version of exFAT in
Windows does not.

Note ReadyBoost (described in Chapter 10, “Memory Management”) can work with exFAT-
formatted flash drives to support cache files much larger than 4 GB.

NTFS
As noted at the beginning of the chapter, the NTFS file system is the native file system format of
Windows. NTFS uses 64-bit cluster numbers. This capacity gives NTFS the ability to address volumes
of up to 16 exaclusters; however, Windows limits the size of an NTFS volume to that addressable with
32-bit clusters, which is slightly less than 256 TB (using 64-KB clusters). Table 12-4 shows the default
cluster sizes for NTFS volumes. (You can override the default when you format an NTFS volume.) NTFS
also supports 232–1 files per volume. The NTFS format allows for files that are 16 exabytes in size, but
the implementation limits the maximum file size to 16 TB.

TABLE 12-4 Default Cluster Sizes for NTFS Volumes

Volume Size Default Cluster Size

<7 MB Not supported

7 MB–16 TB 4 KB

16 TB–32 TB 8 KB

32 TB–64 TB 16 KB

64 TB–128 TB 32 KB

128 TB–256 TB 64 KB

NTFS includes a number of advanced features, such as file and directory security, alternate data
streams, disk quotas, sparse files, file compression, symbolic (soft) and hard links, support for transac-
tional semantics, junction points, and encryption. One of its most significant features is recoverability.
If a system is halted unexpectedly, the metadata of a FAT volume can be left in an inconsistent state,
leading to the corruption of large amounts of file and directory data. NTFS logs changes to metadata

398 Windows Internals, Sixth Edition, Part 2

in a transactional manner so that file system structures can be repaired to a consistent state with no
loss of file or directory structure information. (File data can be lost unless the user is using TxF, which
is covered later in this chapter.) Additionally, the NTFS driver in Windows also implements self-healing,
a mechanism through which it makes most minor repairs to corruption of file system on-disk struc-
tures while Windows is running and without requiring a reboot.

We’ll describe NTFS data structures and advanced features in detail later in this chapter.

File System Driver Architecture

File system drivers (FSDs) manage file system formats. Although FSDs run in kernel mode, they differ
in a number of ways from standard kernel-mode drivers. Perhaps most significant, they must register
as an FSD with the I/O manager and they interact more extensively with the memory manager. For
enhanced performance, file system drivers also usually rely on the services of the cache manager.
Thus, they use a superset of the exported Ntoskrnl.exe functions that standard drivers use. Just as for
standard kernel-mode drivers, you must have the Windows Driver Kit (WDK) to build file system driv-
ers. (See Chapter 1, “Concepts and Tools,” in Part 1 and http://www.microsoft.com/whdc/devtools/wdk
for more information on the WDK.)

Windows has two different types of file system drivers:

 ■ Local FSDs manage volumes directly connected to the computer.

 ■ Network FSDs allow users to access data volumes connected to remote computers.

Local FSDs
Local FSDs include Ntfs.sys, Fastfat.sys, Exfat.sys, Udfs.sys, Cdfs.sys, and the RAW FSD (integrated in
Ntoskrnl.exe). Figure 12-5 shows a simplified view of how local FSDs interact with the I/O manager
and storage device drivers. As we described in the section “Volume Mounting” in Chapter 9, a local
FSD is responsible for registering with the I/O manager. Once the FSD is registered, the I/O manager
can call on it to perform volume recognition when applications or the system initially access the vol-
umes. Volume recognition involves an examination of a volume’s boot sector and often, as a consis-
tency check, the file system metadata. If none of the registered file systems recognizes the volume,
the system assigns the RAW file system driver to the volume and then displays a dialog box to the
user asking if the volume should be formatted. If the user chooses not to format the volume, the RAW
file system driver provides access to the volume, but only at the sector level—in other words, the user
can only read or write complete sectors.

The goal of file system recognition is to allow the system to have an additional option for a valid
but unrecognized file system other than RAW. To achieve this, the system defines a fixed data struc-
ture type (FILE_SYSTEM_RECOGNITION_STRUCTURE) that is written to the first sector on the volume.
This data structure, if present, would then be recognized by the operating system, which would then
notify the user that the volume contains a valid but unrecognized file system. The system will still load
the RAW file system on the volume, but it will not prompt the user to format the volume. A user

http://www.microsoft.com/whdc/devtools/wdk

 CHAPTER 12 File Systems 399

application or kernel-mode driver might ask for a copy of the FILE_SYSTEM_RECOGNITION_STRUC-
TURE by using the new file system I/O control code FSCTL_QUERY_FILE_SYSTEM_RECOGNITION.

The first sector of every Windows-supported file system format is reserved as the volume’s boot
sector. A boot sector contains enough information so that a local FSD can both identify the volume
on which the sector resides as containing a format that the FSD manages and locate any other meta-
data necessary to identify where metadata is stored on the volume.

When a local FSD recognizes a volume, it creates a device object that represents the mounted
file system format. The I/O manager makes a connection through the volume parameter block (VPB)
between the volume’s device object (which is created by a storage device driver) and the device
object that the FSD created. The VPB’s connection results in the I/O manager redirecting I/O requests
targeted at the volume device object to the FSD device object. (See Chapter 9 for more information
on VPBs.)

ApplicationApplication

Logical
volume

(partition)

User mode

Kernel mode

I/O manager

File system driver

Storage device drivers

FIGURE 12-5 Local FSD

To improve performance, local FSDs usually use the cache manager to cache file system data,
including metadata. (For more information, see Chapter 11, “Cache Manager.”) FSDs also integrate
with the memory manager so that mapped files are implemented correctly. For example, FSDs must
query the memory manager whenever an application attempts to truncate a file in order to verify
that no processes have mapped the part of the file beyond the truncation point. (See Chapter 10 for
more information on the memory manager.) Windows doesn’t permit file data that is mapped by an
application to be deleted either through truncation or file deletion.

Local FSDs also support file system dismount operations, which permit the system to disconnect
the FSD from the volume object. A dismount occurs whenever an application requires raw access to
the on-disk contents of a volume or the media associated with a volume is changed. The first time an
application accesses the media after a dismount, the I/O manager reinitiates a volume mount opera-
tion for the media.

400 Windows Internals, Sixth Edition, Part 2

Remote FSDs
Each remote FSD consists of two components: a client and a server. A client-side remote FSD allows
applications to access remote files and directories. The client FSD component accepts I/O requests
from applications and translates them into network file system protocol commands (such as SMB)
that the FSD sends across the network to a server-side component, which is a remote FSD. A server-
side FSD listens for commands coming from a network connection and fulfills them by issuing I/O
requests to the local FSD that manages the volume on which the file or directory that the command is
intended for resides.

Windows includes a client-side remote FSD named LANMan Redirector (usually referred to as just
the redirector) and a server-side remote FSD named LANMan Server (%SystemRoot%\System32\
Drivers\Srv2.sys). Figure 12-6 shows the relationship between a client accessing files remotely from
a server through the redirector and server FSDs. See Chapter 7, “Networking,” in Part 1 for more infor-
mation on the redirectors and RDBSS.

Disk

Client Server

User mode

Kernel mode

Protocol driver
(TDI transport)

Protocol driver
(TDI transport)

Local FSD
(NTFS, FAT)

File data

Network

Client
application Kernel32.dll

Ntdll.dll

Cache
manager

Server
FSD

User mode

Kernel mode

Cache
manager

Redirector
FSD

FIGURE 12-6 Common Internet File System file sharing

Windows relies on the Common Internet File System (CIFS) protocol to format messages ex-
changed between the redirector and the server.l CIFS is a version of Microsoft’s Server Message Block
(SMB) protocol. (For more information on SMB, go to http://msdn.microsoft.com/en-us/library/win-
dows/desktop/aa365233(v=vs.85).aspx.)

Like local FSDs, client-side remote FSDs usually use cache manager services to locally cache file
data belonging to remote files and directories, and in such cases both must implement a distrib-
uted locking mechanism on the client as well as the server. SMB client-side remote FSDs implement

http://msdn.microsoft.com/en-us/library/windows/desktop/aa365233(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa365233(v=vs.85).aspx

 CHAPTER 12 File Systems 401

a distributed cache coherency protocol, called oplock (opportunistic locking), so that the data an
application sees when it accesses a remote file is the same as the data applications running on other
computers that are accessing the same file see. Third-party file systems may choose to use the oplock
protocol, or they may implement their own protocol. Although server-side remote FSDs participate in
maintaining cache coherency across their clients, they don’t cache data from the local FSDs because
local FSDs cache their own data.

Locking
It is fundamental that whenever a resource can be shared between multiple, simultaneous accessors,
a serialization mechanism must be provided to arbitrate writes to that resource to ensure that only
one accessor is writing to the resource at any given time. Without this mechanism, the resource may
be corrupted. The locking mechanisms used by all file servers implementing the SMB protocol are the
oplock and the lease. Which mechanism is used depends on the capabilities of both the server and
the client, with the lease being the preferred mechanism.

Oplocks The oplock functionality is implemented in the file system run-time library (FsRtlXxx func-
tions) and may be used by any file system driver. The client of a remote file server uses an oplock
to dynamically determine which client-side caching strategy to use to minimize network traffic. An
oplock is requested on a file residing on a share, by the file system driver or redirector, on behalf of
an application when it attempts to open a file. The granting of an oplock allows the client to cache
the file rather than send every read or write to the file server across the network. For example, a client
could open a file for exclusive access, allowing the client to cache all reads and writes to the file, and
then copy the updates to the file server when the file is closed. In contrast, if the server does not grant
an oplock to a client, all reads and writes must be sent to the server.

Once an oplock has been granted, a client may then start caching the file, with the type of oplock
determining what type of caching is allowed. An oplock is not necessarily held until a client is finished
with the file, and it may be broken at any time if the server receives an operation that is incompatible
with the existing granted locks. This implies that the client must be able to quickly react to the break
of the oplock and change its caching strategy dynamically.

Prior to SMB 2.1, there were four types of oplocks:

 ■ Level 1, exclusive access This lock allows a client to open a file for exclusive access. The cli-
ent may perform read-ahead buffering and read or write caching.

 ■ Level 2, shared access This lock allows multiple, simultaneous readers of a file and no writ-
ers. The client may perform read-ahead buffering and read caching of file data and attributes.
A write to the file will cause the holders of the lock to be notified that the lock has been
broken.

 ■ Batch, exclusive access This lock takes its name from the locking used when processing
batch (.bat) files, which are opened and closed to process each line within the file. The client
may keep a file open on the server, even though the application has (perhaps temporarily)
closed the file. This lock supports read, write, and handle caching.

402 Windows Internals, Sixth Edition, Part 2

 ■ Filter, exclusive access This lock provides applications and file system filters with a mecha-
nism to give up the lock when other clients try to access the same file, but unlike a Level 2
lock, the file cannot be opened for delete access, and the other client will not receive a sharing
violation. This lock supports read and write caching.

In the simplest terms, if multiple client systems are all caching the same file shared by a server,
then as long as every application accessing the file (from any client or the server) tries only to read
the file, those reads can be satisfied from each system’s local cache. This drastically reduces the
network traffic because the contents of the file are not sent to each system from the server. Locking
information must still be exchanged between the client systems and the server, but this requires very
low network bandwidth. However, if even one of the clients opens the file for read and write access
(or exclusive write), then none of the clients can use their local caches and all I/O to the file must go
immediately to the server, even if the file is never written. (Lock modes are based upon how the file is
opened, not individual I/O requests.)

An example, shown in Figure 12-7, will help illustrate oplock operation. The server automatically
grants a Level 1 oplock to the first client to open a server file for access. The redirector on the client
caches the file data for both reads and writes in the file cache of the client machine. If a second client
opens the file, it too requests a Level 1 oplock. However, because there are now two clients accessing
the same file, the server must take steps to present a consistent view of the file’s data to both clients.
If the first client has written to the file, as is the case in Figure 12-7, the server revokes its oplock and
grants neither client an oplock. When the first client’s oplock is revoked, or broken, the client flushes
any data it has cached for the file back to the server.

Time

File open

Cached read(s)
Cached write(s)

Flushes cached
modified data

Noncached read(s)
Noncached write(s)

Client 1 Client 2

Grant Level 1
oplock to Client 1

File open

Oplock request

Oplock
request

Level 1 grant

Oplock break
to none

Data flush
No oplock
granted

Noncached read(s)
Noncached write(s)

Break Client 1
to no oplock

Do not grant
Client 2 oplock

Server

FIGURE 12-7 Oplock example

If the first client hadn’t written to the file, the first client’s oplock would have been broken to a
Level 2 oplock, which is the same type of oplock the server would grant to the second client. Now
both clients can cache reads, but if either writes to the file, the server revokes their oplocks so that
noncached operation commences. Once oplocks are broken, they aren’t granted again for the same
open instance of a file. However, if a client closes a file and then reopens it, the server reassesses what

 CHAPTER 12 File Systems 403

level of oplock to grant the client based on which other clients have the file open and whether or not
at least one of them has written to the file.

EXPERIMENT: Viewing the List of Registered File Systems
When the I/O manager loads a device driver into memory, it typically names the driver object
it creates to represent the driver so that it’s placed in the \Driver object manager directory.
The driver objects for any driver the I/O manager loads that have a Type attribute value of
SERVICE_FILE_SYSTEM_DRIVER (2) are placed in the \FileSystem directory by the I/O manager.
Thus, using a tool such as WinObj (from Sysinternals), you can see the file systems that have
registered on a system, as shown in the following screen shot. (Note that some file system driv-
ers also place device objects in the \FileSystem directory.)

Another way to see registered file systems is to run the System Information viewer. Run
Msinfo32 from the Start menu’s Run dialog box and select System Drivers under Software Envi-
ronment. Sort the list of drivers by clicking the Type column, and drivers with a Type attribute of
SERVICE_FILE_SYSTEM_DRIVER group together.

404 Windows Internals, Sixth Edition, Part 2

Note that just because a driver registers as a file system driver type doesn’t mean that it is
a local or remote FSD. For example, Npfs (Named Pipe File System) is a network API driver that
supports named pipes but implements a private namespace, and therefore is in some ways like
a file system driver. See Chapter 7 in Part 1 for an experiment that reveals the Npfs namespace.

Leases Prior to SMB 2.1, the SMB protocol assumed an error-free network connection between the
client and the server and did not tolerate network disconnections caused by transient network fail-
ures, server reboot, or cluster failovers. When a network disconnect event was received by the client,
it orphaned all handles opened to the affected server(s), and all subsequent I/O operations on the
orphaned handles were failed. Similarly, the server would release all opened handles and resources
associated with the disconnected user session. This behavior resulted in applications losing state and
in unnecessary network traffic.

 CHAPTER 12 File Systems 405

In SMB 2.1, the concept of a lease is introduced as a new type of client caching mechanism, similar
to an oplock. The purpose of a lease and an oplock is the same, but a lease provides greater flexibility
and much better performance.

 ■ Read (R), shared access Allows multiple simultaneous readers of a file, and no writers. This
lease allows the client to perform read-ahead buffering and read caching.

 ■ Read-Handle (RH), shared access This is similar to the Level 2 oplock, with the added
benefit of allowing the client to keep a file open on the server even though the accessor on
the client has closed the file. (The cache manager will lazily flush the unwritten data and purge
the unmodified cache pages based on memory availability.) This is superior to a Level 2 oplock
because the lease does not need to be broken between opens and closes of the file handle. (In
this respect, it provides semantics similar to the Batch oplock.) This type of lease is especially
useful for files that are repeatedly opened and closed because the cache is not invalidated
when the file is closed and refilled when the file is opened again, providing a big improvement
in performance for complex I/O intensive applications.

 ■ Read-Write (RW), exclusive access This lease allows a client to open a file for exclusive ac-
cess. This lock allows the client to perform read-ahead buffering and read or write caching.

 ■ Read-Write-Handle (RWH), exclusive access This lock allows a client to open a file for ex-
clusive access. This lease supports read, write, and handle caching (similar to the Read-Handle
lease).

Another advantage that a lease has over an oplock is that a file may be cached, even when there
are multiple handles opened to the file on the client. (This is a common behavior in many applica-
tions.) This is implemented through the use of a lease key (implemented using a GUID), which is
created by the client and associated with the File Control Block (FCB) for the cached file, allowing
all handles to the same file to share the same lease state, which provides caching by file rather than
caching by handle. Prior to the introduction of the lease, the oplock was broken whenever a new
handle was opened to the file, even from the same client. Figure 12-8 shows the oplock behavior, and
Figure 12-9 shows the new lease behavior.

Prior to SMB 2.1, oplocks could only be granted or broken, but leases can also be converted. For
example, a Read lease may be converted to a Read-Write lease, which greatly reduces network traf-
fic because the cache for a particular file does not need to be invalidated and refilled, as would be
the case with an oplock break (of the Level 2 oplock), followed by the request and grant of a Level 1
oplock.

406 Windows Internals, Sixth Edition, Part 2

Client Windows Network Server

Application A
opens a file on

a server

Application A
receives a handle

to the file on
the server

Application A
issues a read

to the file

Application A
receives only the
amount of data

it requested

Application A
issues a read to

the file within
the area cached

Application B
opens the same

file on the server
for read access

Application A
issues a write to

the file within
the area cached

Application B
receives a handle

to the file on
the server

Application A
issues a read to

the file for an
area that was

previously cached

Application A
issues a write to

the file in an
area that was

previously
cached

First handle
on the
file opened

Data read
from file

Server
opens
second
handle
to file

Data read
from file

Data
written
to file

Batch oplock granted

Read data returned

Server unaware

Server unaware

No network packets

No network packets

Batch oplock broken

Read data returned

Write data to server

Read data from server

Cache flushed and no more
caching allowed on the file

Read-ahead data written
to cache

Read data and
read-ahead from server

CreateFile (with
FILE_GENERIC_READ and

FILE_GENERIC_WRITE)

CreateFile (same file with
FILE_GENERIC_READ)

I/O complete
Data given to application

I/O complete

WriteFile

WriteFile

ReadFile

ReadFile

ReadFile

Handle

Handle

I/O complete
Data given to application

I/O complete
Cached data given to application

I/O complete

FIGURE 12-8 Oplock with multiple handles from the same client

 CHAPTER 12 File Systems 407

Client Windows Network Server

Application A
opens a file on

a server

Application A
receives a handle

to the file on
the server

Application A
issues a read

to the file

Application A
receives only the
amount of data

it requested

Application A
issues a read to

the file within
the area cached

Application B
opens the same

file on the server
for read access

Application A
issues a write to

the file within
the area cached

Application B
receives a handle

to the file on
the server

Application B
issues a read to

the file to an area
that is cached

Application A
issues a write to

the file in an area
 that is cached

First handle
on the
file opened

Data read
from file

Server
opens
second
handle
to file; lease
remains

Data written
to the
cache will
eventually
be flushed
to the
server by
the client

Read-Handle lease granted

Read data returned

Server unaware

Server unaware

No network packets

No network packets

Cache flushed and no more
caching allowed on the file

Read-ahead data written
to cache

Read data and
read-ahead from server

CreateFile (with
FILE_GENERIC_READ and

FILE_GENERIC_WRITE)

CreateFile (same file with
FILE_GENERIC_READ)

I/O complete
Cache data given to application

I/O complete

WriteFile

WriteFile

ReadFile

ReadFile

ReadFile

Handle

Handle

I/O complete
Data given to application

I/O complete
Cached data given to application

I/O complete

Server unaware

Server unaware

No network packets

No network packets

FIGURE 12-9 Lease with multiple handles from the same client

File System Operation
Applications and the system access files in two ways: directly, via file I/O functions (such as ReadFile
and WriteFile), and indirectly, by reading or writing a portion of their address space that represents a
mapped file section. (See Chapter 10 for more information on mapped files.) Figure 12-10 is a simpli-
fied diagram that shows the components involved in these file system operations and the ways in
which they interact. As you can see, an FSD can be invoked through several paths:

 ■ From a user or system thread performing explicit file I/O

 ■ From the memory manager’s modified and mapped page writers

408 Windows Internals, Sixth Edition, Part 2

 ■ Indirectly from the cache manager’s lazy writer

 ■ Indirectly from the cache manager’s read-ahead thread

 ■ From the memory manager’s page fault handler

Process

Handle
table

File object

File object

Data
attribute

File
control
block

Named
stream

NTFS data
structures

Stream
control
blocks

...

Object
manager

data
structures

Master file
table

...

NTFS
database
(on disk)

FIGURE 12-10 Components involved in file system I/O

The following sections describe the circumstances surrounding each of these scenarios and the
steps FSDs typically take in response to each one. You’ll see how much FSDs rely on the memory man-
ager and the cache manager.

Explicit File I/O
The most obvious way an application accesses files is by calling Windows I/O functions such as
 CreateFile, ReadFile, and WriteFile. An application opens a file with CreateFile and then reads, writes,
or deletes the file by passing the handle returned from CreateFile to other Windows functions. The
CreateFile function, which is implemented in the Kernel32.dll Windows client-side DLL, invokes the
 native function NtCreateFile, forming a complete root-relative path name for the path that the appli-
cation passed to it (processing “.” and “..” symbols in the path name) and prefixing the path with “\??”
(for example, \??\C:\Daryl\Todo.txt).

 CHAPTER 12 File Systems 409

The NtCreateFile system service uses ObOpenObjectByName to open the file, which parses the
name starting with the object manager root directory and the first component of the path name
(“??”). Chapter 3, “System Mechanisms,” in Part 1 includes a thorough description of object manager
name resolution and its use of process device maps, but we’ll review the steps it follows here with a
focus on volume drive letter lookup.

The first step the object manager takes is to translate \?? to the process’s per-session namespace
directory that the DosDevicesDirectory field of the device map structure in the process object refer-
ences (which was propagated from the first process in the logon session by using the logon session
references field in the logon session’s token). Only volume names for network shares and drive letters
mapped by the Subst.exe utility are typically stored in the per-session directory, so on those systems
when a name (C: in this example) is not present in the per-session directory, the object manager
restarts its search in the directory referenced by the GlobalDosDevicesDirectory field of the device
map associated with the per-session directory. The GlobalDosDevicesDirectory always points at the
\Global?? directory, which is where Windows stores volume drive letters for local volumes. (See the
section “Session Namespace” in Chapter 3 in Part 1 for more information.)

The symbolic link for a volume drive letter points to a volume device object under \Device,
so when the object manager encounters the volume object, the object manager hands the rest
of the path name to the parse function that the I/O manager has registered for device objects,
 IopParse Device. (In volumes on dynamic disks, a symbolic link points to an intermediary symbolic
link, which points to a volume device object.) Figure 12-11 shows how volume objects are accessed
through the object manager namespace. The figure shows how the \GLOBAL??\C: symbolic link points
to the \Device\HarddiskVolume1 volume device object.

After locking the caller’s security context and obtaining security information from the caller’s
token, IopParseDevice creates an I/O request packet (IRP) of type IRP_MJ_CREATE, creates a file object
that stores the name of the file being opened, follows the VPB of the volume device object to find the
volume’s mounted file system device object, and uses IoCallDriver to pass the IRP to the file system
driver that owns the file system device object.

When an FSD receives an IRP_MJ_CREATE IRP, it looks up the specified file, performs security vali-
dation, and if the file exists and the user has permission to access the file in the way requested, returns
a success status code. The object manager creates a handle for the file object in the process’s handle
table, and the handle propagates back through the calling chain, finally reaching the application as a
return parameter from CreateFile. If the file system fails the create operation, the I/O manager deletes
the file object it created for the file.

We’ve skipped over the details of how the FSD locates the file being opened on the volume, but
a ReadFile function call operation shares many of the FSD’s interactions with the cache manager
and storage driver. Both ReadFile and CreateFile are system calls that map to I/O manager functions,
but the NtReadFile system service doesn’t need to perform a name lookup—it calls on the object
manager to translate the handle passed from ReadFile into a file object pointer. If the handle indicates
that the caller obtained permission to read the file when the file was opened, NtReadFile proceeds to
create an IRP of type IRP_MJ_READ and sends it to the FSD for the volume on which the file resides.

410 Windows Internals, Sixth Edition, Part 2

NtReadFile obtains the FSD’s device object, which is stored in the file object, and calls IoCallDriver, and
the I/O manager locates the FSD from the device object and gives the IRP to the FSD.

FIGURE 12-11 Drive-letter name resolution

If the file being read can be cached (that is, the FILE_FLAG_NO_BUFFERING flag wasn’t passed to
CreateFile when the file was opened), the FSD checks to see whether caching has already been initi-
ated for the file object. The PrivateCacheMap field in a file object points to a private cache map data
structure (which we described in Chapter 11) if caching is initiated for a file object. If the FSD hasn’t
initialized caching for the file object (which it does the first time a file object is read from or written
to), the PrivateCacheMap field will be null. The FSD calls the cache manager’s CcInitializeCacheMap
function to initialize caching, which involves the cache manager creating a private cache map and, if
another file object referring to the same file hasn’t initiated caching, a shared cache map and a sec-
tion object.

After it has verified that caching is enabled for the file, the FSD copies the requested file data from
the cache manager’s virtual memory to the buffer that the thread passed to the ReadFile function.
The file system performs the copy within a try/except block so that it catches any faults that are the
result of an invalid application buffer. The function the file system uses to perform the copy is the
cache manager’s CcCopyRead function. CcCopyRead takes as parameters a file object, file offset, and
length.

 CHAPTER 12 File Systems 411

When the cache manager executes CcCopyRead, it retrieves a pointer to a shared cache map,
which is stored in the file object. Recall from Chapter 11 that a shared cache map stores pointers to
virtual address control blocks (VACBs), with one VACB entry for each 256-KB block of the file. If the
VACB pointer for a portion of a file being read is null, CcCopyRead allocates a VACB, reserving a 256-
KB view in the cache manager’s virtual address space, and maps (using MmMapViewInSystemCache)
the specified portion of the file into the view. Then CcCopyRead simply copies the file data from the
mapped view to the buffer it was passed (the buffer originally passed to ReadFile). If the file data isn’t
in physical memory, the copy operation generates page faults, which are serviced by MmAccessFault.

When a page fault occurs, MmAccessFault examines the virtual address that caused the fault and
locates the virtual address descriptor (VAD) in the VAD tree of the process that caused the fault. (See
Chapter 10 for more information on VAD trees.) In this scenario, the VAD describes the cache man-
ager’s mapped view of the file being read, so MmAccessFault calls MiDispatchFault to handle a page
fault on a valid virtual memory address. MiDispatchFault locates the control area (which the VAD
points to) and through the control area finds a file object representing the open file. (If the file has
been opened more than once, there might be a list of file objects linked through pointers in their
private cache maps.)

With the file object in hand, MiDispatchFault calls the I/O manager function IoPageRead to build
an IRP (of type IRP_MJ_READ) and sends the IRP to the FSD that owns the device object the file object
points to. Thus, the file system is reentered to read the data that it requested via CcCopyRead, but
this time the IRP is marked as noncached and paging I/O. These flags signal the FSD that it should
retrieve file data directly from disk, and it does so by determining which clusters on disk contain the
requested data (the exact mechanism is file-system dependent) and sending IRPs to the volume man-
ager that owns the volume device object on which the file resides. The volume parameter block (VPB)
field in the FSD’s device object points to the volume device object.

The memory manager waits for the FSD to complete the IRP read and then returns control to
the cache manager, which continues the copy operation that was interrupted by a page fault. When
CcCopyRead completes, the FSD returns control to the thread that called NtReadFile, having cop-
ied the requested file data—with the aid of the cache manager and the memory manager—to the
thread’s buffer.

The path for WriteFile is similar except that the NtWriteFile system service generates an IRP of type
IRP_MJ_WRITE and the FSD calls CcCopyWrite instead of CcCopyRead. CcCopyWrite, like CcCopyRead,
ensures that the portions of the file being written are mapped into the cache and then copies to the
cache the buffer passed to WriteFile.

If a file’s data is already cached (in the system’s working set), there are several variants on the
scenario we’ve just described. If a file’s data is already stored in the cache, CcCopyRead doesn’t incur
page faults. Also, under certain conditions, NtReadFile and NtWriteFile call an FSD’s fast I/O entry
point instead of immediately building and sending an IRP to the FSD. Some of these conditions follow:
the portion of the file being read must reside in the first 4 GB of the file, the file can have no locks,
and the portion of the file being read or written must fall within the file’s currently allocated size.

The fast I/O read and write entry points for most FSDs call the cache manager’s CcFastCopyRead
and CcFastCopyWrite functions. These variants on the standard copy routines ensure that the file’s

412 Windows Internals, Sixth Edition, Part 2

data is mapped in the file system cache before performing a copy operation. If this condition isn’t
met, CcFastCopyRead and CcFastCopyWrite indicate that fast I/O isn’t possible. When fast I/O isn’t
possible, NtReadFile and NtWriteFile fall back on creating an IRP. (See the section “Fast I/O” in Chapter
11 for a more complete description of fast I/O.)

Memory Manager’s Modified and Mapped Page Writer
The memory manager’s modified and mapped page writer threads wake up periodically (and when
available memory runs low) to flush modified pages to their backing store on disk. The threads call
IoAsynchronousPageWrite to create IRPs of type IRP_MJ_WRITE and write pages to either a paging file
or a file that was modified after being mapped. Like the IRPs that MiDispatchFault creates, these IRPs
are flagged as noncached and paging I/O. Thus, an FSD bypasses the file system cache and issues IRPs
directly to a storage driver to write the memory to disk.

Cache Manager’s Lazy Writer
The cache manager’s lazy writer thread also plays a role in writing modified pages because it periodi-
cally flushes views of file sections mapped in the cache that it knows are dirty. The flush operation,
which the cache manager performs by calling MmFlushSection, triggers the memory manager to write
any modified pages in the portion of the section being flushed to disk. Like the modified and mapped
page writers, MmFlushSection uses IoSynchronousPageWrite to send the data to the FSD.

Cache Manager’s Read-Ahead Thread
A cache utilizes two artifacts of how programs reference code and data: temporal locality and spatial
locality. The underlying concept behind temporal locality is that if a memory location is referenced,
it is likely to be referenced again soon. The idea behind spatial locality is that if a memory location
is referenced, other nearby locations are also likely to be referenced soon. Thus a cache typically is
very good at speeding up access to memory locations that have been accessed in the near past, but
it is terrible at speeding up access to areas of memory that have not yet been accessed (it has zero
lookahead capability). In an attempt to populate the cache with data that will likely be used soon, the
cache manager implements two mechanisms: a read-ahead thread, and Superfetch.

The cache manager includes a thread that is responsible for attempting to read data from files
before an application, a driver, or a system thread explicitly requests it. The read-ahead thread
uses the history of read operations that were performed on a file, which are stored in a file object’s
private cache map, to determine how much data to read. When the thread performs a read-ahead,
it simply maps the portion of the file it wants to read into the cache (allocating VACBs as necessary)
and touches the mapped data. The page faults caused by the memory accesses invoke the page fault
handler, which reads the pages into the system’s working set.

A limitation of the read-ahead thread is that it works only on open files. Superfetch was added to
Windows to proactively add files to the cache before they are even opened. Specifically, the memory
manager sends page-usage information to the Superfetch service (%SystemRoot%\System32\
Sysmain.dll), and a file system minifilter provides file name resolution data. The Superfetch service
 attempts to find file-usage patterns—for example, payroll is run every Friday at 12:00, or Outlook is

 CHAPTER 12 File Systems 413

run every morning at 8:00. When these patterns are derived, the information is stored in a database
and timers are requested. Just prior to the time the file would most likely be used, a timer fires and
wakes up the Superfetch service, which then tells the memory manager to read the file into low-
priority memory (using low-priority disk I/O). If the file is then opened, the data is already in memory
and there is no need to wait for the data to be read from disk. If the file is not opened, the low-
priority memory will be reclaimed by the system.

Memory Manager’s Page Fault Handler
We described how the page fault handler is used in the context of explicit file I/O and cache manager
read-ahead, but it is also invoked whenever any application accesses virtual memory that is a view of
a mapped file and encounters pages that represent portions of a file that are not yet in memory. The
memory manager’s MmAccessFault handler follows the same steps it does when the cache manager
generates a page fault from CcCopyRead or CcCopyWrite, sending IRPs via IoPageRead to the file
system on which the file is stored.

File System Filter Drivers
A filter driver that layers over a file system driver is called a file system filter driver. (See Chapter 8,
“I/O System,” for more information on filter drivers.) The ability to see all file system requests and
optionally modify or complete them enables a range of applications, including remote file replication
services, file encryption, efficient backup, and licensing. Every commercial on-access virus scanner in-
cludes a file system filter driver that intercepts IRPs that deliver IRP_MJ_CREATE commands that issue
whenever an application opens a file. Before propagating the IRP to the file system driver to which
the command is directed, the virus scanner examines the file being opened to ensure that it’s clean
of a virus. If the file is clean, the virus scanner passes the IRP on, but if the file is infected the virus
scanner communicates with its associated Windows service process to quarantine or clean the file. If
the file can’t be cleaned, the driver fails the IRP (typically with an access-denied error) so that the virus
cannot become active.

Process Monitor
Process Monitor (Procmon), a system activity monitoring utility from Sysinternals that has been used
throughout this book, is an example of a passive filter driver, which is one that does not modify the
flow of IRPs between applications and file system drivers. Windows includes the file system Filter
Manager (%SystemRoot%\System32\Drivers\Fltmgr.sys) as part of a port/miniport model for file sys-
tem filter drivers. The file system Filter Manager greatly simplifies the development of filter drivers by
interfacing a filter miniport driver to the Windows I/O system and providing services for querying file
names, attaching to volumes, and interacting with other filters. Process Monitor’s file system monitor-
ing is implemented as a minifilter driver.

Process Monitor works by extracting a file system filter device driver from its executable image
(stored as a resource inside Procmon.exe) the first time you run it after a boot, installing the driver
in memory, and then deleting the driver image from disk. Through the Process Monitor GUI, you
can direct the driver to monitor file system activity on local volumes that have assigned drive letters,

414 Windows Internals, Sixth Edition, Part 2

network shares, named pipes, and mail slots. When the driver receives a command to start monitor-
ing a volume, it registers filtering callbacks with the Filter Manager, which is attached to the device
object that represents a mounted file system on the volume. After an attach operation, the I/O
manager redirects an IRP targeted at the underlying device object to the driver owning the attached
device, in this case the Filter Manager, which sends the event to registered minifilter drivers, in this
case Process Monitor.

When the Process Monitor driver intercepts an IRP, it records information about the IRP’s com-
mand, including target file name and other parameters specific to the command (such as read and
write lengths and offsets) to a nonpaged kernel buffer. Every 500 milliseconds, the Process Monitor
GUI program sends an IRP to Process Monitor’s interface device object, which requests a copy of the
buffer containing the latest activity, and then displays the activity in its output window. Process Moni-
tor’s use is described further in the next section, “Troubleshooting File System Problems.”

EXPERIMENT: Viewing Process Monitor’s Filter Driver
To see which file system filter drivers are loaded, start an Administrative command prompt, and
run the Filter Manager control program (%SystemRoot%\System32\Fltmc.exe). Start Process
Monitor (ProcMon.exe) and run Fltmc again. You’ll see that the Process Monitor’s filter driver
(PROCMON20) is loaded and has a nonzero value in the Instances column. Now, exit Process
Monitor and run Fltmc again. This time, you’ll see that the Process Monitor’s filter driver is still
loaded, but now its instance count is zero.

 CHAPTER 12 File Systems 415

Troubleshooting File System Problems

Chapter 4, “Management Mechanisms,” in Part 1 describes the way that the system and applications
store data in the registry. Registry-related problems such as misconfigured security and missing reg-
istry values and keys are the source of many system and application failures. The system and applica-
tions also use files to store data, and they access executable and DLL image files. Misconfigured NTFS
security and missing files or directories are therefore also a common source of system and application
failures because the system and applications often make assumptions about what they should be able
to access and then misbehave in unexpected ways when the assumptions are violated.

Process Monitor shows all file activity as it occurs, which makes it an ideal tool for troubleshooting
file system–related system and application failures. To run Process Monitor the first time on a system,
an account must have the Load Driver and Debug privileges. After loading, the driver remains resi-
dent, so subsequent executions require only the Debug privilege.

Process Monitor Basic vs. Advanced Modes
When you run Process Monitor, it starts in basic mode, which shows the file system activity most
often useful for troubleshooting. When in basic mode, Process Monitor omits certain file system op-
erations from being displayed, including:

 ■ I/O to NTFS metadata files

 ■ I/O to the paging file

 ■ I/O generated by the System process

 ■ I/O generated by the Process Monitor process

While in basic mode, Process Monitor also reports file I/O operations with friendly names rather
than with the IRP types used to represent them. For example, both IRP_MJ_WRITE and FASTIO_WRITE
operations display as WriteFile, and IRP_MJ_CREATE operations show as Open if they represent an
open operation and as Create for the creation of new files.

EXPERIMENT: Viewing File System Activity on an Idle System
Windows file system drivers implement support for file change notification, which enables ap-
plications to request notifications of file system changes without polling for them. The Windows
functions for doing so include ReadDirectoryChangesW and the FindFirstChangeNotification,
FindNextChangeNotification pair. When you run Process Monitor on a system that’s idle, you
should therefore not see the repeated accesses to files or directories because that activity un-
necessarily negatively affects a system’s overall performance.

Run Process Monitor, and after several seconds examine the output log to see whether you
can spot polling behavior. Right-click on an output line associated with polling, click Properties
on the context menu, and then click the Process tab in the Properties dialog box to view details
of the process performing the activity.

416 Windows Internals, Sixth Edition, Part 2

Process Monitor Troubleshooting Techniques
The two basic Process Monitor troubleshooting techniques for file system problems are identical to
those for registry-related problems: look in a Process Monitor trace at the last thing an application
did before it failed, or compare a Process Monitor trace of a failing application with a trace from a
working system. See the section “Process Monitor Troubleshooting Techniques” in Chapter 4 in Part 1
for more information on these techniques.

Entries in a Process Monitor trace that have values of NAME NOT FOUND, NO SUCH FILE, PATH
NOT FOUND, SHARING VIOLATION, and ACCESS DENIED in the Result column are ones that you
should investigate. The first three are reported when an application or the system attempts to open a
nonexistent file or directory. In many cases, these errors do not indicate a serious problem. When you
execute a program from the Start menu’s Run dialog box without specifying its full path, for instance,
Windows Explorer will search the directories listed in the system PATH environment variable for the
image file until it locates the file or has searched all the listed directories. Each attempt to find the im-
age in a directory that does not contain it results in a Process Monitor output line similar to this:

25314 7:44:27.4180943 PM Explorer.EXE 1640 CreateFile
C:\Program Files\Microsoft Windows Performance Toolkit\test.exe NAME NOT FOUND
Desired Access: Read Attributes, Disposition: Open, Options: Open Reparse Point,
Attributes: n/a, ShareMode: Read, Write, Delete, AllocationSize: n/a

Access-denied errors are a common source of file system–related application failures, and they
occur when an application does not have permission to open the file or directory for the access types
it desires. Some applications do not check error codes or perform error recovery, and they fail by
crashing or terminating; others often display misleading error messages that mask the root cause of
the error.

Buffer-overflow exploits are a serious security concern, but a code result of BUFFER OVERFLOW
is simply a file system driver’s way to indicate to an application that the buffer it specified to store
requested result data was too small to hold the data. Application developers use this behavior to de-
termine how large a buffer should be because the file system driver also returns the size of the buffer
required to store the data. Operations with a buffer overflow result are usually followed by the same
operation with a successful result.

Process Monitor has been used extensively within Microsoft and other organizations to solve dif-
ficult or nearly impossible-to-diagnose problems.

Common Log File System

Transactional semantics for a database or a journaled file system often require keeping track of
changes made to the data and metadata contained in the files or entries. Typically, these changes are
stored in data structures called log records through an operation called logging. These log records
can then be used to undo (roll back), redo, or validate the changes at a later time, even across system
reboots.

 CHAPTER 12 File Systems 417

Windows provides this kind of logging service through the Common Log File System (CLFS) to
support the transactional features built into Windows, including transactional NTFS (TxF) and trans-
actional registry (TxR), and to enable third-party developers to take advantage of similar technology.
CLFS provides user-mode and kernel-mode APIs for creating, reading, and writing CLFS log files. The
APIs are flexible and extensible, which allows the implementation details and structure of the log
records stored in a log file to be defined by a caller. CLFS can be used by a variety of applications,
such as databases; for store and forward message queues and replication agents; and for operations
such as event logging, compliance logging, or even maintaining undo/redo history in an editor. The
CLFS APIs provide a consistent view of a log and allow the sharing of a log between user-mode and
kernel-mode components.

Although CLFS calls itself a file system, it actually provides a virtual abstraction layer on top of
NTFS by using streams and containers, described later. What CLFS exposes as a single virtual log file
could actually be a single physical log file, a single log file divided into multiple physical files, or even
different log files each divided into multiple physical files. Later, we’ll describe how NTFS interacts
with CLFS to provide transactional support.

Marshalling
Internally, CLFS encapsulates the functionality of the Algorithm for Recovery and Isolation Exploiting
Semantics (ARIES), which allows it to provide reliable recovery and replication of operations by using
an industry-approved standard. However, CLFS is not limited to supporting ARIES; it is well suited to
a variety of logging scenarios. You can find the full ARIES specification at www.sai.msu.su/~megera/
postgres/gist/papers/concurrency/p94-mohan.pdf.

The primary job of any high-performance transactional log is to allow log clients to accurately
repeat history. CLFS does this by marshalling client log records into memory buffers, forcing them to
stable storage (a disk volume), and reading records back on request. After a record makes it to stable
storage and the storage media is intact, CLFS is able to read the record across system failures.

Both user-mode and kernel-mode clients marshal data buffers into log records that are part of a
marshalling area maintained in the client’s address space. When creating a marshalling area, a client
must specify the number and size of the log I/O buffers it wants to maintain in its marshaling area.
The marshalling runtime implements policy on allocating log I/O buffers, appending them to the log
internal queue and flushing them to disk. Clients can override the default marshalling code policy by
forcing queue appends and flushes to disk via API calls.

One of the design goals of the CLFS marshalling runtime is to minimize kernel transitions, which it
achieves, among other things, through log-space reservation, a requirement for supporting scenarios
such as transaction rollbacks. Every time the log marshalling area talks to the CLFS driver (which
implies a kernel transition for user-mode clients), the marshalling area tries to negotiate a desired
amount of reserved space, usually larger than what is currently required. This means that if the cli-
ent requires more space in the future, the marshalling area can immediately satisfy the new request
without issuing a new kernel transition. Note, however, that if the amount of the reservation cannot
be satisfied, the marshalling area will try to get just enough of the reservation to satisfy the user’s
request (without extra reserved space), which could potentially lead to additional kernel transitions.

418 Windows Internals, Sixth Edition, Part 2

Log Types
CLFS supports two types of logs: dedicated logs and multiplexed logs (also called common logs). A
dedicated log has a single stream of log records that is used by all the log’s clients. A multiplexed log
has several streams: each stream has its own clients and its own memory buffers for marshalling log
records, but the records from all those buffers are multiplexed into a single queue and written to a
single log on stable storage. Multiplexing allows the I/O operations of several streams to be consoli-
dated. When a log is created or opened, CLFS determines whether the log is dedicated or multiplexed
depending on whether a dedicated log path or a multiplexed log path is specified.

If the request is for a client on a dedicated log (called a physical client), CLFS locates the physical
file control block (FCB) object for the file proper and handles the request.

If the request is for a client on a multiplexed log (called a virtual client), CLFS locates the corre-
sponding virtual FCB and context control block (CCB) objects to translate the request into an opera-
tion on the physical FCB object. CLFS then handles the operation on the CLFS physical FCB object as
just described.

In either case, if the request is a cached read, CLFS uses the cache manager’s services for access-
ing cached data. (For more information on the cache manager, see Chapter 11.) Just as it does for
requests from other file system drivers, the cache manager maps a view of the file and references the
view, which might cause the memory manager to issue noncached reads to CLFS against the physical
log. For flushes and noncached reads, CLFS finds the target container object through the log meta-
data and issues IRPs to NTFS directly. Figure 12-12 shows the possible CLFS paths for a request com-
ing from user mode or kernel mode.

Because each stream of a multiplexed log provides its clients with the illusion that their stream is
the entire log, CLFS must include metadata in the physical log that identifies which client each data
block belongs to. This data is called the owner page and is always exactly one page (4 KB) in size. Each
512 KB of client data results in an owner page to describe it. Since dedicated logs require no tracking
of client and data mapping, they don’t include owner pages. Figure 12-13 shows two clients writing
log records to a multiplexed log and how the writes are kept together in a unified flush queue that
can then be uniformly flushed to physical storage through a single I/O operation.

The flush queue will be emptied in the following conditions:

 ■ The amount of data in the flush queue exceeds a certain threshold. (The default is 40,000
bytes.)

 ■ The CLFS flush API is called.

 ■ A restart area is being written, and the log needs to be flushed beyond the restart area. (For
more information on the restart area, see the section “Log File Service” later in this chapter.)

When flushing, CLFS scans the flush queue and determines how many entries need to be flushed. It
then issues IRPs to NTFS for the corresponding log files of each of the entries and waits for all the IRPs
to complete. If some IRPs fail, CLFS may re-issue IRPs (failures such as low memory condition, lack of
quota, and so on are subject to retry) to redo the work and wait again.

 CHAPTER 12 File Systems 419

CLFS user-mode APIs

I/O managerCLFS kernel-mode APIs

CLFS requests

CLFS virtual FCBs

CLFS physical FCBs

CLFS CCBs

Cache managerCLFS BLF files

CLFS containers

NTFS

User mode

Kernel mode

Physical log

Flush/noncached read Cached read

Virtual log

Physical log
noncached
read

FIGURE 12-12 CLFS request paths

t4t3t2t1 t5

t4t3t2t1 t5

Exclusive lock on flush queue

t4t3t1 t2 t5

Client A
Write three blocks at time t1, t3, and t4

Client B
Write two blocks at time t2 and t5

Multiplex

Flush

Log flush queue

Log physical storage

Client vs. data mapping
(owner page)

FIGURE 12-13 CLFS multiplexing

420 Windows Internals, Sixth Edition, Part 2

Log Layout
A log file is made up of a base log file (BLF) that contains metadata and up to 1,023 containers that
hold the actual data. The base log file is initially 64 KB in size and grows as needed. The log metadata
stores information about the log, including the beginning of the log, the container size, the container
path, the location from which restart operations should be performed, the log state, the log name,
and the log clients. For consistency in case a system failure occurs during a log update, the base log
file stores two copies of the log metadata, and when it makes updates it overwrites the older copy.
The BLF stores a value, the dump count, that indicates which copy is newer.

A container is the unit of allocation for an active physical log stream. All the containers in a log
have the same size, which is a multiple of 512 KB with a 4-GB maximum size. A CLFS client grows or
shrinks a log stream by adding or deleting containers from the log file. CLFS implements containers as
contiguous files on the volume on which the BLF resides. Figure 12-14 shows the relationship between
a base log file and the associated log data stored in containers.

Log metadata
Container

Container

Data

Data

Data

. . .

. . .

. . .

(1st copy)
Dump count

log containers

(2nd copy)
Dump count

log containers

Log data

Log start LSN

FIGURE 12-14 CLFS base log file and containers

Internally, the CLFS driver places the containers in a container queue to give clients a logical view
of a single contiguous physical log stream; in doing so, the CLFS driver maps the physical container
identifier to a logical container identifier. Containers are recycled when the tail of the active log mi-
grates beyond the last sector of the container. Recycling a container involves moving it from the tail
to the head of the container queue and appropriately updating its logical container identifier.

Log Sequence Numbers
When a client writes a record to a stream, CLFS returns a log sequence number (LSN) that identifies
the log record for future reference. The LSNs assigned to the records that are written to a particular
stream form an increasing sequence. That is, the LSN assigned to a record that is written to a stream is
always greater than the LSN assigned to the previous record written to that same stream. Two critical

 CHAPTER 12 File Systems 421

LSNs that the base log file keeps track of are the log start LSN and the restart LSN, which, as described
earlier, are stored in the BLF metadata.

An LSN is 64 bits wide and consists of three parts, as shown in Figure 12-15:

 ■ A 32-bit container index that identifies the log container where the log record resides

 ■ A 23-bit block offset that identifies an offset within a container

 ■ A 9-bit record offset that identifies a record within a block

Block offsetContainer ID Record offset

32 bits 23 bits 9 bits

FIGURE 12-15 CLFS LSN structure

Log Blocks
Because it is possible that a write to a log might fail, which is called a torn write, CLFS uses log blocks
to track whether log records are fully committed to storage. CLFS stores log records within log blocks,
which correspond to 512-byte sectors, and reads and writes data to a log using log blocks. Each log
block includes a 2-byte sector signature at the end of each sector in the block that stores a sequence
number and flags, as well as a copy of the most recently committed signatures in a signature array at
the end of the block, as shown in Figure 12-16. Only if all the sector signatures in a log block are valid
and match the signatures in the array, does CLFS consider the block valid. If a log block is partially
written and a system failure occurs, for example, the signatures won’t match, and CLFS considers the
log block invalid.

Original content copied to signature
array. Reused as sector signature.

Sector 1 Sector 2 Sector 3

Padding
(0s)

Block
header

Signature
array

. . .Record
data

Record
data

Record
header

Record
header

FIGURE 12-16 CLFS log blocks

Owner Pages
As mentioned previously, each 512-KB block of data in a multiplexed log (called a region) is corre-
lated with its virtual log through an owner page. Each region consists of 4-KB pages, and each page
contains one or more sectors, which contain log blocks. The owner page is the last page of a region,
as shown in Figure 12-17. Because the owner page is itself a log block, CLFS can detect torn writes on
the owner page, just as for a log record, by using the log block signature array.

422 Windows Internals, Sixth Edition, Part 2

Block split by owner page

Owner
page

Owner
pageBlockBlock Block BlockBlockBlock

4 KB 4 KB

512 KB 512 KB

FIGURE 12-17 CLFS regions and owner pages

An owner page contains two kinds of information:

 ■ For each sector in the region, the virtual log to which the sector belongs as well as the sector’s
serial number (starting from 0). There can be at most 1,024 sectors in a region.

 ■ For each virtual log, the minimum and maximum virtual log LSN for the region. These values
give the range of valid virtual LSNs for the region.

CLFS can tell by looking at the owner page of a virtual log LSN whether the record specified by the
LSN resides in the current region or not. If the record does not reside in the current region, CLFS can
decide whether it should search the previous region or the next region by comparing the virtual log
LSN with the virtual log LSN range for the region.

When CLFS inserts log blocks into a multiplexed log’s physical FCB flush queue, if it finds that the
current log block will overlap the owner page of the current region, it splits the current log block and
inserts an owner page log block after the first half of the split log block (as shown in Figure 12-17).
In other words, the owner page is written to disk only after the region that it describes becomes
full. When a client reopens a multiplexed log file, CLFS scans the regions and rebuilds an in-memory
owner page describing the latest region for which it hasn’t written an owner page log block.

Note that when reopening the log file, CLFS doesn’t know exactly where the log end LSN is, so it
must find the LSN to avoid losing data or using corrupted data. For a dedicated log, CLFS reads the
log blocks sequentially until an invalid log block is found and then sets the end of the log there. For
a multiplexed log, CLFS reads the last owner page (the base log file saves a copy of the last flushed
owner page’s LSN when the log metadata is last flushed) and verifies it is indeed valid. CLFS then
reads the next region’s owner page repeatedly until an invalid owner page is found. After that, CLFS
scans backward to find the first region with only valid log data blocks. CLFS then assumes the end of
the log must fall within the next region. It will scan log block by log block until an invalid log block is
found and then set the end of the log there.

Translating Virtual LSNs to Physical LSNs
CLFS relies on physical LSNs to identify log blocks within a physical log. However, CLFS combines
several virtual logs in a physical log for multiplexed logs and uses virtual LSNs to locate log blocks in a
virtual log. Therefore, for a virtual log client, a log block can be addressed both by a physical LSN and
by a virtual LSN.

 CHAPTER 12 File Systems 423

To translate a virtual log LSN to a physical log LSN, CLFS follows these steps:

1. Reads the owner page for the region indicated by the virtual log LSN.

2. Checks the owner page’s virtual LSN region to see whether the virtual LSN is actually in the
region or not. Most of the time the log block will be in the region.

3. If the virtual LSN is in the region, CLFS refers to the sector to client mapping in the owner
page to find the physical LSN’s block offset. Given a client’s virtual LSN and its size, CLFS can
calculate the virtual LSN of the next log block. Applying this rule, CLFS can deterministically
calculate the physical LSN of every virtual log block in the region, as shown in Figure 12-18.

4. If the virtual LSN is not in the region, CLFS searches either the previous region or the next
region depending on whether the virtual LSN is smaller or larger than the current region’s
virtual LSN range.

Owner page
Sector 0: Client 1 1st sector of block
Sector 1: Client 1 2nd sector of block
Sector 2: Client 2 1st sector of block
Sector 3: Client 2 2nd sector of block
Sector 4: Client 2 3rd sector of block
Sector 5: Client 2 4th sector of block
Sector 6: Client 1 1st sector of block
Sector 7: Client 1 2nd sector of block
Sector 8: Client 1 1st sector of block
Sector 9: Client 1 2nd sector of block
Sector 10: Client 2 1st sector of block
Client 1 virtual LSN range (0.0.0 ~ 0.1400.0)
Client 2 virtual LSN range (0.0.0 ~ 0.1600.0)

To translate client 1 virtual LSN 0.1000.0:
1. Search owner page. The first sector
 that belongs to client 1 is physical LSN
 0.0.0. This block’s size is 2 sectors. So,
 its next virtual LSN must be 0.400.0.
2. Search owner page again. The next
 block that belongs to client 1 is physical
 LSN 0.C00.0. This block’s size is 2 sectors.
 So, its next virtual LSN must be 0.1000.0.
 Find a match.
3. Search the owner page again. The next
 block that belongs to client 1 is physical
 LSN 0.1000.0. Done. Return 0.1000.0.

Virtual LSNs

EA B C D

Client 1
0.0.0

Client 2
0.C00.0

Client 1
0.1000.0

Client 1
0.400.0

Client 2
0.0.0

0.0.0 0.C00.0 0.1000.0 0.1400.00.400.0Physical LSNs

FIGURE 12-18 CLFS virtual to physical LSN translation

Management Policies
Each CLFS log can be defined by a set of management policies that are configurable by the client.
Table 12-5 lists these policies and their usage.

424 Windows Internals, Sixth Edition, Part 2

TABLE 12-5 CLFS Management Policies

Policy Name Description

ClfsMgmtPolicyMaximumSize Specifies the maximum size of a log.

ClfsMgmtPolicyMinimumSize Specifies the minimum size of a log.

ClfsMgmtPolicyNewContainerSize Specifies the size of new containers that are created.

ClfsMgmtPolicyGrowthRate Specifies how many new containers will be added to the log each time
the log grows. Can be specified as either a relative percentage or an
absolute number.

ClfsMgmtPolicyLogTail Specifies how much free space will be requested when a client is
notified to move its log tail. Can be specified as either a minimum
percentage of free space or a minimum number of containers.

ClfsMgmtPolicyAutoShrink Specifies when the log will shrink based on the percentage of the log
that is free.

ClfsMgmtPolicyAutoGrow Specifies whether the log should grow when fewer than two
containers are free.

ClfsMgmtPolicyNewContainerPrefix Specifies a prefix for the file name of each container, as well as the full
path to the directory where the containers are located.

NTFS Design Goals and Features

In the following section, we’ll look at the requirements that drove the design of NTFS. Then, in the
subsequent section, we’ll examine the advanced features of NTFS.

High-End File System Requirements
From the start, NTFS was designed to include features required of an enterprise-class file system. To
minimize data loss in the face of an unexpected system outage or crash, a file system must ensure
that the integrity of its metadata is guaranteed at all times; and to protect sensitive data from unau-
thorized access, a file system must have an integrated security model. Finally, a file system must allow
for software-based data redundancy as a low-cost alternative to hardware-redundant solutions for
protecting user data. In this section, you’ll find out how NTFS implements each of these capabilities.

Recoverability
To address the requirement for reliable data storage and data access, NTFS provides file system
recovery based on the concept of an atomic transaction. Atomic transactions are a technique for
handling modifications to a database so that system failures don’t affect the correctness or integ-
rity of the database. The basic tenet of atomic transactions is that some database operations, called
transactions, are all-or-nothing propositions. (A transaction is defined as an I/O operation that alters
file system data or changes the volume’s directory structure.) The separate disk updates that make up
the transaction must be executed atomically—that is, once the transaction begins to execute, all its
disk updates must be completed. If a system failure interrupts the transaction, the part that has been

 CHAPTER 12 File Systems 425

completed must be undone, or rolled back. The rollback operation returns the database to a previ-
ously known and consistent state, as if the transaction had never occurred.

NTFS uses atomic transactions to implement its file system recovery feature. If a program initiates
an I/O operation that alters the structure of an NTFS volume—that is, changes the directory struc-
ture, extends a file, allocates space for a new file, and so on—NTFS treats that operation as an atomic
transaction. It guarantees that the transaction is either completed or, if the system fails while execut-
ing the transaction, rolled back. The details of how NTFS does this are explained in the section “NTFS
Recovery Support” later in the chapter. In addition, NTFS uses redundant storage for vital file system
information so that if a sector on the disk goes bad, NTFS can still access the volume’s critical file
system data.

Security
Security in NTFS is derived directly from the Windows object model. Files and directories are pro-
tected from being accessed by unauthorized users. (For more information on Windows security, see
Chapter 6, “Security,” in Part 1.) An open file is implemented as a file object with a security descriptor
stored on disk in the hidden $Secure metafile, in a stream named $SDS (Security Descriptor Stream).
Before a process can open a handle to any object, including a file object, the Windows security sys-
tem verifies that the process has appropriate authorization to do so. The security descriptor, com-
bined with the requirement that a user log on to the system and provide an identifying password,
ensures that no process can access a file unless it is given specific permission to do so by a system
administrator or by the file’s owner. (For more information about security descriptors, see the sec-
tion “Security Descriptors and Access Control” in Chapter 6 in Part 1, and for more details about file
objects, see the section “Opening Devices” in Chapter 8.)

Data Redundancy and Fault Tolerance
In addition to recoverability of file system data, some customers require that their own data not be
endangered by a power outage or catastrophic disk failure. The NTFS recovery capabilities do ensure
that the file system on a volume remains accessible, but they make no guarantees for complete re-
covery of user files. Protection for applications that can’t risk losing file data is provided through data
redundancy.

Data redundancy for user files is implemented via the Windows layered driver model (explained in
Chapter 8), which provides fault-tolerant disk support. NTFS communicates with a volume manager,
which in turn communicates with a disk driver to write data to a disk. A volume manager can mirror,
or duplicate, data from one disk onto another disk so that a redundant copy can always be retrieved.
This support is commonly called RAID level 1. Volume managers also allow data to be written in
stripes across three or more disks, using the equivalent of one disk to maintain parity information. If
the data on one disk is lost or becomes inaccessible, the driver can reconstruct the disk’s contents by
means of exclusive-OR operations. This support is called RAID level 5. (See Chapter 9 for more infor-
mation on striped volumes, mirrored volumes, and RAID-5 volumes.)

426 Windows Internals, Sixth Edition, Part 2

Advanced Features of NTFS
In addition to NTFS being recoverable, secure, reliable, and efficient for mission-critical systems, it
includes the following advanced features that allow it to support a broad range of applications. Some
of these features are exposed as APIs for applications to leverage, and others are internal features:

 ■ Multiple data streams

 ■ Unicode-based names

 ■ General indexing facility

 ■ Dynamic bad-cluster remapping

 ■ Hard links

 ■ Symbolic (soft) links and junctions

 ■ Compression and sparse files

 ■ Change logging

 ■ Per-user volume quotas

 ■ Link tracking

 ■ Encryption

 ■ POSIX support

 ■ Defragmentation

 ■ Read-only support and dynamic partitioning

The following sections provide an overview of these features.

Multiple Data Streams
In NTFS, each unit of information associated with a file—including its name, its owner, its time stamps,
its contents, and so on—is implemented as a file attribute (NTFS object attribute). Each attribute
consists of a single stream—that is, a simple sequence of bytes. This generic implementation makes
it easy to add more attributes (and therefore more streams) to a file. Because a file’s data is “just
another attribute” of the file and because new attributes can be added, NTFS files (and file directories)
can contain multiple data streams.

An NTFS file has one default data stream, which has no name. An application can create additional,
named data streams and access them by referring to their names. To avoid altering the Windows
I/O APIs, which take a string as a file name argument, the name of the data stream is specified by
appending a colon (:) to the file name. Because the colon is a reserved character, it can serve as a
separator between the file name and the data stream name, as illustrated in this example:

myfile.dat:stream2

 CHAPTER 12 File Systems 427

Each stream has a separate allocation size (which defines how much disk space has been reserved
for it), actual size (which is how many bytes the caller has used), and valid data length (which is how
much of the stream has been initialized). In addition, each stream is given a separate file lock that is
used to lock byte ranges and to allow concurrent access.

One component in Windows that uses multiple data streams is the Attachment Execution Service,
which is invoked whenever the standard Windows API for saving Internet-based attachments is used
by applications such as Internet Explorer or Outlook. Depending on which zone the file was down-
loaded from (such as the My Computer zone, the Intranet zone, or the Untrusted zone), Windows
Explorer might warn the user that the file came from a possibly untrusted location or even completely
block access to the file. For example, Figure 12-19 shows the dialog box that’s displayed when execut-
ing Process Explorer after it was downloaded from the Sysinternals site.

Note If you clear the check box for Always Ask Before Opening This File, the zone identi-
fier data stream will be removed from the file.

FIGURE 12-19 Security warning for files downloaded from the Internet

Other applications can use the multiple data stream feature as well. A backup utility, for example,
might use an extra data stream to store backup-specific time stamps on files. Or an archival utility
might implement hierarchical storage in which files that are older than a certain date or that haven’t
been accessed for a specified period of time are moved to offline storage. The utility could copy
the file to offline storage, set the file’s default data stream to 0, and add a data stream that specifies
where the file is stored.

428 Windows Internals, Sixth Edition, Part 2

EXPERIMENT: Looking at Streams
Most Windows applications aren’t designed to work with alternate named streams, but both
the echo and more commands are. Thus, a simple way to view streams in action is to create a
named stream using echo and then display it using more. The following command sequence
creates a file named test with a stream named stream:

C:\>echo hello > test:stream
C:\>more < test:stream
hello
C:\>

If you perform a directory listing, Test’s file size doesn’t reflect the data stored in the al-
ternate stream because NTFS returns the size of only the unnamed data stream for file query
operations, including directory listings.

C:\>dir test
 Volume in drive C is WINDOWS
 Volume Serial Number is 3991-3040

 Directory of C:\

08/01/00 02:37p 0 test
 1 File(s) 0 bytes
 112,558,080 bytes free

You can determine what files and directories on your system have alternate data streams
with the Streams utility from Sysinternals (see the following output) or by using the /r switch in
the dir command.

C:\>streams test

Streams v1.56 - Enumerate alternate NTFS data streams
Copyright (C) 1999-2007 Mark Russinovich
Sysinternals - www.sysinternals.com

 C:\test:
 :stream:$DATA 8

Unicode-Based Names
Like Windows as a whole, NTFS supports 16-bit Unicode 1.0/UTF-16 characters to store names of files,
directories, and volumes. (The current version of the Unicode standard, version 6.1, from February
2012, supports up to 4 bytes per character and is not supported in kernel mode.) Unicode allows each
character in each of the world’s major languages to be uniquely represented, which aids in moving
data easily from one country to another. Unicode is an improvement over the traditional representa-
tion of international characters—using a double-byte coding scheme that stores some characters in 8
bits and others in 16 bits, a technique that requires loading various code pages to establish the avail-
able characters. Because Unicode has a unique representation for each character, it doesn’t depend

 CHAPTER 12 File Systems 429

on which code page is loaded. Each directory and file name in a path can be as many as 255 charac-
ters long and can contain Unicode characters, embedded spaces, and multiple periods.

General Indexing Facility
The NTFS architecture is structured to allow indexing of any file attribute on a disk volume using a
B-tree structure. (Creating indexes on arbitrary attributes is not exported to users.) This structure en-
ables the file system to efficiently locate files that match certain criteria—for example, all the files in a
particular directory. In contrast, the FAT file system indexes file names but doesn’t sort them, making
lookups in large directories slow.

Several NTFS features take advantage of general indexing, including consolidated security descrip-
tors, in which the security descriptors of a volume’s files and directories are stored in a single internal
stream, have duplicates removed, and are indexed using an internal security identifier that NTFS
defines. The use of indexing by these features is described in the section “NTFS On-Disk Structure”
later in this chapter.

Dynamic Bad-Cluster Remapping
Ordinarily, if a program tries to read data from a bad disk sector, the read operation fails and the
data in the allocated cluster becomes inaccessible. If the disk is formatted as a fault-tolerant NTFS
volume, however, the Windows volume manager dynamically retrieves a good copy of the data that
was stored on the bad sector and then sends NTFS a warning that the sector is bad. NTFS will then
allocate a new cluster, replacing the cluster in which the bad sector resides, and copies the data to
the new cluster. It adds the bad cluster to the list of bad clusters on that volume (stored in the hidden
metadata file $BadClus) and no longer uses it. This data recovery and dynamic bad-cluster remapping
is an especially useful feature for file servers and fault-tolerant systems or for any application that
can’t afford to lose data. If the volume manager isn’t loaded when a sector goes bad (such as early in
the boot sequence), NTFS still replaces the cluster and doesn’t reuse it, but it can’t recover the data
that was on the bad sector.

Hard Links
A hard link allows multiple paths to refer to the same file. (Hard links are not supported on directo-
ries.) If you create a hard link named C:\Documents\Spec.doc that refers to the existing file C:\Users\
Administrator\Documents\Spec.doc, the two paths link to the same on-disk file, and you can make
changes to the file using either path. Processes can create hard links with the Windows CreateHard-
Link function or the ln POSIX function.

NTFS implements hard links by keeping a reference count on the actual data, where each time
a hard link is created for the file, an additional file name reference is made to the data. This means
that if you have multiple hard links for a file, you can delete the original file name that referenced
the data (C:\Users\Administrator\Documents\Spec.doc in our example), and the other hard links
(C:\ Documents\Spec.doc) will remain and point to the data. However, because hard links are on-disk
local references to data (represented by a file record number), they can exist only within the same
volume and can’t span volumes or computers.

430 Windows Internals, Sixth Edition, Part 2

EXPERIMENT: Creating a Hard Link
There are two ways you can create a hard link: the fsutil hardlink create command or the mklink
utility with the /H option. In this experiment we’ll use mklink because we’ll use this utility later
to create a symbolic link as well. First, create a file called test.txt and add some text to it, as
shown here.

C:\>echo hello > test.txt

Now create a hard link called hard.txt as shown here:

C:\>mklink hard.txt test.txt /H
Hardlink created for hard.txt <<===>> test.txt

If you list the directory’s contents, you’ll notice that the two files will be identical in every
way, with the same creation date, permissions, and file size; only the file names differ.

C:\>dir *.txt
 Volume in drive C is OS
 Volume Serial Number is 38D4-EA71
 Directory of C:\
05/12/2012 11:55 PM 8 hard.txt
05/12/2012 11:55 PM 8 test.txt
 2 File(s) 16 bytes
 0 Dir(s) 10,646,011,904 bytes free

Symbolic (Soft) Links and Junctions
In addition to hard links, NTFS supports another type of file-name aliasing called symbolic links or soft
links. Unlike hard links, symbolic links are strings that are interpreted dynamically and can be relative
or absolute paths that refer to locations on any storage device, including ones on a different local vol-
ume or even a share on a different system. This means that symbolic links don’t actually increase the
reference count of the original file, so deleting the original file will result in the loss of the data, and
a symbolic link that points to a nonexisting file will be left behind. Finally, unlike hard links, symbolic
links can point to directories, not just files, which gives them an added advantage.

For example, if the path C:\Drivers is a directory symbolic link that redirects to %SystemRoot%\
System32\Drivers, an application reading C:\Drivers\Ntfs.sys actually reads %SystemRoot%\System\
Drivers\Ntfs.sys. Directory symbolic links are a useful way to lift directories that are deep in a direc-
tory tree to a more convenient depth without disturbing the original tree’s structure or contents. The
example just cited lifts the Drivers directory to the volume’s root directory, reducing the directory
depth of Ntfs.sys from three levels to one when Ntfs.sys is accessed through the directory symbolic
link. File symbolic links work much the same way—you can think of them as shortcuts, except they
are actually implemented on the file system instead of being .lnk files managed by Windows Explorer.
Just like hard links, symbolic links can be created with the mklink utility (without the /H option) or
through the CreateSymbolicLink API.

 CHAPTER 12 File Systems 431

Because certain legacy applications might not behave securely in the presence of symbolic links,
especially across different machines, the creation of symbolic links requires the SeCreateSymbolicLink
privilege, which is typically granted only to administrators. The file system also has a behavior option
called SymLinkEvaluation that can be configured with the following command:

fsutil behavior set SymLinkEvaluation

By default, the Windows default symbolic link evaluation policy allows only local-to-local and
local-to-remote symbolic links but not the opposite, as shown here:

C:\>fsutil behavior query SymLinkEvaluation
Local to local symbolic links are enabled
Local to remote symbolic links are enabled.
Remote to local symbolic links are disabled.
Remote to Remote symbolic links are disabled.

Symbolic links are implemented using an NTFS mechanism called reparse points. (Reparse points
are discussed further in the section “Reparse Points” later in this chapter.) A reparse point is a file or
directory that has a block of data called reparse data associated with it. Reparse data is user-defined
data about the file or directory, such as its state or location that can be read from the reparse point
by the application that created the data, a file system filter driver, or the I/O manager. When NTFS
encounters a reparse point during a file or directory lookup, it returns the STATUS_REPARSE status
code, which signals file system filter drivers that are attached to the volume and the I/O manager to
examine the reparse data. Each reparse point type has a unique reparse tag. The reparse tag allows
the component responsible for interpreting the reparse point’s reparse data to recognize the reparse
point without having to check the reparse data. A reparse tag owner, either a file system filter driver
or the I/O manager, can choose one of the following options when it recognizes reparse data:

 ■ The reparse tag owner can manipulate the path name specified in the file I/O operation that
crosses the reparse point and let the I/O operation reissue with the altered path name. Junc-
tions (described shortly) take this approach to redirect a directory lookup, for example.

 ■ The reparse tag owner can remove the reparse point from the file, alter the file in some way,
and then reissue the file I/O operation.

There are no Windows functions for creating reparse points. Instead, processes must use the
FSCTL_SET_REPARSE_POINT file system control code with the Windows DeviceIoControl function. A
process can query a reparse point’s contents with the FSCTL_GET_REPARSE_POINT file system control
code. The FILE_ATTRIBUTE_REPARSE_POINT flag is set in a reparse point’s file attributes, so applica-
tions can check for reparse points by using the Windows GetFileAttributes function.

Another type of reparse point that NTFS supports is the junction. Junctions are a legacy NTFS
concept and work almost identically to directory symbolic links, except they can only be local to a
volume. There is no advantage to using a junction instead of a directory symbolic link, except that
junctions are compatible with older versions of Windows, while directory symbolic links are not.

432 Windows Internals, Sixth Edition, Part 2

EXPERIMENT: Creating a Symbolic Link
This experiment shows you the main difference between a symbolic link and a hard link, even
when dealing with files on the same volume. Create a symbolic link called soft.txt as shown
here, pointing to the test.txt file created in the previous experiment:

C:\>mklink soft.txt test.txt
symbolic link created for soft.txt <<===>> test.txt

If you list the directory’s contents, you’ll notice that the symbolic link doesn’t have a file size
and is identified by the <SYMLINK> type. Furthermore, you’ll note that the creation time is that
of the symbolic link, not of the target file. The symbolic link can also have security permissions
that are different from the permissions on the target file.

C:\>dir *.txt
 Volume in drive C is OS
 Volume Serial Number is 38D4-EA71

 Directory of C:\

05/12/2012 11:55 PM 8 hard.txt
05/13/2012 12:28 AM <SYMLINK> soft.txt [test.txt]
05/12/2012 11:55 PM 8 test.txt
 3 File(s) 16 bytes
 0 Dir(s) 10,636,480,512 bytes free

Finally, if you delete the original test.txt file, you can verify that both the hard link and sym-
bolic link still exist but that the symbolic link does not point to a valid file anymore, while the
hard link references the file data.

Compression and Sparse Files
NTFS supports compression of file data. Because NTFS performs compression and decompression
procedures transparently, applications don’t have to be modified to take advantage of this feature.
Directories can also be compressed, which means that any files subsequently created in the directory
are compressed.

Applications compress and decompress files by passing DeviceIoControl the FSCTL_SET_
 COM PRESSION file system control code. They query the compression state of a file or directory with
the FSCTL_GET_COMPRESSION file system control code. A file or directory that is compressed has the
FILE_ATTRIBUTE_COMPRESSED flag set in its attributes, so applications can also determine a file or
directory’s compression state with GetFileAttributes.

A second type of compression is known as sparse files. If a file is marked as sparse, NTFS doesn’t
allocate space on a volume for portions of the file that an application designates as empty. NTFS
returns 0-filled buffers when an application reads from empty areas of a sparse file. This type of com-
pression can be useful for client/server applications that implement circular-buffer logging, in which
the server records information to a file and clients asynchronously read the information. Because the
information that the server writes isn’t needed after a client has read it, there’s no need to store the

 CHAPTER 12 File Systems 433

information in the file. By making such a file sparse, the client can specify the portions of the file it
reads as empty, freeing up space on the volume. The server can continue to append new information
to the file without fear that the file will grow to consume all available space on the volume.

As with compressed files, NTFS manages sparse files transparently. Applications specify a file’s
sparseness state by passing the FSCTL_SET_SPARSE file system control code to DeviceIoControl. To
set a range of a file to empty, applications use the FSCTL_SET_ZERO_DATA code, and they can ask
NTFS for a description of what parts of a file are sparse by using the control code FSCTL_QUERY_
ALLOCATED_RANGES. One application of sparse files is the NTFS change journal, described next.

Change Logging
Many types of applications need to monitor volumes for file and directory changes. For example, an
automatic backup program might perform an initial full backup and then incremental backups based
on file changes. An obvious way for an application to monitor a volume for changes is for it to scan
the volume, recording the state of files and directories, and on a subsequent scan detect differences.
This process can adversely affect system performance, however, especially on computers with thou-
sands or tens of thousands of files.

An alternate approach is for an application to register a directory notification by using the Find-
FirstChangeNotification or ReadDirectoryChangesW Windows function. As an input parameter, the ap-
plication specifies the name of a directory it wants to monitor, and the function returns whenever the
contents of the directory change. Although this approach is more efficient than volume scanning, it
requires the application to be running at all times. Using these functions can also require an applica-
tion to scan directories because FindFirstChangeNotification doesn’t indicate what changed—just that
something in the directory has changed. An application can pass a buffer to ReadDirectoryChangesW
that the FSD fills in with change records. If the buffer overflows, however, the application must be
prepared to fall back on scanning the directory.

NTFS provides a third approach that overcomes the drawbacks of the first two: an application can
configure the NTFS change journal facility by using the DeviceIoControl function’s FSCTL_ CREATE_
USN_JOURNAL file system control code (USN is update sequence number) to have NTFS record infor-
mation about file and directory changes to an internal file called the change journal. A change journal
is usually large enough to virtually guarantee that applications get a chance to process changes with-
out missing any. Applications use the FSCTL_QUERY_USN_JOURNAL file system control code to read
records from a change journal, and they can specify that the DeviceIoControl function not complete
until new records are available.

Per-User Volume Quotas
Systems administrators often need to track or limit user disk space usage on shared storage vol-
umes, so NTFS includes quota-management support. NTFS quota-management support allows for
per-user specification of quota enforcement, which is useful for usage tracking and tracking when
a user reaches warning and limit thresholds. NTFS can be configured to log an event indicating the
occurrence to the System event log if a user surpasses his warning limit. Similarly, if a user attempts
to use more volume storage then her quota limit permits, NTFS can log an event to the System event

434 Windows Internals, Sixth Edition, Part 2

log and fail the application file I/O that would have caused the quota violation with a “disk full” error
code.

NTFS tracks a user’s volume usage by relying on the fact that it tags files and directories with the
security ID (SID) of the user who created them. (See Chapter 6 in Part 1 for a definition of SIDs.) The
logical sizes of files and directories a user owns count against the user’s administrator-defined quota
limit. Thus, a user can’t circumvent his or her quota limit by creating an empty sparse file that is larger
than the quota would allow and then fill the file with nonzero data. Similarly, whereas a 50-KB file
might compress to 10 KB, the full 50 KB is used for quota accounting.

By default, volumes don’t have quota tracking enabled. You need to use the Quota tab of a vol-
ume’s Properties dialog box, shown in Figure 12-20, to enable quotas, to specify default warning and
limit thresholds, and to configure the NTFS behavior that occurs when a user hits the warning or limit
threshold. The Quota Entries tool, which you can launch from this dialog box, enables an administra-
tor to specify different limits and behavior for each user. Applications that want to interact with NTFS
quota management use COM quota interfaces, including IDiskQuotaControl, IDiskQuotaUser, and
IDiskQuotaEvents.

FIGURE 12-20 Volume Properties dialog box

Link Tracking
Shell shortcuts allow users to place files in their shell namespace (on their desktop, for example)
that link to files located in the file system namespace. The Windows Start menu uses shell shortcuts
extensively. Similarly, object linking and embedding (OLE) links allow documents from one application
to be transparently embedded in the documents of other applications. The products of the Microsoft
Office suite, including PowerPoint, Excel, and Word, use OLE linking.

 CHAPTER 12 File Systems 435

Although shell and OLE links provide an easy way to connect files with one another and with the
shell namespace, they can be difficult to manage if a user moves the source of a shell or OLE link
(a link source is the file or directory to which a link points). NTFS in Windows includes support for a
service application called distributed link-tracking, which maintains the integrity of shell and OLE links
when link targets move. Using the NTFS link-tracking support, if a link target located on an NTFS
volume moves to any other NTFS volume within the originating volume’s domain, the link-tracking
service can transparently follow the movement and update the link to reflect the change.

NTFS link-tracking support is based on an optional file attribute known as an object ID. An applica-
tion can assign an object ID to a file by using the FSCTL_CREATE_OR_GET_OBJECT_ID (which assigns
an ID if one isn’t already assigned) and FSCTL_SET_OBJECT_ID file system control codes. Object IDs
are queried with the FSCTL_CREATE_OR_GET_OBJECT_ID and FSCTL_GET_OBJECT_ID file system con-
trol codes. The FSCTL_DELETE_OBJECT_ID file system control code lets applications delete object IDs
from files.

Encryption
Corporate users often store sensitive information on their computers. Although data stored on
company servers is usually safely protected with proper network security settings and physical access
control, data stored on laptops can be exposed when a laptop is lost or stolen. NTFS file permissions
don’t offer protection because NTFS volumes can be fully accessed without regard to security by
using NTFS file-reading software that doesn’t require Windows to be running. Furthermore, NTFS file
permissions are rendered useless when an alternate Windows installation is used to access files from
an administrator account. Recall from Chapter 6 in Part 1 that the administrator account has the take-
ownership and backup privileges, both of which allow it to access any secured object by overriding
the object’s security settings.

NTFS includes a facility called Encrypting File System (EFS), which users can use to encrypt sensi-
tive data. The operation of EFS, as that of file compression, is completely transparent to applications,
which means that file data is automatically decrypted when an application running in the account of a
user authorized to view the data reads it and is automatically encrypted when an authorized applica-
tion changes the data.

Note NTFS doesn’t permit the encryption of files located in the system volume’s root di-
rectory or in the \Windows directory because many files in these locations are required
during the boot process and EFS isn’t active during the boot process. BitLocker, described
in Chapter 9, is a technology much better suited for environments in which this is a re-
quirement because it supports full-volume encryption.

EFS relies on cryptographic services supplied by Windows in user mode, so it consists of both a
kernel-mode component that tightly integrates with NTFS as well as user-mode DLLs that communi-
cate with the Local Security Authority Subsystem (LSASS) and cryptographic DLLs.

436 Windows Internals, Sixth Edition, Part 2

Files that are encrypted can be accessed only by using the private key of an account’s EFS private/
public key pair, and private keys are locked using an account’s password. Thus, EFS-encrypted files
on lost or stolen laptops can’t be accessed using any means (other than a brute-force cryptographic
attack) without the password of an account that is authorized to view the data.

Applications can use the EncryptFile and DecryptFile Windows API functions to encrypt and
decrypt files, and FileEncryptionStatus to retrieve a file or directory’s EFS-related attributes, such
as whether the file or directory is encrypted. A file or directory that is encrypted has the FILE_
ATTRIBUTE_ENCRYPTED flag set in its attributes, so applications can also determine a file or direc-
tory’s encryption state with GetFileAttributes.

POSIX Support
As explained in Chapter 2, “System Architecture,” in Part 1, one of the mandates for Windows was to
fully support the POSIX 1003.1 standard. In the file system area, the POSIX standard requires support
for case-sensitive file and directory names, traversal permissions (where security for each directory of
a path is used when determining whether a user has access to a file or directory), a “file-change-time”
time stamp (which is different from the MS-DOS “time-last-modified” stamp), and hard links. NTFS
implements each of these features.

Defragmentation
Even though NTFS makes efforts to keep files contiguous when allocating blocks to extend a file, a
volume’s files can still become fragmented over time, especially if the file is extended multiple times
or when there is limited free space. A file is fragmented if its data occupies discontiguous clusters. For
example, Figure 12-21 shows a fragmented file consisting of five fragments. However, like most file
systems (including versions of FAT on Windows), NTFS makes no special efforts to keep files contigu-
ous (this is handled by the built-in defragmenter), other than to reserve a region of disk space known
as the master file table (MFT) zone for the MFT. (NTFS lets other files allocate from the MFT zone
when volume free space runs low.) Keeping an area free for the MFT can help it stay contiguous, but
it, too, can become fragmented. (See the section “Master File Table” later in this chapter for more
information on MFTs.)

Fragmented file Contiguous file

FIGURE 12-21 Fragmented and contiguous files

 CHAPTER 12 File Systems 437

To facilitate the development of third-party disk defragmentation tools, Windows includes a de-
fragmentation API that such tools can use to move file data so that files occupy contiguous clusters.
The API consists of file system controls that let applications obtain a map of a volume’s free and
in-use clusters (FSCTL_GET_VOLUME_BITMAP), obtain a map of a file’s cluster usage (FSCTL_GET_
RETRIEVAL_POINTERS), and move a file (FSCTL_MOVE_FILE).

Windows includes a built-in defragmentation tool that is accessible by using the Disk Defrag-
menter utility (%SystemRoot%\System32\Dfrgui.exe), shown in Figure 12-22, as well as a command-
line interface, %SystemRoot%\System32\Defrag.exe, that you can run interactively or schedule but
that does not produce detailed reports or offer control—such as excluding files or directories—over
the defragmentation process.

FIGURE 12-22 Disk Defragmenter

The only limitation imposed by the defragmentation implementation in NTFS is that paging files
and NTFS log files cannot be defragmented.

Dynamic Partitioning
The NTFS driver allows users to dynamically resize any partition, including the system partition, either
shrinking or expanding it (if enough space is available). Expanding a partition is easy if enough space
exists on the disk and is performed through the FSCTL_EXPAND_VOLUME file system control code.
Shrinking a partition is a more complicated process, because it requires moving any file system data
that is currently in the area to be thrown away to the region that will still remain after the shrinking

438 Windows Internals, Sixth Edition, Part 2

process (a mechanism similar to defragmentation). Shrinking is implemented by two components: the
shrinking engine and the file system driver.

The shrinking engine is implemented in user mode. It communicates with NTFS to determine the
maximum number of reclaimable bytes—that is, how much data can be moved from the region that
will be resized into the region that will remain. The shrinking engine uses the standard defragmenta-
tion mechanism shown earlier, which doesn’t support relocating page file fragments that are in use
or any other files that have been marked as unmovable with the FSCTL_MARK_HANDLE file system
control code (like the hibernation file). The master file table backup ($MftMirr), the NTFS metadata
transaction log ($LogFile), and the volume label file ($Volume) cannot be moved, which limits the
minimum size of the shrunk volume and causes wasted space.

The file system driver shrinking code is responsible for ensuring that the volume remains in a
consistent state throughout the shrinking process. To do so, it exposes an interface that uses three
requests that describe the current operation, which are sent through the FSCTL_SHRINK_VOLUME
control code:

 ■ The ShrinkPrepare request, which must be issued before any other operation. This request
takes the desired size of the new volume in sectors and is used so that the file system can
block further allocations outside the new volume boundary. The ShrinkPrepare request doesn’t
verify whether the volume can actually be shrunk by the specified amount, but it does ensure
that the amount is numerically valid and that there aren’t any other shrinking operations on-
going. Note that after a prepare operation, the file handle to the volume becomes associated
with the shrink request. If the file handle is closed, the operation is assumed to be aborted.

 ■ The ShrinkCommit request, which the shrinking engine issues after a ShrinkPrepare request.
In this state, the file system attempts the removal of the requested number of clusters in the
most recent prepare request. (If multiple prepare requests have been sent with different sizes,
the last one is the determining one.) The ShrinkCommit request assumes that the shrinking
engine has completed and will fail if any allocated blocks remain in the area to be shrunk.

 ■ The ShrinkAbort request, which can be issued by the shrinking engine or caused by events
such as the closure of the file handle to the volume. This request undoes the ShrinkCommit
operation by returning the partition to its original size and allows new allocations outside
the shrunk region to occur again. However, defragmentation changes made by the shrinking
engine remain.

If a system is rebooted during a shrinking operation, NTFS restores the file system to a consistent
state via its metadata recovery mechanism, explained later in the chapter. Because the actual shrink
operation isn’t executed until all other operations have been completed, the volume retains its origi-
nal size and only defragmentation operations that had already been flushed out to disk persist.

Finally, shrinking a volume has several effects on the volume shadow copy mechanism (for more
information on VSS, see Chapter 9). Recall that the copy-on-write mechanism allows VSS to simply
retain parts of the file that were actually modified while still linking to the original file data. For de-
leted files, this file data will not be associated with visible files but appear as free space instead—free
space that will likely be located in the area that is about to be shrunk. The shrinking engine therefore

 CHAPTER 12 File Systems 439

communicates with VSS to engage it in the shrinking process. In summary, the VSS mechanism’s job is
to copy deleted file data into its differencing area and to increase the differencing area as required to
accommodate additional data. This detail is important because it poses another constraint on the size
to which even volumes with ample free space can shrink.

NTFS File System Driver

As described in Chapter 8, in the framework of the Windows I/O system, NTFS and other file systems
are loadable device drivers that run in kernel mode. They are invoked indirectly by applications that
use Windows or other I/O APIs (such as POSIX). As Figure 12-23 shows, the Windows environment
subsystems call Windows system services, which in turn locate the appropriate loaded drivers and call
them. (For a description of system service dispatching, see the section “System Service Dispatching” in
Chapter 3 in Part 1.)

Environment
subsystem

or DLL

User mode

Kernel mode

Kernel

Object
manager

Security
reference
monitor

Windows
executive

… Advanced
local

procedure
call

facility

Memory
manager

Windows system services

NTFS driver

Volume
manager

Disk driver

I/O manager

FIGURE 12-23 Components of the Windows I/O system

The layered drivers pass I/O requests to one another by calling the Windows executive’s I/O man-
ager. Relying on the I/O manager as an intermediary allows each driver to maintain independence
so that it can be loaded or unloaded without affecting other drivers. In addition, the NTFS driver
interacts with the three other Windows executive components, shown in the left side of Figure 12-24,
that are closely related to file systems.

440 Windows Internals, Sixth Edition, Part 2

The log file service (LFS) is the part of NTFS that provides services for maintaining a log of disk
writes. The log file that LFS writes is used to recover an NTFS-formatted volume in the case of a sys-
tem failure. (See the section “Log File Service” later in the chapter.)

Log file
service

Write the
cache

Cache
manager

Access the mapped
file or flush the cache

Memory
manager

Flush the
log file

Log the
transaction

Read/write the file

Load data
from disk

into
memory

Read/write a
mirrored or
striped volume

Read/write
the disk

Disk driver

Volume
manager

NTFS driver

I/O manager

FIGURE 12-24 NTFS and related components

The cache manager is the component of the Windows executive that provides systemwide cach-
ing services for NTFS and other file system drivers, including network file system drivers (servers and
redirectors). All file systems implemented for Windows access cached files by mapping them into
system address space and then accessing the virtual memory. The cache manager provides a special-
ized file system interface to the Windows memory manager for this purpose. When a program tries to
access a part of a file that isn’t loaded into the cache (a cache miss), the memory manager calls NTFS
to access the disk driver and obtain the file contents from disk. The cache manager optimizes disk
I/O by using its lazy writer threads to call the memory manager to flush cache contents to disk as a
background activity (asynchronous disk writing). (For a complete description of the cache manager,
see Chapter 11.)

NTFS participates in the Windows object model by implementing files as objects. This implementa-
tion allows files to be shared and protected by the object manager, the component of Windows that
manages all executive-level objects. (The object manager is described in the section “Object Man-
ager” in Chapter 3 in Part 1.)

An application creates and accesses files just as it does other Windows objects: by means of object
handles. By the time an I/O request reaches NTFS, the Windows object manager and security system
have already verified that the calling process has the authority to access the file object in the way it is
attempting to. The security system has compared the caller’s access token to the entries in the access

 CHAPTER 12 File Systems 441

control list for the file object. (See Chapter 6 in Part 1 for more information about access control lists.)
The I/O manager has also transformed the file handle into a pointer to a file object. NTFS uses the
information in the file object to access the file on disk.

Figure 12-25 shows the data structures that link a file handle to the file system’s on-disk structure.

Object
manager

data
structures

Process

…

…
Handle
table

File object

File object

NTFS data
structures

(used to manage
the on-disk structure)

Stream
control
blocks

File
control
block

Data
attribute

Named
stream

Master file
table

NTFS
database
(on disk)

FIGURE 12-25 NTFS data structures

NTFS follows several pointers to get from the file object to the location of the file on disk. As
Figure 12-25 shows, a file object, which represents a single call to the open-file system service, points
to a stream control block (SCB) for the file attribute that the caller is trying to read or write. In Figure
12-25, a process has opened both the unnamed data attribute and a named stream (alternate data
attribute) for the file. The SCBs represent individual file attributes and contain information about how
to find specific attributes within a file. All the SCBs for a file point to a common data structure called a
file control block (FCB). The FCB contains a pointer (actually, an index into the MFT, as explained in the
section “File Record Numbers” later in this chapter) to the file’s record in the disk-based master file
table (MFT), which is described in detail in the following section.

442 Windows Internals, Sixth Edition, Part 2

NTFS On-Disk Structure

This section describes the on-disk structure of an NTFS volume, including how disk space is divided
and organized into clusters, how files are organized into directories, how the actual file data and at-
tribute information is stored on disk, and finally, how NTFS data compression works.

Volumes
The structure of NTFS begins with a volume. A volume corresponds to a logical partition on a disk,
and it is created when you format a disk or part of a disk for NTFS. You can also create a RAID volume
that spans multiple disks by using the Windows Disk Management MMC snap-in or the diskpart
(%SystemRoot%\System32\Diskpart.exe) command available from the Windows command prompt.

A disk can have one volume or several. NTFS handles each volume independently of the others.
Three sample disk configurations for a 150-GB hard disk are illustrated in Figure 12-26.

C:
(150 GB)

NTFS
Volume

C:
(75 GB)

D:
(75 GB)

NTFS
Volume 1

NTFS
Volume 2

C:
(60 GB)

D:
(90 GB)

FAT
Volume

NTFS
Volume

FIGURE 12-26 Sample disk configurations

A volume consists of a series of files plus any additional unallocated space remaining on the disk
partition. In the FAT file system, a volume also contains areas specially formatted for use by the file
system. An NTFS volume, however, stores all file system data, such as bitmaps and directories, and
even the system bootstrap, as ordinary files.

Note The on-disk format of NTFS volumes on Windows 7 and Windows Server 2008 R2 is
version 3.1, the same as it has been since Windows XP and Windows Server 2003. The ver-
sion number of a volume is stored in its $Volume metadata file.

Clusters
The cluster size on an NTFS volume, or the cluster factor, is established when a user formats the vol-
ume with either the format command or the Disk Management MMC snap-in. The default cluster fac-
tor varies with the size of the volume, but it is an integral number of physical sectors, always a power
of 2 (1 sector, 2 sectors, 4 sectors, 8 sectors, and so on). The cluster factor is expressed as the number
of bytes in the cluster, such as 512 bytes, 1 KB, 2 KB, and so on.

 CHAPTER 12 File Systems 443

Internally, NTFS refers only to clusters. (However, NTFS forms low-level volume I/O operations such
that clusters are sector-aligned and have a length that is a multiple of the sector size.) NTFS uses the
cluster as its unit of allocation to maintain its independence from physical sector sizes. This indepen-
dence allows NTFS to efficiently support very large disks by using a larger cluster factor or to support
newer disks that have a sector size other than 512 bytes. (See Chapter 9 for more information on
disks with sectors larger than 512 bytes.) On a larger volume, use of a larger cluster factor can reduce
fragmentation and speed allocation, at the cost of wasted disk space. (If the cluster size is 4,096, and
a file is only 1,024 bytes, then 3,072 bytes are wasted. See Chapter 9 for more information on default
cluster sizes.) Both the format command available from the command prompt and the Format menu
option under the All Tasks option on the Action menu in the Disk Management MMC snap-in choose
a default cluster factor based on the volume size, but you can override this size.

NTFS refers to physical locations on a disk by means of logical cluster numbers (LCNs). LCNs are
simply the numbering of all clusters from the beginning of the volume to the end. To convert an LCN
to a physical disk address, NTFS multiplies the LCN by the cluster factor to get the physical byte offset
on the volume, as the disk driver interface requires. NTFS refers to the data within a file by means of
virtual cluster numbers (VCNs). VCNs number the clusters belonging to a particular file from 0 through
m. VCNs aren’t necessarily physically contiguous, however; they can be mapped to any number of
LCNs on the volume.

Master File Table
In NTFS, all data stored on a volume is contained in files, including the data structures used to locate
and retrieve files, the bootstrap data, and the bitmap that records the allocation state of the entire
volume (the NTFS metadata). Storing everything in files allows the file system to easily locate and
maintain the data, and each separate file can be protected by a security descriptor. In addition, if a
particular part of the disk goes bad, NTFS can relocate the metadata files to prevent the disk from
becoming inaccessible.

The MFT is the heart of the NTFS volume structure. The MFT is implemented as an array of file
records. The size of each file record is fixed at 1 KB, regardless of cluster size. (The structure of a file
record is described in the “File Records” section later in this chapter.) Logically, the MFT contains one
record for each file on the volume, including a record for the MFT itself. In addition to the MFT, each
NTFS volume includes a set of metadata files containing the information that is used to implement
the file system structure. Each of these NTFS metadata files has a name that begins with a dollar sign
($), and is hidden. For example, the file name of the MFT is $MFT. The rest of the files on an NTFS
volume are normal user files and directories, as shown in Figure 12-27.

Usually, each MFT record corresponds to a different file. If a file has a large number of attributes
or becomes highly fragmented, however, more than one record might be needed for a single file. In
such cases, the first MFT record, which stores the locations of the others, is called the base file record.

444 Windows Internals, Sixth Edition, Part 2

$MFT - MFT

$MFTMirr - MFT mirror

$LogFile - Log file

\ - Root directory

$Volume - Volume file

$AttrDef - Attribute definition table

Reserved for NTFS
metadata files

0

1

2

3

4

5

$BitMap - Volume cluster allocation file

$Boot - Boot sector

$BadClus - Bad-cluster file

$Extend - Extended metadata directory

$Secure - Security settings file

$UpCase - Uppercase character mapping

6

7

8

9

10

11

12

Unused

$Extend\$Quota - Quota information

$Extend\$ObjId - Distributed link tracking information

$Extend\$RmMetadata\$Repair - RM repair information

$Extend\$Reparse - Back references to reparse points

$Extend\$RmMetadata - RM metadata directory

23

24

25

26

27

28

$Extend\$RmMetadata\$TxfLog - TxF log directory

$Extend\$RmMetadata\$Txf - TxF metadata directory

$Extend\$RmMetadata\$TxfLog\$Tops - TOPS file

$Extend\$RmMetadata\$TxfLog\$TxfLog.blf - TxF BLF

$TxfLogContainer00000000000000000001

$TxfLogContainer00000000000000000002

29

30

31

32

33

34

Unused

FIGURE 12-27 File records for NTFS metadata files in the MFT

When it first accesses a volume, NTFS must mount it—that is, read metadata from the disk and
construct internal data structures so that it can process application file system accesses. To mount the
volume, NTFS looks in the volume boot record (VBR) (located at LCN 0), which contains a data struc-
ture call the boot parameter block (BPB), to find the physical disk address of the MFT. The MFT’s own
file record is the first entry in the table; the second file record points to a file located in the middle of
the disk called the MFT mirror (file name $MFTMirr) that contains a copy of the first four rows of the
MFT. This partial copy of the MFT is used to locate metadata files if part of the MFT file can’t be read
for some reason.

Once NTFS finds the file record for the MFT, it obtains the VCN-to-LCN mapping information in the
file record’s data attribute and stores it into memory. Each run (runs are explained later in this chapter
in the section “Resident and Nonresident Attributes”) has a VCN-to-LCN mapping and a run length

 CHAPTER 12 File Systems 445

because that’s all the information necessary to locate the LCN for any VCN. This mapping informa-
tion tells NTFS where the runs containing the MFT are located on the disk. NTFS then processes the
MFT records for several more metadata files and opens the files. Next, NTFS performs its file system
recovery operation (described in the section “Recovery” later in this chapter), and finally, it opens its
remaining metadata files. The volume is now ready for user access.

Note For the sake of clarity, the text and diagrams in this chapter depict a run as including
a VCN, an LCN, and a run length. NTFS actually compresses this information on disk into an
LCN/next-VCN pair. Given a starting VCN, NTFS can determine the length of a run by sub-
tracting the starting VCN from the next VCN.

As the system runs, NTFS writes to another important metadata file, the log file (file name
 $LogFile). NTFS uses the log file to record all operations that affect the NTFS volume structure, includ-
ing file creation or any commands, such as copy, that alter the directory structure. The log file is used
to recover an NTFS volume after a system failure and is also described in the “Recovery” section.

Another entry in the MFT is reserved for the root directory (also known as “\”; for example, C:\).
Its file record contains an index of the files and directories stored in the root of the NTFS directory
structure. When NTFS is first asked to open a file, it begins its search for the file in the root directory’s
file record. After opening a file, NTFS stores the file’s MFT record number so that it can directly access
the file’s MFT record when it reads and writes the file later.

NTFS records the allocation state of the volume in the bitmap file (file name $BitMap). The data
attribute for the bitmap file contains a bitmap, each of whose bits represents a cluster on the volume,
identifying whether the cluster is free or has been allocated to a file.

The security file (file name $Secure) stores the volume-wide security descriptor database. NTFS files
and directories have individually settable security descriptors, but to conserve space, NTFS stores the
settings in a common file, which allows files and directories that have the same security settings to
reference the same security descriptor. In most environments, entire directory trees have the same
security settings, so this optimization provides a significant saving of disk space.

Another system file, the boot file (file name $Boot), stores the Windows bootstrap code if the vol-
ume is a system volume. On non-system volumes, there is code that displays an error message on the
screen if an attempt is made to boot from that volume. For the system to boot, the bootstrap code
must be located at a specific disk address so that the BIOS can find it. During formatting, the format
command defines this area as a file by creating a file record for it. All files are in the MFT, and all clus-
ters are either free or allocated to a file—there are no hidden files or clusters in NTFS, although some
files (metadata) are not visible to users. The boot file as well as NTFS metadata files can be individu-
ally protected by means of the security descriptors that are applied to all Windows objects. Using this
“everything on the disk is a file” model also means that the bootstrap can be modified by normal file
I/O, although the boot file is protected from editing.

NTFS also maintains a bad-cluster file (file name $BadClus) for recording any bad spots on the disk
volume and a file known as the volume file (file name $Volume), which contains the volume name, the

446 Windows Internals, Sixth Edition, Part 2

version of NTFS for which the volume is formatted, and a number of flag bits that indicate the state
and health of the volume, such as a bit that indicates that the volume is corrupt and must be repaired
by the Chkdsk utility. (The Chkdsk utility is covered in more detail later in the chapter.) The uppercase
file (file name $UpCase) includes a translation table between lowercase and uppercase characters.
NTFS maintains a file containing an attribute definition table (file name $AttrDef) that defines the attri-
bute types supported on the volume and indicates whether they can be indexed, recovered during a
system recovery operation, and so on.

NTFS stores several metadata files in the extensions (directory name $Extend) metadata directory,
including the object identifier file (file name $ObjId), the quota file (file name $Quota), the change
journal file (file name $UsnJrnl), the reparse point file (file name $Reparse), and the default resource
manager directory (directory name $RmMetadata). These files store information related to extended
features of NTFS. The object identifier file stores file object IDs, the quota file stores quota limit and
behavior information on volumes that have quotas enabled, the change journal file records file and
directory changes, and the reparse point file stores information about which files and directories on
the volume include reparse point data.

The default resource manager directory contains directories related to transactional NTFS (TxF)
support, including the transaction log directory (directory name $TxfLog), the transaction isolation di-
rectory (directory name $Txf), and the transaction repair directory (file name $Repair). The transaction
log directory contains the TxF base log file (file name $TxfLog.blf) and any number of log container
files, depending on the size of the transaction log, but it always contains at least two: one for the
Kernel Transaction Manager (KTM) log stream (file name $TxfLogContainer00000000000000000001),
and one for the TxF log stream (file name $TxfLogContainer00000000000000000002). The transac-
tion log directory also contains the TxF old page stream (file name $Tops), which we’ll describe later.

EXPERIMENT: Viewing NTFS Information
You can use the built-in Fsutil.exe command-line program to view information about an NTFS
volume, including the placement and size of the MFT and MFT zone:

C:\>fsutil fsinfo ntfsinfo c:
NTFS Volume Serial Number : 0x9a38d50e38d4ea71
Version : 3.1
Number Sectors : 0x0000000015c82ff0
Total Clusters : 0x0000000002b905fe
Free Clusters : 0x000000000013c332
Total Reserved : 0x0000000000000780
Bytes Per Sector : 512
Bytes Per Cluster : 4096
Bytes Per FileRecord Segment : 1024
Clusters Per FileRecord Segment : 0
Mft Valid Data Length : 0x0000000023db0000
Mft Start Lcn : 0x00000000000c0000
Mft2 Start Lcn : 0x00000000016082ff
Mft Zone Start : 0x0000000002751f60
Mft Zone End : 0x000000000275cd60
RM Identifier: CF7234E7-39E3-11DC-BDCE-00188BDD5F49

 CHAPTER 12 File Systems 447

File Record Numbers
A file on an NTFS volume is identified by a 64-bit value called a file record number, which consists of
a file number and a sequence number. The file number corresponds to the position of the file’s file
record in the MFT minus 1 (or to the position of the base file record minus 1 if the file has more than
one file record). The sequence number, which is incremented each time an MFT file record position
is reused, enables NTFS to perform internal consistency checks. A file record number is illustrated in
Figure 12-28.

File numberSequence
number

63 47 0

FIGURE 12-28 File record number

File Records
Instead of viewing a file as just a repository for textual or binary data, NTFS stores files as a collection
of attribute/value pairs, one of which is the data it contains (called the unnamed data attribute). Other
attributes that comprise a file include the file name, time stamp information, and possibly additional
named data attributes. Figure 12-29 illustrates an MFT record for a small file.

Master file table

Standard
information Filename

…

Data

FIGURE 12-29 MFT record for a small file

Each file attribute is stored as a separate stream of bytes within a file. Strictly speaking, NTFS
doesn’t read and write files—it reads and writes attribute streams. NTFS supplies these attribute oper-
ations: create, delete, read (byte range), and write (byte range). The read and write services normally
operate on the file’s unnamed data attribute. However, a caller can specify a different data attribute
by using the named data stream syntax.

448 Windows Internals, Sixth Edition, Part 2

Table 12-6 lists the attributes for files on an NTFS volume. (Not all attributes are present for every
file.)

TABLE 12-6 Attributes for NTFS Files

Attribute Attribute Type Name Resident? Description

Volume
information

$VOLUME_INFORMATION,
$VOLUME_NAME

Always,
Always

These attributes are present only in the $Volume
metadata file. They store volume version and
label information.

Standard
information

$STANDARD_INFORMATION Always File attributes such as read-only, archive, and
so on; time stamps, including when the file was
created or last modified.

Filename $FILE_NAME Maybe The file’s name in Unicode 1.0 characters. A
file can have multiple filename attributes, as it
does when a hard link to a file exists or when
a file with a long name has an automatically
generated “short name” for access by MS-DOS
and 16-bit Windows applications.

Security descriptor $SECURITY_DESCRIPTOR Maybe This attribute is present for backward
compatibility with previous versions of NTFS
and is rarely used in the current version of NTFS
(3.1). NTFS stores almost all security descriptors
in the $Secure metadata file, sharing descriptors
among files and directories that have the same
settings. Previous versions of NTFS stored
private security descriptor information with
each file and directory. Some files still include
a $SECURITY_DESCRIPTOR attribute, such as
$Boot.

Data $DATA The contents of the file. In NTFS, a file has one
default unnamed data attribute and can have
additional named data attributes—that is, a file
can have multiple data streams. A directory has
no default data attribute but can have optional
named data attributes.

Index root, index
allocation, and
index bitmap

$INDEX_ROOT,
$INDEX_ALLOCATION,
$BITMAP

Always,
Never,
Maybe

Three attributes used to implement B-tree data
structures used by directories, security, quota,
and other metadata files.

Attribute list $ATTRIBUTE_LIST Maybe A list of the attributes that make up the file
and the file record number of the MFT entry
where each attribute is located. This attribute is
present when a file requires more than one MFT
file record.

Object ID $OBJECT_ID Always A 16-byte identifier (GUID) for a file or directory.
The link-tracking service assigns object IDs to
shell shortcut and OLE link source files. NTFS
provides APIs so that files and directories can
be opened with their object ID rather than their
file name.

Reparse
information

$REPARSE_POINT Maybe This attribute stores a file’s reparse point data.
NTFS junctions and mount points include this
attribute.

Extended
attributes

$EA, $EA_INFORMATION Maybe,
Always

Extended attributes are name/value pairs and
aren’t normally used but are provided for
backward compatibility with OS/2 applications.

 CHAPTER 12 File Systems 449

Attribute Attribute Type Name Resident? Description

Logged utility
stream

$LOGGED_UTILITY_STREAM Maybe EFS stores data in this attribute ($EFS) that’s
used to manage a file’s encryption, such as the
encrypted version of the key needed to decrypt
the file and a list of users who are authorized to
access the file. When a file or directory becomes
part of a transaction, TxF also stores transaction
data in the $TXF_DATA attribute, such as the
file’s unique transaction ID.

Table 12-6 shows attribute names; however, attributes actually correspond to numeric type codes,
which NTFS uses to order the attributes within a file record. The file attributes in an MFT record are
ordered by these type codes (numerically in ascending order), with some attribute types appearing
more than once—if a file has multiple data attributes, for example, or multiple file names. All possible
attribute types (and their names) are listed in the $AttrDef metadata file.

Each attribute in a file record is identified with its attribute type code and has a value and an
optional name. An attribute’s value is the byte stream composing the attribute. For example, the value
of the $FILE_NAME attribute is the file’s name; the value of the $DATA attribute is whatever bytes the
user stored in the file.

Most attributes never have names, although the index-related attributes and the $DATA attribute
often do. Names distinguish between multiple attributes of the same type that a file can include. For
example, a file that has a named data stream has two $DATA attributes: an unnamed $DATA attribute
storing the default unnamed data stream and a named $DATA attribute having the name of the alter-
nate stream and storing the named stream’s data.

File Names
Both NTFS and FAT allow each file name in a path to be as many as 255 characters long. File names
can contain Unicode characters as well as multiple periods and embedded spaces. However, the FAT
file system supplied with MS-DOS is limited to 8 (non-Unicode) characters for its file names, followed
by a period and a 3-character extension. Figure 12-30 provides a visual representation of the different
file namespaces Windows supports and shows how they intersect.

The POSIX subsystem requires the biggest namespace of all the application execution envi-
ronments that Windows supports, and therefore the NTFS namespace is equivalent to the POSIX
namespace. The POSIX subsystem can create names that aren’t visible to Windows and MS-DOS
applications, including names with trailing periods and trailing spaces. Ordinarily, creating a file us-
ing the large POSIX namespace isn’t a problem because you would do that only if you intended the
POSIX subsystem or POSIX client systems to use that file.

450 Windows Internals, Sixth Edition, Part 2

"TrailingDots..."
"SameNameDifferentCase"
"samenamedifferentcase"
"TrailingSpaces "

Examples

"LongFileName"
"UnicodeName.Φ∆ΠΛ"
"File.Name.With.Dots"
"File.Name2.With.Dots"
"Name With Embedded Spaces"
".BeginningDot"

"EIGHTCHR.123"
"CASEBLND.TYP"

POSIX
subsystem

Windows
subsystem

MS-DOS–Windows
clients

FIGURE 12-30 Windows file namespaces

The relationship between 32-bit Windows (Windows) applications and MS-DOS and 16-bit
Windows applications is a much closer one, however. The Windows area in Figure 12-30 represents
file names that the Windows subsystem can create on an NTFS volume but that MS-DOS and 16-bit
Windows applications can’t see. This group includes file names longer than the 8.3 format of MS-DOS
names, those containing Unicode (international) characters, those with multiple period characters or
a beginning period, and those with embedded spaces. When a file is created with such a name, NTFS
automatically generates an alternate, MS-DOS-style file name for the file. Windows displays these
short names when you use the /x option with the dir command.

The MS-DOS file names are fully functional aliases for the NTFS files and are stored in the same
directory as the long file names. The MFT record for a file with an autogenerated MS-DOS file name is
shown in Figure 12-31.

Standard
information

NTFS
file name

MS-DOS
file name Data

New filename
attribute

FIGURE 12-31 MFT file record with an MS-DOS filename attribute

The NTFS name and the generated MS-DOS name are stored in the same file record and therefore
refer to the same file. The MS-DOS name can be used to open, read from, write to, or copy the file. If
a user renames the file using either the long file name or the short file name, the new name replaces
both the existing names. If the new name isn’t a valid MS-DOS name, NTFS generates another MS-
DOS name for the file (note that NTFS only generates MS-DOS-style file names for the first file name).

 CHAPTER 12 File Systems 451

Note Hard links are implemented in a similar way. When a hard link to a file is created,
NTFS adds another file name attribute to the file’s MFT file record. The two situations differ
in one regard, however. When a user deletes a file that has multiple names (hard links), the
file record and the file remain in place. The file and its record are deleted only when the
last file name (hard link) is deleted. If a file has both an NTFS name and an autogenerated
MS-DOS name, however, a user can delete the file using either name.

Here’s the algorithm NTFS uses (the algorithm is actually implemented in the kernel function
 RtlGenerate8dot3Name and is also used by other drivers, such as CDFS, FAT, and third-party file sys-
tems) to generate an MS-DOS name from a long file name:

1. Remove from the long name any characters that are illegal in MS-DOS names, including
spaces and Unicode characters. Remove preceding and trailing periods. Remove all other
embedded periods, except the last one.

2. Truncate the string before the period (if present) to six characters (it may already be six or
fewer because this algorithm is applied when any character that is illegal in MS-DOS is present
in the name); if it is two or fewer characters, generate and concatenate a four-character hex
checksum string. Append the string ~n (where n is a number, starting with 1, that is used to
distinguish different files that truncate to the same name). Truncate the string after the period
(if present) to three characters.

3. Put the result in uppercase letters. MS-DOS is case-insensitive, and this step guarantees that
NTFS won’t generate a new name that differs from the old only in case.

4. If the generated name duplicates an existing name in the directory, increment the ~n string. If
n is greater than 4, and a checksum was not concatenated already, truncate the string before
the period to two characters and generate and concatenate a four-character hex checksum
string.

Table 12-7 shows the long Windows file names from Figure 12-30 and their NTFS-generated MS-
DOS versions. The current algorithm and the examples in Figure 12-30 should give you an idea of
what NTFS-generated MS-DOS-style file names look like.

Note Although not generally recommended because it can cause incompatibilities with
applications that rely on them, you can disable short name generation by setting HKLM\
SYSTEM\CurrentControlSet\Control\FileSystem\NtfsDisable8dot3NameCreation in the reg-
istry to a DWORD value of 1 and restarting the machine.

452 Windows Internals, Sixth Edition, Part 2

Tunneling
NTFS uses the concept of tunneling to allow compatibility with older programs that depend on
the file system to cache certain file metadata for a period of time even after the file is gone,
such as when it has been deleted or renamed. With tunneling, any new file created with the
same name as the original file, and within a certain period of time, will keep some of the same
metadata. The idea is to replicate behavior expected by MS-DOS programs when using the safe
save programming method, in which modified data is copied to a temporary file, the origi-
nal file is deleted, and then the temporary file is renamed to the original name. The expected
behavior in this case is that the renamed temporary file should appear to be the same as the
original file, otherwise the creation time would continuously update itself with each modifica-
tion (which is how the modified time is used).

NTFS uses tunneling so that when a file name is removed from a directory, its long name and
short name, as well as its creation time, are saved into a cache. When a new file is added to a
directory, the cache is searched to see whether there is any tunneled data to restore. Because
these operations apply to directories, each directory instance has its own cache, which is de-
leted if the directory is removed. NTFS will use tunneling for the following series of operations if
the names used result in the deletion and re-creation of the same file name:

 ■ Delete + Create

 ■ Delete + Rename

 ■ Rename + Create

 ■ Rename + Rename

By default, NTFS keeps the tunneling cache for 15 seconds, although you can modify this
timeout by creating a new value called MaximumTunnelEntryAgeInSeconds in the HKLM\
SYSTEM\CurrentControlSet\Control\FileSystem registry key. Tunneling can also be completely
disabled by creating a new value called MaximumTunnelEntries and setting it to 0; however, this
will cause older applications to break if they rely on the compatibility behavior.

You can see tunneling in action with the following simple experiment in the command prompt:

1. Create a file called file1.

2. Wait for more than 15 seconds (the default tunnel cache timeout).

3. Create a file called file2.

4. Perform a dir /TC. Note the creation times.

5. Rename file1 to file.

6. Rename file2 to file1.

7. Perform a dir /TC. Note that the creation times are identical.

 CHAPTER 12 File Systems 453

TABLE 12-7 NTFS-Generated File Names

Windows Long Name NTFS-Generated Short Name

LongFileName LONGFI~1

UnicodeName.ΦDΠΛ UNICOD~1

File.Name.With.Dots FILENA~1.DOT

File.Name2.With.Dots FILENA~2.DOT

File.Name3.With.Dots FILENA~3.DOT

File.Name4.With.Dots FILENA~4.DOT

File.Name5.With.Dots FIF596~1.DOT

Name With Embedded Spaces NAMEWI~1

.BeginningDot BEGINN~1

25¢.two characters 255440~1.TWO

© 6E2D~1

Resident and Nonresident Attributes
If a file is small, all its attributes and their values (its data, for example) fit within the file record that
describes the file. When the value of an attribute is stored in the MFT (either in the file’s main file
record or an extension record located elsewhere within the MFT), the attribute is called a resident
attribute. (In Figure 12-31, for example, all attributes are resident.) Several attributes are defined as
always being resident so that NTFS can locate nonresident attributes. The standard information and
index root attributes are always resident, for example.

Each attribute begins with a standard header containing information about the attribute, informa-
tion that NTFS uses to manage the attributes in a generic way. The header, which is always resident,
records whether the attribute’s value is resident or nonresident. For resident attributes, the header
also contains the offset from the header to the attribute’s value and the length of the attribute’s
value, as Figure 12-32 illustrates for the filename attribute.

Standard
information Filename Data

“RESIDENT”
Offset: 8h
Length: 18h

Attribute header

Attribute value

MYFILE.DAT

FIGURE 12-32 Resident attribute header and value

454 Windows Internals, Sixth Edition, Part 2

When an attribute’s value is stored directly in the MFT, the time it takes NTFS to access the value
is greatly reduced. Instead of looking up a file in a table and then reading a succession of allocation
units to find the file’s data (as the FAT file system does, for example), NTFS accesses the disk once and
retrieves the data immediately.

The attributes for a small directory, as well as for a small file, can be resident in the MFT, as Figure
12-33 shows. For a small directory, the index root attribute contains an index (organized as a B-tree)
of file record numbers for the files (and the subdirectories) within the directory.

Standard
information Filename Index root

Index of files

file1, file2, file3, ...
Empty

FIGURE 12-33 MFT file record for a small directory

Of course, many files and directories can’t be squeezed into a 1-KB, fixed-size MFT record. If a
particular attribute’s value, such as a file’s data attribute, is too large to be contained in an MFT file
record, NTFS allocates clusters for the attribute’s value outside the MFT. A contiguous group of clus-
ters is called a run (or an extent). If the attribute’s value later grows (if a user appends data to the file,
for example), NTFS allocates another run for the additional data. Attributes whose values are stored
in runs (rather than within the MFT) are called nonresident attributes. The file system decides whether
a particular attribute is resident or nonresident; the location of the data is transparent to the process
accessing it.

When an attribute is nonresident, as the data attribute for a large file will certainly be, its header
contains the information NTFS needs to locate the attribute’s value on the disk. Figure 12-34 shows a
nonresident data attribute stored in two runs.

NTFS
extended
attributes

Standard
information Filename Data

Data Data

FIGURE 12-34 MFT file record for a large file with two data runs

Among the standard attributes, only those that can grow can be nonresident. For files, the at-
tributes that can grow are the data and the attribute list (not shown in Figure 12-34). The standard
information and filename attributes are always resident.

 CHAPTER 12 File Systems 455

A large directory can also have nonresident attributes (or parts of attributes), as Figure 12-35
shows. In this example, the MFT file record doesn’t have enough room to store the B-tree that con-
tains the index of files that are within this large directory. A part of the index is stored in the index
root attribute, and the rest of the index is stored in nonresident runs called index allocations. The
index root, index allocation, and bitmap attributes are shown here in a simplified form. They are
described in more detail in the next section. The standard information and filename attributes are
always resident. The header and at least part of the value of the index root attribute are also resident
for directories.

Index
allocation Bitmap

Standard
information Filename Index root

Index buffers file1 file2 file3 file5 file6

Index of files

file4 file8

FIGURE 12-35 MFT file record for a large directory with a nonresident file name index

When an attribute’s value can’t fit in an MFT file record and separate allocations are needed, NTFS
keeps track of the runs by means of VCN-to-LCN mapping pairs. LCNs represent the sequence of clus-
ters on an entire volume from 0 through n. VCNs number the clusters belonging to a particular file
from 0 through m. For example, the clusters in the runs of a nonresident data attribute are numbered
as shown in Figure 12-36.

Standard
information

0 1 2 3

1355 1356 1357 1358

Filename Data

Data Data

File 16

4 5 6 7

1588 1589 1590 1591

VCN

LCN

FIGURE 12-36 VCNs for a nonresident data attribute

If this file had more than two runs, the numbering of the third run would start with VCN 8. As
Figure 12-37 shows, the data attribute header contains VCN-to-LCN mappings for the two runs here,
which allows NTFS to easily find the allocations on the disk.

456 Windows Internals, Sixth Edition, Part 2

Standard
information

0 1 2 3

1355 1356 1357 1358

Filename Data

Data Data

File 16

4 5 6 7

1588 1589 1590 1591

VCN

LCN

1355

1588

4

4

0

4

Starting
VCN

Starting
LCN

Number of
clusters

FIGURE 12-37 VCN-to-LCN mappings for a nonresident data attribute

Although Figure 12-36 shows just data runs, other attributes can be stored in runs if there isn’t
enough room in the MFT file record to contain them. And if a particular file has too many attributes
to fit in the MFT record, a second MFT record is used to contain the additional attributes (or attribute
headers for nonresident attributes). In this case, an attribute called the attribute list is added. The
attribute list attribute contains the name and type code of each of the file’s attributes and the file
number of the MFT record where the attribute is located. The attribute list attribute is provided for
those cases where all of a file’s attributes will not fit within the file’s file record or when a file grows so
large or so fragmented that a single MFT record can’t contain the multitude of VCN-to-LCN mappings
needed to find all its runs. Files with more than 200 runs typically require an attribute list. In summary,
attribute headers are always contained within file records in the MFT, but an attribute’s value may be
located outside the MFT in one or more extents.

Data Compression and Sparse Files
NTFS supports compression on a per-file, per-directory, or per-volume basis using a variant
of the LZ77 algorithm, known as LZNT1. (NTFS compression is performed only on user data,
not file system metadata.) You can tell whether a volume is compressed by using the Windows
 GetVolumeInformation function. To retrieve the actual compressed size of a file, use the Windows
GetCompressedFileSize function. Finally, to examine or change the compression setting for a file or
directory, use the Windows DeviceIoControl function. (See the FSCTL_GET_COMPRESSION and FSCTL_
SET_COMPRESSION file system control codes.) Keep in mind that although setting a file’s compression
state compresses (or decompresses) the file right away, setting a directory’s or volume’s compression
state doesn’t cause any immediate compression or decompression. Instead, setting a directory’s or
volume’s compression state sets a default compression state that will be given to all newly created
files and subdirectories within that directory or volume (although, if you were to set directory com-
pression using the directory’s property page within Explorer, the contents of the entire directory tree
will be compressed immediately).

 CHAPTER 12 File Systems 457

The following section introduces NTFS compression by examining the simple case of compressing
sparse data. The subsequent sections extend the discussion to the compression of ordinary files and
sparse files.

Compressing Sparse Data
Sparse data is often large but contains only a small amount of nonzero data relative to its size. A
sparse matrix is one example of sparse data. As described earlier, NTFS uses VCNs, from 0 through m,
to enumerate the clusters of a file. Each VCN maps to a corresponding LCN, which identifies the disk
location of the cluster. Figure 12-38 illustrates the runs (disk allocations) of a normal, noncompressed
file, including its VCNs and the LCNs they map to.

0 1 2 3

1355 1356 1357 1358

Data Data

4 5 6 7

1588 1589 1590 1591

Data

8 9 10 11

2033 2034 2035 2036

VCN

LCN

FIGURE 12-38 Runs of a noncompressed file

This file is stored in three runs, each of which is 4 clusters long, for a total of 12 clusters. Figure
12-39 shows the MFT record for this file. As described earlier, to save space the MFT record’s data
attribute, which contains VCN-to-LCN mappings, records only one mapping for each run, rather than
one for each cluster. Notice, however, that each VCN from 0 through 11 has a corresponding LCN as-
sociated with it. The first entry starts at VCN 0 and covers 4 clusters, the second entry starts at VCN 4
and covers 4 clusters, and so on. This entry format is typical for a noncompressed file.

Standard
information Filename Data

1355

1588

4

4

0

2033 48

4

Starting
VCN

Starting
LCN

Number of
clusters

FIGURE 12-39 MFT record for a noncompressed file

When a user selects a file on an NTFS volume for compression, one NTFS compression technique is
to remove long strings of zeros from the file. If the file’s data is sparse, it typically shrinks to occupy a
fraction of the disk space it would otherwise require. On subsequent writes to the file, NTFS allocates
space only for runs that contain nonzero data.

Figure 12-40 depicts the runs of a compressed file containing sparse data. Notice that certain
ranges of the file’s VCNs (16–31 and 64–127) have no disk allocations.

458 Windows Internals, Sixth Edition, Part 2

0 15

133

Data

Data

Data

Data

VCN

LCN 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148

32 47

193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208

48 63

96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111

128 143

324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339

FIGURE 12-40 Runs of a compressed file containing sparse data

The MFT record for this compressed file omits blocks of VCNs that contain zeros and therefore
have no physical storage allocated to them. The first data entry in Figure 12-41, for example, starts at
VCN 0 and covers 16 clusters. The second entry jumps to VCN 32 and covers 16 clusters.

Standard
information Filename Data

133

193

16

16

0

96 1648

32

Starting
VCN

Starting
LCN

Number of
clusters

324 16128

FIGURE 12-41 MFT record for a compressed file containing sparse data

When a program reads data from a compressed file, NTFS checks the MFT record to determine
whether a VCN-to-LCN mapping covers the location being read. If the program is reading from an
unallocated “hole” in the file, it means that the data in that part of the file consists of zeros, so NTFS
returns zeros without further accessing the disk. If a program writes nonzero data to a “hole,” NTFS
quietly allocates disk space and then writes the data. This technique is very efficient for sparse file
data that contains a lot of zero data.

Compressing Nonsparse Data
The preceding example of compressing a sparse file is somewhat contrived. It describes “compression”
for a case in which whole sections of a file were filled with zeros but the remaining data in the file

 CHAPTER 12 File Systems 459

wasn’t affected by the compression. The data in most files isn’t sparse, but it can still be compressed
by the application of a compression algorithm.

In NTFS, users can specify compression for individual files or for all the files in a directory. (New
files created in a directory marked for compression are automatically compressed—existing files
must be compressed individually when programmatically enabling compression with FSCTL_SET_
COMPRESSION.) When it compresses a file, NTFS divides the file’s unprocessed data into compression
units 16 clusters long (equal to 8 KB for a 512-byte cluster, for example). Certain sequences of data
in a file might not compress much, if at all; so for each compression unit in the file, NTFS determines
whether compressing the unit will save at least 1 cluster of storage. If compressing the unit won’t free
up at least 1 cluster, NTFS allocates a 16-cluster run and writes the data in that unit to disk without
compressing it. If the data in a 16-cluster unit will compress to 15 or fewer clusters, NTFS allocates
only the number of clusters needed to contain the compressed data and then writes it to disk. Figure
12-42 illustrates the compression of a file with four runs. The unshaded areas in this figure represent
the actual storage locations that the file occupies after compression. The first, second, and fourth runs
were compressed; the third run wasn’t. Even with one noncompressed run, compressing this file saved
26 clusters of disk space, or 41 percent.

0 15

19

VCN

LCN 20 21 22

16 31

23 24 25 26 27 28 29 30

32 47

11297 98 99 100 101 102 103 104 105 106 107 108 109 110 111

48 63

113 114 115 116 117 118 119 120 121 122

Noncompressed data

Compressed dataCompressed data

Compressed dataCompressed data

Compressed dataCompressed data

FIGURE 12-42 Data runs of a compressed file

Note Although the diagrams in this chapter show contiguous LCNs, a compression unit
need not be stored in physically contiguous clusters. Runs that occupy noncontiguous clus-
ters produce slightly more complicated MFT records than the one shown in Figure 12-42.

When it writes data to a compressed file, NTFS ensures that each run begins on a virtual 16-cluster
boundary. Thus the starting VCN of each run is a multiple of 16, and the runs are no longer than 16
clusters. NTFS reads and writes at least one compression unit at a time when it accesses compressed

460 Windows Internals, Sixth Edition, Part 2

files. When it writes compressed data, however, NTFS tries to store compression units in physically
contiguous locations so that it can read them all in a single I/O operation. The 16-cluster size of the
NTFS compression unit was chosen to reduce internal fragmentation: the larger the compression
unit, the less the overall disk space needed to store the data. This 16-cluster compression unit size
represents a trade-off between producing smaller compressed files and slowing read operations for
programs that randomly access files. The equivalent of 16 clusters must be decompressed for each
cache miss. (A cache miss is more likely to occur during random file access.) Figure 12-43 shows the
MFT record for the compressed file shown in Figure 12-42.

Standard
information Filename Data

19

23

4

8

0

97 1632

16

Starting
VCN

Starting
LCN

Number of
clusters

113 1048

FIGURE 12-43 MFT record for a compressed file

One difference between this compressed file and the earlier example of a compressed file contain-
ing sparse data is that three of the compressed runs in this file are less than 16 clusters long. Reading
this information from a file’s MFT file record enables NTFS to know whether data in the file is com-
pressed. Any run shorter than 16 clusters contains compressed data that NTFS must decompress when
it first reads the data into the cache. A run that is exactly 16 clusters long doesn’t contain compressed
data and therefore requires no decompression.

If the data in a run has been compressed, NTFS decompresses the data into a scratch buffer and
then copies it to the caller’s buffer. NTFS also loads the decompressed data into the cache, which
makes subsequent reads from the same run as fast as any other cached read. NTFS writes any updates
to the file to the cache, leaving the lazy writer to compress and write the modified data to disk asyn-
chronously. This strategy ensures that writing to a compressed file produces no more significant delay
than writing to a noncompressed file would.

NTFS keeps disk allocations for a compressed file contiguous whenever possible. As the LCNs
indicate, the first two runs of the compressed file shown in Figure 12-42 are physically contiguous, as
are the last two. When two or more runs are contiguous, NTFS performs disk read-ahead, as it does
with the data in other files. Because the reading and decompression of contiguous file data take place
asynchronously before the program requests the data, subsequent read operations obtain the data
directly from the cache, which greatly enhances read performance.

Sparse Files
Sparse files (the NTFS file type, as opposed to files that consist of sparse data, described earlier) are
essentially compressed files for which NTFS doesn’t apply compression to the file’s nonsparse data.

 CHAPTER 12 File Systems 461

However, NTFS manages the run data of a sparse file’s MFT record the same way it does for com-
pressed files that consist of sparse and nonsparse data.

The Change Journal File
The change journal file, \$Extend\$UsnJrnl, is a sparse file in which NTFS stores records of changes
to files and directories. Applications like the Windows File Replication Service (FRS) and the Windows
Search service make use of the journal to respond to file and directory changes as they occur.

The journal stores change entries in the $J data stream and the maximum size of the journal in the
$Max data stream. Entries are versioned and include the following information about a file or direc-
tory change:

 ■ The time of the change

 ■ The reason for the change (see Table 12-8)

 ■ The file or directory’s attributes

 ■ The file or directory’s name

 ■ The file or directory’s MFT file record number

 ■ The file record number of the file’s parent directory

 ■ The security ID

 ■ The update sequence number (USN) of the record

 ■ Additional information about the source of the change (a user, the FRS, and so on)

TABLE 12-8 Change Journal Change Reasons

Identifier Reason

USN_REASON_DATA_OVERWRITE The data in the file or directory was overwritten

USN_REASON_DATA_EXTEND Data was added to the file or directory

USN_REASON_DATA_TRUNCATION The data in the file or directory was truncated

USN_REASON_NAMED_DATA_OVERWRITE The data in a file’s data stream was overwritten

USN_REASON_NAMED_DATA_EXTEND The data in a file’s data stream was extended

USN_REASON_NAMED_DATA_TRUNCATION The data in a file’s data stream was truncated

USN_REASON_FILE_CREATE A new file or directory was created

USN_REASON_FILE_DELETE A file or directory was deleted

USN_REASON_EA_CHANGE The extended attributes for a file or directory changed

USN_REASON_SECURITY_CHANGE The security descriptor for a file or directory was changed

USN_REASON_RENAME_OLD_NAME A file or directory was renamed; this is the old name

USN_REASON_RENAME_NEW_NAME A file or directory was renamed; this is the new name

462 Windows Internals, Sixth Edition, Part 2

Identifier Reason

USN_REASON_INDEXABLE_CHANGE The indexing state for the file or directory was changed (whether
or not the Indexing service will process this file or directory)

USN_REASON_BASIC_INFO_CHANGE The file or directory attributes and/or the time stamps were
changed

USN_REASON_HARD_LINK_CHANGE A hard link was added or removed from the file or directory

USN_REASON_COMPRESSION_CHANGE The compression state for the file or directory was changed

USN_REASON_ENCRYPTION_CHANGE The encryption state (EFS) was enabled or disabled for this file or
directory

USN_REASON_OBJECT_ID_CHANGE The object ID for this file or directory was changed

USN_REASON_REPARSE_POINT_CHANGE The reparse point for a file or directory was changed, or a new
reparse point (such as a symbolic link) was added or deleted from
a file or directory

USN_REASON_STREAM_CHANGE A new data stream was added to or removed from a file or
renamed

USN_REASON_TRANSACTED_CHANGE This value is added (ORed) to the change reason to indicate that
the change was the result of a recent commit of a TxF transaction

USN_REASON_CLOSE The handle to a file or directory was closed, indicating that this is
the final modification made to the file in this series of operations

EXPERIMENT: Reading the Change Journal
You can use the Usndump.exe command-line program from Winsider Seminars & Solutions
(www.winsiderss.com/tools/usndump/usndump.htm) to dump the contents of the change journal
if the current volume has one. You can also create, delete, or query journal information with the
built-in Fsutil.exe utility, as shown here:

C:\>fsutil usn queryjournal c:
Usn Journal ID : 0x01c89ddaec1b9648
First Usn : 0x0000000038140000
Next Usn : 0x000000003a22fa50
Lowest Valid Usn : 0x0000000000000000
Max Usn : 0x00000fffffff0000
Maximum Size : 0x0000000002000000
Allocation Delta : 0x0000000000400000

The output indicates the maximum size of the change journal on the volume and its cur-
rent state. As a simple experiment to see how NTFS records changes in the journal, create a file
called Usn.txt in the current directory, rename it to UsnNew.txt, and then dump the journal with
Usndump, as shown here:

C:\>echo hello > Usn.txt
C:\>ren Usn.txt UsnNew.txt
C:\>Usndump.exe
...

 CHAPTER 12 File Systems 463

File Ref# : 0x4000000001be9
ParentFile Ref# : 0x300000000a962
USN : 0xfc54d8
SecurityId : 0x00000000
Reason : 0x00000100 (USN_REASON_FILE_CREATE)
Name (014) : Usn.txt

File Ref# : 0x4000000001be9
ParentFile Ref# : 0x300000000a962
USN : 0xfc5528
SecurityId : 0x00000000
Reason : 0x00000102 (USN_REASON_DATA_EXTEND USN_REASON_FILE_CREATE)
Name (014) : Usn.txt

File Ref# : 0x4000000001be9
ParentFile Ref# : 0x300000000a962
USN : 0xfc5578
SecurityId : 0x00000000
Reason : 0x80000102 (USN_REASON_DATA_EXTEND USN_REASON_FILE_CREATE)
Name (014) : Usn.txt

File Ref# : 0x4000000001be9
ParentFile Ref# : 0x300000000a962
USN : 0xfc55c8
SecurityId : 0x00000000
Reason : 0x00001000 (USN_REASON_RENAME_OLD_NAME)
Name (014) : Usn.txt

File Ref# : 0x4000000001be9
ParentFile Ref# : 0x300000000a962
USN : 0xfc5618
SecurityId : 0x00000000
Reason : 0x00002000 (USN_REASON_RENAME_NEW_NAME)
Name (020) : UsnNew.txt

File Ref# : 0x4000000001be9
ParentFile Ref# : 0x300000000a962
USN : 0xfc5668
SecurityId : 0x00000000
Reason : 0x80002000 (USN_REASON_RENAME_NEW_NAME)
Name (020) : UsnNew.txt

The entries reflect the individual modification operations involved in the operations underly-
ing the command-line operations.

The journal is sparse so that it never overflows; when the journal’s on-disk size exceeds the
maximum defined for the file, NTFS simply begins zeroing the file data that precedes the window
of change information having a size equal to the maximum journal size, as shown in Figure 12-44.
To prevent constant resizing when an application is continuously exceeding the journal’s size, NTFS
shrinks the journal only when its size is twice an application-defined value over the maximum config-
ured size.

464 Windows Internals, Sixth Edition, Part 2

File name
Type of change
Time of change
File MFT entry number
…

$J alternate data stream

Virtual size of $UsnJrnl:$J

Physical size of $UsnJrnl:$J

Change Entry

Empty

…

FIGURE 12-44 Change journal ($UsnJrnl) space allocation

Indexing
In NTFS, a file directory is simply an index of file names—that is, a collection of file names (along with
their file record numbers) organized as a B-tree. To create a directory, NTFS indexes the filename
attributes of the files in the directory. The MFT record for the root directory of a volume is shown in
Figure 12-45.

0 1 2 3

1355 1356 1357 1358

file0 file11 file12 file13 file14file1 file3

File 5

8 9 10 11

2033 2034 2035 2036

VCN

LCN

VCN

LCN

4 5 6 7

1588 1589 1590 1591

VCN

LCN

Standard
information Filename Index root

Index
allocation Bitmap

Index of files

file4 file10 file15
"\" VCN-to-LCN

mappings

file6 file8 file9

FIGURE 12-45 File name index for a volume’s root directory

 CHAPTER 12 File Systems 465

Conceptually, an MFT entry for a directory contains in its index root attribute a sorted list of the
files in the directory. For large directories, however, the file names are actually stored in 4-KB, fixed-
size index buffers (which are the nonresident value of the index allocation attribute) that contain and
organize the file names. Index buffers implement a B-tree data structure, which minimizes the number
of disk accesses needed to find a particular file, especially for large directories. The index root attri-
bute contains the first level of the B-tree (root subdirectories) and points to index buffers containing
the next level (more subdirectories, perhaps, or files).

Figure 12-45 shows only file names in the index root attribute and the index buffers (file6, for
example), but each entry in an index also contains the record number in the MFT where the file is de-
scribed and time stamp and file size information for the file. NTFS duplicates the time stamps and file
size information from the file’s MFT record. This technique, which is used by FAT and NTFS, requires
updated information to be written in two places. Even so, it’s a significant speed optimization for di-
rectory browsing because it enables the file system to display each file’s time stamps and size without
opening every file in the directory.

The index allocation attribute maps the VCNs of the index buffer runs to the LCNs that indicate
where the index buffers reside on the disk, and the bitmap attribute keeps track of which VCNs in the
index buffers are in use and which are free. Figure 12-45 shows one file entry per VCN (that is, per
cluster), but file name entries are actually packed into each cluster. Each 4-KB index buffer will typi-
cally contain about 20 to 30 file name entries (depending on the lengths of the file names within the
directory).

The B-tree data structure is a type of balanced tree that is ideal for organizing sorted data stored
on a disk because it minimizes the number of disk accesses needed to find an entry. In the MFT, a
directory’s index root attribute contains several file names that act as indexes into the second level of
the B-tree. Each file name in the index root attribute has an optional pointer associated with it that
points to an index buffer. The index buffer it points to contains file names with lexicographic values
less than its own. In Figure 12-45, for example, file4 is a first-level entry in the B-tree. It points to an
index buffer containing file names that are (lexicographically) less than itself—the file names file0,
file1, and file3. Note that the names file1, file3, and so on that are used in this example are not literal
file names but names intended to show the relative placement of files that are lexicographically or-
dered according to the displayed sequence.

Storing the file names in B-trees provides several benefits. Directory lookups are fast because the
file names are stored in a sorted order. And when higher-level software enumerates the files in a
directory, NTFS returns already-sorted names. Finally, because B-trees tend to grow wide rather than
deep, NTFS’s fast lookup times don’t degrade as directories grow.

NTFS also provides general support for indexing data besides file names, and several NTFS fea-
tures—including object IDs, quota tracking, and consolidated security—use indexing to manage
internal data.

The B-tree indexes are a generic capability of NTFS and are used for organizing security descrip-
tors, security IDs, object IDs, disk quota records, and reparse points. Directories are referred to as file
name indexes, while other types of indexes are known as view indexes.

466 Windows Internals, Sixth Edition, Part 2

Object IDs
In addition to storing the object ID assigned to a file or directory in the $OBJECT_ID attribute of its
MFT record, NTFS also keeps the correspondence between object IDs and their file record numbers in
the $O index of the \$Extend\$ObjId metadata file. The index collates entries by object ID (which is a
GUID), making it easy for NTFS to quickly locate a file based on its ID. This feature allows applications,
using undocumented native API functionality, to open a file or directory using its object ID. Figure
12-46 demonstrates the correspondence of the $ObjId metadata file and $OBJECT_ID attributes in
MFT records.

ID passed when an
application opens a

file using its object ID

$O index

$ObjId metadata file MFT entry

MFT

Object ID 0

MFT entry number
FILE_OBJECTID_BUFFER

MFT entry number
FILE_OBJECTID_BUFFER

Object ID 1

Object ID 2

MFT entry number
FILE_OBJECTID_BUFFER

Standard
information

$O index
root

$O index
allocationFilename

File 3 $OBJECT_ID

File 1 $OBJECT_ID

File 2 $OBJECT_ID

…

FIGURE 12-46 $ObjId and $OBJECT_ID relationships

Quota Tracking
NTFS stores quota information in the \$Extend\$Quota metadata file, which consists of the named
index root attributes $O and $Q. Figure 12-47 shows the organization of these indexes. Just as NTFS
assigns each security descriptor a unique internal security ID, NTFS assigns each user a unique user ID.
When an administrator defines quota information for a user, NTFS allocates a user ID that corresponds
to the user’s SID. In the $O index, NTFS creates an entry that maps an SID to a user ID and sorts the
index by SID; in the $Q index, NTFS creates a quota control entry. A quota control entry contains the
value of the user’s quota limits, as well as the amount of disk space the user consumes on the volume.

 CHAPTER 12 File Systems 467

SID taken from
application when a file
or directory is created

$O index

SID 0

User ID 0

SID 1

User ID 1

SID 2

User ID 2

User ID taken from a file’s
$STANDARD_INFORMATION

attribute during a file operation

$Q index

User ID 0

Quota entry for user 0

User ID 1

Quota entry for user 1

User ID 2

Quota entry for user 2

FIGURE 12-47 $Quota indexing

When an application creates a file or directory, NTFS obtains the application user’s SID and looks
up the associated user ID in the $O index. NTFS records the user ID in the new file or directory’s
$STANDARD_INFORMATION attribute, which counts all disk space allocated to the file or direc-
tory against that user’s quota. Then NTFS looks up the quota entry in the $Q index and determines
whether the new allocation causes the user to exceed his or her warning or limit threshold. When
a new allocation causes the user to exceed a threshold, NTFS takes appropriate steps, such as log-
ging an event to the System event log or not letting the user create the file or directory. As a file or
directory changes size, NTFS updates the quota control entry associated with the user ID stored in
the $STANDARD_INFORMATION attribute. NTFS uses the NTFS generic B-tree indexing to efficiently
correlate user IDs with account SIDs and, given a user ID, to efficiently look up a user’s quota control
information.

Consolidated Security
NTFS has always supported security, which lets an administrator specify which users can and can’t
access individual files and directories. NTFS optimizes disk utilization for security descriptors by using
a central metadata file named $Secure to store only one instance of each security descriptor on a
volume.

The $Secure file contains two index attributes—$SDH (Security Descriptor Hash) and $SII (Security
ID Index)—and a data-stream attribute named $SDS (Security Descriptor Stream), as Figure 12-48
shows. NTFS assigns every unique security descriptor on a volume an internal NTFS security ID (not to
be confused with a Windows SID, which uniquely identifies computers and user accounts) and hashes
the security descriptor according to a simple hash algorithm. A hash is a potentially nonunique short-
hand representation of a descriptor. Entries in the $SDH index map the security descriptor hashes to
the security descriptor’s storage location within the $SDS data attribute, and the $SII index entries
map NTFS security IDs to the security descriptor’s location in the $SDS data attribute.

468 Windows Internals, Sixth Edition, Part 2

When you apply a security descriptor to a file or directory, NTFS obtains a hash of the descrip-
tor and looks through the $SDH index for a match. NTFS sorts the $SDH index entries according to
the hash of their corresponding security descriptor and stores the entries in a B-tree. If NTFS finds a
match for the descriptor in the $SDH index, NTFS locates the offset of the entry’s security descriptor
from the entry’s offset value and reads the security descriptor from the $SDS attribute. If the hashes
match but the security descriptors don’t, NTFS looks for another matching entry in the $SDH index.
When NTFS finds a precise match, the file or directory to which you’re applying the security descrip-
tor can reference the existing security descriptor in the $SDS attribute. NTFS makes the reference
by reading the NTFS security identifier from the $SDH entry and storing it in the file or directory’s
$STANDARD_INFORMATION attribute. The NTFS $STANDARD_INFORMATION attribute, which all files
and directories have, stores basic information about a file, including its attributes, time stamp infor-
mation, and security identifier.

Hash of a security
descriptor when a security

setting is applied to a
file or directory

$SDH index

Hash 1

$SDS offset

Hash 2

$SDS offset

Hash 0

$SDS offset

$SDS data stream

Security descriptor
0

Security descriptor
1

Security descriptor
2

ID taken from a file’s
$STANDARD_INFORMATION

attribute during a file or
directory security check

$SII index

NTFS security ID 0

$SDS offset

NTFS security ID 1

$SDS offset

NTFS security ID 2

$SDS offset

FIGURE 12-48 $Secure indexing

If NTFS doesn’t find in the $SDH index an entry that has a security descriptor that matches the
descriptor you’re applying, the descriptor you’re applying is unique to the volume and NTFS as-
signs the descriptor a new internal security ID. NTFS internal security IDs are 32-bit values, whereas
SIDs are typically several times larger, so representing SIDs with NTFS security IDs saves space in the
$STANDARD_INFORMATION attribute. NTFS then adds the security descriptor to the end of the $SDS
data attribute, and it adds to the $SDH and $SII indexes entries that reference the descriptor’s offset
in the $SDS data.

When an application attempts to open a file or directory, NTFS uses the $SII index to look up the
file or directory’s security descriptor. NTFS reads the file or directory’s internal security ID from the
MFT entry’s $STANDARD_INFORMATION attribute. It then uses the $Secure file’s $SII index to locate
the ID’s entry in the $SDS data attribute. The offset into the $SDS attribute lets NTFS read the secu-
rity descriptor and complete the security check. NTFS stores the 32 most recently accessed security

 CHAPTER 12 File Systems 469

descriptors with their $SII index entries in a cache so that it will access the $Secure file only when the
$SII isn’t cached.

NTFS doesn’t delete entries in the $Secure file, even if no file or directory on a volume references
the entry. Not deleting these entries doesn’t significantly decrease disk space because most volumes,
even those used for long periods, have relatively few unique security descriptors.

NTFS’s use of generic B-tree indexing lets files and directories that have the same security settings
efficiently share security descriptors. The $SII index lets NTFS quickly look up a security descriptor in
the $Secure file while performing security checks, and the $SDH index lets NTFS quickly determine
whether a security descriptor being applied to a file or directory is already stored in the $Secure file
and can be shared.

Reparse Points
As described earlier in the chapter, a reparse point is a block of up to 16 KB of application- defined
reparse data and a 32-bit reparse tag that are stored in the $REPARSE_POINT attribute of a file or
directory. Whenever an application creates or deletes a reparse point, NTFS updates the \$Extend\
$Reparse metadata file, in which NTFS stores entries that identify the file record numbers of files
and directories that contain reparse points. Storing the records in a central location enables NTFS to
provide interfaces for applications to enumerate all a volume’s reparse points or just specific types
of reparse points, such as mount points. (See Chapter 9 for more information on mount points.) The
\$Extend\$Reparse file uses the generic B-tree indexing facility of NTFS by collating the file’s entries
(in an index named $R) by reparse point tags and file record numbers.

Transaction Support
By leveraging the Kernel Transaction Manager (KTM) support in the kernel, as well as the facilities
provided by the Common Log File System that were described earlier, NTFS implements a transac-
tional model called transactional NTFS or TxF. TxF provides a set of user-mode APIs that applications
can use for transacted operations on their files and directories and also a file system control (FSCTL)
interface for managing its resource managers.

Note Support for TxF was added to the NTFS driver without actually changing the format
of the NTFS data structures, which is why the NTFS format version number, 3.1, is the same
as it has been since Windows XP and Windows Server 2003. TxF achieves backward com-
patibility by reusing the attribute type ($LOGGED_UTILITY_STREAM) that was previously
used only for EFS support instead of adding a new one.

The overall architecture for TxF, shown in Figure 12-49, uses several components:

 ■ Transacted APIs implemented in the Kernel32.dll library

 ■ A library for reading TxF logs (%SystemRoot%\System32\Txfw32.dll)

470 Windows Internals, Sixth Edition, Part 2

 ■ A COM component for TxF logging functionality (%SystemRoot\System32\Txflog.dll)

 ■ The transactional NTFS library inside the NTFS driver

 ■ The CLFS infrastructure for reading and writing log records

User mode

Kernel mode

CLFS libraryTxF library

Application

Transacted APIs

NTFS driver CLFS driver

FIGURE 12-49 TxF architecture

Isolation
Although transactional file operations are opt-in, just like the transactional registry (TxR) operations
described in Chapter 4 in Part 1, TxF has an impact on regular applications that are not transaction-
aware because it ensures that the transactional operations are isolated. For example, if an antivirus
program is scanning a file that’s currently being modified by another application via a transacted
operation, TxF must ensure that the scanner reads the pretransaction data, while applications that ac-
cess the file within the transaction work with the modified data. This model is called read-committed
isolation.

Read-committed isolation involves the concept of transacted writers and transacted readers. The
former always view the most up-to-date version of a file, including all changes made by the transac-
tion that is currently associated with the file. At any given time, there can be only one transacted
writer for a file, which means that its write access is exclusive. Transacted readers, on the other hand,
have access only to the committed version of the file at the time they open the file. They are therefore
isolated from changes made by transacted writers. This allows for readers to have a consistent view
of a file, even when a transacted writer commits its changes. To see the updated data, the transacted
reader must open a new handle to the modified file.

Nontransacted writers, on the other hand, are prevented from opening the file by both transacted
writers and transacted readers, so they cannot make changes to the file without being part of the
transaction. Nontransacted readers act similarly to transacted readers in that they see only the file
contents that were last committed when the file handle was open. Unlike transacted readers, however,

 CHAPTER 12 File Systems 471

they do not receive read-committed isolation, and as such they always receive the updated view of
the latest committed version of a transacted file without having to open a new file handle. This allows
non-transaction-aware applications to behave as expected.

To summarize, TxF’s read-committed isolation model has the following characteristics:

 ■ Changes are isolated from transacted readers

 ■ Changes are rolled back (undone) if the associated transaction is rolled back, if the machine
crashes, or if the volume is forcibly dismounted.

 ■ Changes are flushed to disk if the associated transaction is committed.

EXPERIMENT: Understanding and Managing Transactions
In this experiment we’ll use the Transactdemo.exe tool to create a new file, add some data to it
as part of a transaction, and see how nontransacted clients interact with the file while the trans-
action is active. First, open a Command Prompt window and run Transactdemo.exe:

C:\>Transactdemo.exe

Transaction Demo v1.0
by Mark Russinovich

Transaction created: {5CD5E900-9DA8-11DD-8379-005056C00008}

Created C:\TransactionDemo.txt.
Pass TransDemo the GUID listed above to see the transacted file.

Rollback or commit transaction? (r/c):

Transactdemo creates C:\TransactionDemo.txt within a transaction that it has not committed.
Open a second Command Prompt window, and use the dir command to look for the presence
of the TransactionDemo.txt file:

C:\>dir transactiondemo.txt
 Volume in drive C is OS
 Volume Serial Number is 0C30-686E

 Directory of C:\
File Not Found

According to this second command prompt, the file doesn’t even exist. Now simulate a non-
transacted writer by trying to add data to the file via the echo command:

C:\>echo Hello > TransactionDemo.txt
The function attempted to use a name that is reserved for use by another transaction.

As expected, nontransacted writers are blocked from modifying the file.

472 Windows Internals, Sixth Edition, Part 2

The %SystemRoot%\System32\Ktmutil.exe and %SystemRoot%\System32\Fsutil.exe built-
in applications can be very useful for dealing with transactional operations on the file system.
For example, you can get a list of all current transactions on the system with the following
command:

C:\>ktmutil tx list
TxGuid Description
-------------------------------------- ---
{5cd5e900-9da8-11dd-8379-005056c00008} Demo Transaction?

Note that the GUID matches what Transactdemo returned. With the GUID, you can now use
the Fsutil command to query information about the transaction and to commit it or roll it back.
For example, here’s how to list the files part of the transaction and the owner account:

C:\>fsutil transaction query all {5cd5e900-9da8-11dd-8379-005056c00008}
dwOutcome: 1
dwIsolationLevel: 0
dwIsolationFlags: 0
dwTimeout: -1
Owner: BUILTIN\Administrators
Number of Files: 1
---- \TransactionDemo.txt

Although the Transactdemo tool presents you with the option to roll back or commit the
current transaction, the Fsutil utility allows commits or rollbacks to any ongoing transaction
your account has access to. Go back to the command prompt where you ran Transactdemo and
press C to commit the transaction, after which the file becomes a standard nontransacted file.

Transactional APIs
TxF implements transacted versions of the Windows file I/O APIs, which use the suffix Transacted:

 ■ Create APIs CreateDirectoryTransacted, CreateFileTransacted, CreateHardLinkTransacted,
CreateSymbolicLinkTransacted

 ■ Find APIs FindFirstFileNameTransacted, FindFirstFileTransacted, FindFirstStreamTransacted

 ■ Query APIs GetCompressedFileSizeTransacted, GetFileAttributesTransacted, GetFullPath-
NameTransacted, GetLongPathNameTransacted

 ■ Delete APIs DeleteFileTransacted, RemoveDirectoryTransacted

 ■ Copy and Move/Rename APIs CopyFileTransacted, MoveFileTransacted

 ■ Set APIs SetFileAttributesTransacted

In addition, some APIs automatically participate in transacted operations when the file handle they
are passed is part of a transaction, like one created by the CreateFileTransacted API. Table 12-9 lists
Windows APIs that have modified behavior when dealing with a transacted file handle.

 CHAPTER 12 File Systems 473

TABLE 12-9 API Behavior Changed by TxF

API Name Change

CloseHandle Transactions will not be committed until all applications close
transacted handles to the file.

CreateFileMapping, MapViewOfFile Modifications to mapped views of a file part of a transaction will be
associated with the transaction themselves.

FindNextFile, ReadDirectoryChanges,
GetInformationByHandle, GetFileSize

If the file handle is part of a transaction, read-isolation rules will be
applied to these operations.

GetVolumeInformation Function will return FILE_SUPPORTS_TRANSACTIONS if the volume
supports TxF.

ReadFile, WriteFile Read and write operations to a transacted file handle will be part of
the transaction.

SetFileInformationByHandle Changes to the FileBasicInfo, FileRenameInfo, FileAllocationInfo,
FileEndOfFileInfo, and FileDispositionInfo classes will be transacted if
the file handle is part of a transaction.

SetEndOfFile, SetFileShortName, SetFileTime Changes will be transacted if the file handle is part of a transaction.

Resource Managers
Just like TxR uses a resource manager (RM) to keep track of transactional metadata and log files, TxF
uses a default resource manager, one for each volume, to keep track of its transactional state. TxF,
however, also supports additional resource managers called secondary resource managers. These
resource managers can be defined by application writers and have their metadata located in any
directory of the application’s choosing, defining their own transactional work units for undo, backup,
restore, and redo operations. TxF uses the default resource manager for transacted APIs, and appli-
cations that use transactions with the Distributed Transaction Coordinator or the .NET Framework’s
System.Transaction classes create and manage secondary TxF resource managers with TxF resource
manager file system control commands. Applications can create and manage secondary RMs by us-
ing file system control codes defined for TxF, such as FSCTL_TXFS_CREATE_SECONDARY_RM, FSCTL_
TXFS_START_RM, and FSCTL_TXFS_SHUTDOWN_RM. When a secondary RM is created, it must be
made consistent by one or more FSCTL_TXFS_ROLLFORWARD_REDO calls followed by FSCTL_TXFS_
ROLLFORWARD_UNDO, which redo and/or undo operations that were stored in the log but never
committed (such as in the case of a machine crash). We’ll cover the recovery procedure for resource
managers shortly. Both the default resource manager and secondary resource managers contain a
number of metadata files and directories that describe their current state:

 ■ The $Txf directory, which is where files are linked when they are deleted or overwritten by
transactional operations. If a file is deleted in a transaction, read-isolation rules specify that
nontransacted readers should still be able to access the file before the delete operation is
actually committed. This isolation is achieved by moving the transaction-deleted file into the
$Txf directory. The NTFS driver will then keep track of the isolation by inserting a temporary
structure in the SCB of the parent directory where the deleted file was originally located. In
this way, the file will continue to show up if the parent is enumerated, and it will store the file
record number, allowing the file to be opened. When the transaction is committed, NTFS de-
letes the temporary structure and deletes the file from the $Txf directory. On the other hand, if
the transaction is rolled back, NTFS moves the file back to its original directory.

474 Windows Internals, Sixth Edition, Part 2

 ■ The $Tops, or TxF Old Page Stream (TOPS) file, which contains a default data stream and an
alternate data stream called $T. The default stream for the TOPS file contains metadata about
the resource manager, such as its GUID, its CLFS log policy, and the LSN at which recovery
should start. The $T stream contains file data that is partially overwritten by a transactional
writer (as opposed to a full overwrite, which would move the file into the $Txf directory). NTFS
keeps a structure in memory that keeps track of which parts of a file are being modified under
a transaction so that nontransacted readers can still access the noncommitted data by having
their reads forwarded to $Tops:$T. When the transaction is committed or aborted, the pages
are either moved from the $T stream into the original file or simply thrown out in the case of
an abort.

 ■ The TxF log files, which are CLFS log files storing transaction records. For the default resource
manager, these files are part of the $TxfLog directory, but secondary resource managers
can store them anywhere. TxF uses a multiplexed base log file called $TxfLog.blf. The file
\$Extend\$RmMetadata\$TxfLog\$TxfLog contains two streams: the KtmLog stream used for
Kernel Transaction Manager metadata records, and the TxfLog stream, which contains the
TxF log records. Each stream is stored in CLFS log containers that start with $TxfLogContainer
and are followed by a unique, increasing ID, such as 00000000000000000001. As the TxF log
grows, more container files are created.

As described earlier, the default resource manager stores its files in the \$Extend\$RmMetadata
directory on each NTFS-formatted volume on the machine.

EXPERIMENT: Querying Resource Manager Information
You can use the built-in %SystemRoot%\System32\Fsutil.exe command-line program to query
information about the default resource manager, as well as to create, start, and stop secondary
resource managers and configure their logging policies and behaviors. The following command
queries information about the default resource manager, which is identified by the root direc-
tory (\):

C:\>fsutil resource info \
RM Identifier: CF7234E7-39E3-11DC-BDCE-00188BDD5F49
KTM Log Path for RM: \Device\HarddiskVolume3\$Extend\$RmMetadata\$TxfLog\
 $TxfLog::KtmLog
Space used by TOPS: 79 Mb
TOPS free space: 100%
RM State: Active
Running transactions: 0
One phase commits: 0
Two phase commits: 1
System initiated rollbacks: 0
Age of oldest transaction: 00:00:00
Logging Mode: Simple
Number of containers: 2
Container size: 10 Mb
Total log capacity: 20 Mb
Total free log space: 14 Mb

 CHAPTER 12 File Systems 475

Minimum containers: 2
Maximum containers: 20
Log growth increment: 2 container(s)
Auto shrink: Not enabled

RM prefers availability over consistency.

As mentioned, the fsutil resource command has many options for configuring TxF resource
managers, including the ability to create a secondary resource manager in any directory of your
choice. For example, you can use the fsutil resource create c:\rmtest command to create a sec-
ondary resource manager in the Rmtest directory, followed by the fsutil resource start c:\rmtest
command to initiate it. Note the presence of the $Tops and $TxfLogContainer* files and of the
TxfLog and $Txf directories in this folder.

On-Disk Implementation
As shown earlier in Table 12-6, TxF uses the $LOGGED_UTILITY_STREAM attribute type to store ad-
ditional data for files and directories that are or have been part of a transaction. This attribute is
called $TXF_DATA and contains important information that allows TxF to keep active offline data for
a file part of a transaction. The attribute is permanently stored in the MFT; that is, even after the file
is not part of a transaction anymore, the stream remains, for reasons we’ll explain shortly. The major
components of the attribute are shown in Figure 12-50.

File record number of RM root

Flags

TxF file ID (TxID)

LSN for NTFS metadata

LSN for user data

LSN for directory index

USN index

FIGURE 12-50 $TXF_DATA attribute

The first field shown is the file record number of the root of the resource manager responsible
for the transaction associated with this file. For the default resource manager, the file record number
is 5, which is the file record number for the root directory (\) in the MFT, as shown earlier in Figure
12-27. TxF needs this information when it creates an FCB for the file so that it can link it to the correct
resource manager, which in turn needs to create an enlistment for the transaction when a transacted
file request is received by NTFS. (For more information on enlistments and transactions, see the KTM
section in Chapter 3 in Part 1.)

Another important piece of data stored in the $TXF_DATA attribute is the TxF file ID, or TxID,
and this explains why $TXF_DATA attributes are never deleted. Because NTFS writes file names to
its records when writing to the transaction log, it needs a way to uniquely identify files in the same

476 Windows Internals, Sixth Edition, Part 2

directory that may have had the same name. For example, if sample.txt is deleted from a directory
in a transaction and later a new file with the same name is created in the same directory (and as part
of the same transaction), TxF needs a way to uniquely identify the two instances of sample.txt. This
identification is provided by a 64-bit unique number, the TxID, that TxF increments when a new file
(or an instance of a file) becomes part of a transaction. Because they can never be reused, TxIDs are
permanent, so the $TXF_DATA attribute will never be removed from a file.

Last but not least, three CLFS LSNs are stored for each file part of a transaction. Whenever a
transaction is active, such as during create, rename, or write operations, TxF writes a log record to its
CLFS log. Each record is assigned an LSN, and that LSN gets written to the appropriate field in the
$TXF_DATA attribute. The first LSN is used to store the log record that identifies the changes to NTFS
metadata in relation to this file. For example, if the standard attributes of a file are changed as part of
a transacted operation, TxF must update the relevant MFT file record, and the LSN for the log record
describing the change is stored. TxF uses the second LSN when the file’s data is modified. Finally, TxF
uses the third LSN when the file name index for the directory requires a change related to a transac-
tion the file took part in, or when a directory was part of a transaction and received a TxID.

The $TXF_DATA attribute also stores internal flags that describe the state information to TxF
and the index of the USN record that was applied to the file on commit. A TxF transaction can span
multiple USN records that may have been partly updated by NTFS’s recovery mechanism (described
shortly), so the index tells TxF how many more USN records must be applied after a recovery.

Logging Implementation
As mentioned earlier, each time a change is made to the disk because of an ongoing transaction, TxF
writes a record of the change to its log. TxF uses a variety of log record types to keep track of trans-
actional changes, but regardless of the record type, all TxF log records have a generic header that
contains information identifying the type of the record, the action related to the record, the TxID that
the record applies to, and the GUID of the KTM transaction that the record is associated with.

A redo record specifies how to reapply a change part of a transaction that’s already been com-
mitted to the volume if the transaction has actually never been flushed from cache to disk. An undo
record, on the other hand, specifies how to reverse a change part of a transaction that hasn’t been
committed at the time of a rollback. Some records are redo-only, meaning they don’t contain any
equivalent undo data, while other records contain both redo and undo information.

Through the TOPS file, TxF maintains two critical pieces of data, the base LSN and the restart LSN.
The base LSN determines the LSN of the first valid record in the log, while the restart LSN indicates at
which LSN recovery should begin when starting the resource manager. When TxF writes a restart rec-
ord, it updates these two values, indicating that changes have been made to the volume and flushed
out to disk—meaning that the file system is fully consistent up to the new restart LSN.

TxF also writes compensating log records, or CLRs. These records store the actions that are being
performed during transaction rollback (explained next). They’re primarily used to store the undo-next
LSN, which allows the recovery process to avoid repeated undo operations by bypassing undo records
that have already been processed, a situation that can happen if the system fails during the recovery

 CHAPTER 12 File Systems 477

phase and has already performed part of the undo pass. Finally, TxF also deals with prepare records,
abort records, and commit records, which describe the state of the KTM transactions related to TxF.

Recovery Implementation
When a resource manager starts because of an FSCTL_TXFS_START_RM call (or, for the default re-
source manager, as soon as the volume is mounted), TxF runs the recovery process. It reads the TOPS
file to determine the restart LSN, where the recovery process should start, and then reads each record
forward through the log (called the redo pass). As each record is being processed, TxF opens the
file referenced by the record and compares the LSN in the $TXF_DATA attribute with the LSN in the
record. If the LSN stored in the attribute is greater than or equal to the LSN of the log record, the ac-
tion is not applied because the on-disk copy of the file is as new or newer than that of the log record
action. If the LSN is not greater than or equal to the LSN in the record, the log contains information
about the file that was never written to the file itself. In this case, TxF applies whichever action was
recorded in the log record and updates the LSN in the $TXF_DATA attribute with the LSN from the
record.

As TxF is processing its redo pass, it builds its transaction table, which describes the operations that
it has completed; if it encounters an abort or commit record along the way, TxF discards the related
transactions. By the end of the redo pass, TxF parses the final transaction table and connects to the
KTM to see whether the KTM recorded a commit or an abort for the transactions. (KTM stores this
information in the KtmLog stream of the TxF multiplexed log, as explained earlier.)

After TxF has finished communicating with the KTM, it looks at any leftover transactions in the
transaction table and begins the undo pass. In the undo pass, TxF aborts all the remaining transac-
tions in the transaction table by traversing each transaction’s undo LSN chain and applying the undo
action for each log record. At the end of the undo pass, the resource manager is consistent and
initialized.

This process is very similar to the log file service’s recovery procedure, which is described later in
more detail. You should refer to this description for a complete picture of the standard transactional
recovery mechanisms.

NTFS Recovery Support

NTFS recovery support ensures that if a power failure or a system failure occurs, no file system opera-
tions (transactions) will be left incomplete and the structure of the disk volume will remain intact
without the need to run a disk repair utility. The NTFS Chkdsk utility is used to repair catastrophic disk
corruption caused by I/O errors (bad disk sectors, electrical anomalies, or disk failures, for example) or
software bugs. But with the NTFS recovery capabilities in place, Chkdsk is rarely needed.

As mentioned earlier (in the section “Recoverability”), NTFS uses a transaction-processing scheme
to implement recoverability. This strategy ensures a full disk recovery that is also extremely fast (on
the order of seconds) for even the largest disks. NTFS limits its recovery procedures to file system data
to ensure that at the very least the user will never lose a volume because of a corrupted file system;

478 Windows Internals, Sixth Edition, Part 2

however, unless an application takes specific action (such as flushing cached files to disk), NTFS’s
recovery support doesn’t guarantee user data to be fully updated if a crash occurs. This is the job of
transactional NTFS (TxF).

The following sections detail the transaction-logging scheme NTFS uses to record modifications to
file system data structures and explain how NTFS recovers a volume if the system fails.

Design
NTFS implements the design of a recoverable file system. These file systems ensure volume consis-
tency by using logging techniques (sometimes called journaling) originally developed for transac-
tion processing. If the operating system crashes, the recoverable file system restores consistency by
executing a recovery procedure that accesses information that has been stored in a log file. Because
the file system has logged its disk writes, the recovery procedure takes only seconds, regardless of the
size of the volume (unlike in the FAT file system, where the repair time is related to the volume size).
The recovery procedure for a recoverable file system is exact, guaranteeing that the volume will be
restored to a consistent state.

A recoverable file system incurs some costs for the safety it provides. Every transaction that alters
the volume structure requires that one record be written to the log file for each of the transaction’s
suboperations. This logging overhead is ameliorated by the file system’s batching of log records—
writing many records to the log file in a single I/O operation. In addition, the recoverable file system
can employ the optimization techniques of a lazy write file system. It can even increase the length of
the intervals between cache flushes because the file system metadata can be recovered if the system
crashes before the cache changes have been flushed to disk. This gain over the caching performance
of lazy write file systems makes up for, and often exceeds, the overhead of the recoverable file sys-
tem’s logging activity.

Neither careful write nor lazy write file systems guarantee protection of user file data. If the sys-
tem crashes while an application is writing a file, the file can be lost or corrupted. Worse, the crash
can corrupt a lazy write file system, destroying existing files or even rendering an entire volume
inaccessible.

The NTFS recoverable file system implements several strategies that improve its reliability over that
of the traditional file systems. First, NTFS recoverability guarantees that the volume structure won’t
be corrupted, so all files will remain accessible after a system failure. Second, although NTFS doesn’t
guarantee protection of user data in the event of a system crash—some changes can be lost from the
cache—applications can take advantage of the NTFS write-through and cache-flushing capabilities to
ensure that file modifications are recorded on disk at appropriate intervals.

Both cache write-through—forcing write operations to be immediately recorded on disk—and
cache flushing—forcing cache contents to be written to disk—are efficient operations. NTFS doesn’t
have to do extra disk I/O to flush modifications to several different file system data structures because
changes to the data structures are recorded—in a single write operation—in the log file; if a failure
occurs and cache contents are lost, the file system modifications can be recovered from the log.

 CHAPTER 12 File Systems 479

Furthermore, unlike the FAT file system, NTFS guarantees that user data will be consistent and avail-
able immediately after a write-through operation or a cache flush, even if the system subsequently
fails.

Metadata Logging
NTFS provides file system recoverability by using the same logging technique used by TxF, which
consists of recording all operations that modify file system metadata to a log file. Unlike TxF, however,
NTFS’s built-in file system recovery support doesn’t make use of CLFS but uses an internal logging
implementation called the log file service (which is not a background service process as described in
Chapter 4 in Part 1). Another difference is that while TxF is used only when callers opt in for trans-
acted operations, NTFS records all metadata changes so that the file system can be made consistent
in the face of a system failure.

Log File Service
The log file service (LFS) is a series of kernel-mode routines inside the NTFS driver that NTFS uses to
access the log file. NTFS passes the LFS a pointer to an open file object, which specifies a log file to
be accessed. The LFS either initializes a new log file or calls the Windows cache manager to access
the existing log file through the cache, as shown in Figure 12-51. Note that although LFS and CLFS
have similar sounding names, they are separate logging implementations used for different purposes,
although their operation is similar in many ways.

Log file
service

Flush the
log file

Read/write/flush
the log file

Log the transaction

Write the
volume updates

NTFS driver

…
I/O manager

Cache
manager

Call the memory
manager to access

the mapped file

FIGURE 12-51 Log file service (LFS)

The LFS divides the log file into two regions: a restart area and an “infinite” logging area, as shown
in Figure 12-52.

480 Windows Internals, Sixth Edition, Part 2

Log records

Logging area

Copy 2Copy 1

LFS restart area

FIGURE 12-52 Log file regions

NTFS calls the LFS to read and write the restart area. NTFS uses the restart area to store context
information such as the location in the logging area at which NTFS will begin to read during recovery
after a system failure. The LFS maintains a second copy of the restart data in case the first becomes
corrupted or otherwise inaccessible. The remainder of the log file is the logging area, which contains
transaction records NTFS writes to recover a volume in the event of a system failure. The LFS makes
the log file appear infinite by reusing it circularly (while guaranteeing that it doesn’t overwrite infor-
mation it needs). Just like CLFS, the LFS uses LSNs to identify records written to the log file. As the LFS
cycles through the file, it increases the values of the LSNs. NTFS uses 64 bits to represent LSNs, so the
number of possible LSNs is so large as to be virtually infinite.

NTFS never reads transactions from or writes transactions to the log file directly. The LFS provides
services that NTFS calls to open the log file, write log records, read log records in forward or back-
ward order, flush log records up to a specified LSN, or set the beginning of the log file to a higher
LSN. During recovery, NTFS calls the LFS to perform the same actions as described in the TxF recovery
section: a redo pass for nonflushed committed changes, followed by an undo pass for noncommitted
changes.

Here’s how the system guarantees that the volume can be recovered:

1. NTFS first calls the LFS to record in the (cached) log file any transactions that will modify the
volume structure.

2. NTFS modifies the volume (also in the cache).

3. The cache manager prompts the LFS to flush the log file to disk. (The LFS implements the flush
by calling the cache manager back, telling it which pages of memory to flush. Refer back to
the calling sequence shown in Figure 12-51.)

4. After the cache manager flushes the log file to disk, it flushes the volume changes (the meta-
data operations themselves) to disk.

These steps ensure that if the file system modifications are ultimately unsuccessful, the corre-
sponding transactions can be retrieved from the log file and can be either redone or undone as part
of the file system recovery procedure.

File system recovery begins automatically the first time the volume is used after the system is re-
booted. NTFS checks whether the transactions that were recorded in the log file before the crash were
applied to the volume, and if they weren’t, it redoes them. NTFS also guarantees that transactions not
completely logged before the crash are undone so that they don’t appear on the volume.

 CHAPTER 12 File Systems 481

Log Record Types
The NTFS recovery mechanism uses similar log record types as the TxF recovery mechanism: update
records, which correspond to the redo and undo records that TxF uses, and checkpoint records, which
are similar to the restart records used by TxF. Figure 12-53 shows three update records in the log file.
Each record represents one suboperation of a transaction, creating a new file. The redo entry in each
update record tells NTFS how to reapply the suboperation to the volume, and the undo entry tells
NTFS how to roll back (undo) the suboperation.

Redo: Allocate/initialize an MFT file record
Undo: Deallocate the file record

Redo: Set bits 3–9 in the bitmap
Undo: Clear bits 3–9 in the bitmap

Redo: Add the file name to the index
Undo: Remove the file name from the index

LFS restart area Logging area

Log file records

T1a T1b T1c… ...

FIGURE 12-53 Update records in the log file

After logging a transaction (in this example, by calling the LFS to write the three update records to
the log file), NTFS performs the suboperations on the volume itself, in the cache. When it has finished
updating the cache, NTFS writes another record to the log file, recording the entire transaction as
complete—a suboperation known as committing a transaction. Once a transaction is committed,
NTFS guarantees that the entire transaction will appear on the volume, even if the operating system
subsequently fails.

When recovering after a system failure, NTFS reads through the log file and redoes each com-
mitted transaction. Although NTFS completed the committed transactions from before the system
failure, it doesn’t know whether the cache manager flushed the volume modifications to disk in time.
The updates might have been lost from the cache when the system failed. Therefore, NTFS executes
the committed transactions again just to be sure that the disk is up to date.

After redoing the committed transactions during a file system recovery, NTFS locates all the trans-
actions in the log file that weren’t committed at failure and rolls back each suboperation that had
been logged. In Figure 12-53, NTFS would first undo the T1c suboperation and then follow the back-
ward pointer to T1b and undo that suboperation. It would continue to follow the backward pointers,
undoing suboperations, until it reached the first suboperation in the transaction. By following the
pointers, NTFS knows how many and which update records it must undo to roll back a transaction.

Redo and undo information can be expressed either physically or logically. As the lowest layer
of software maintaining the file system structure, NTFS writes update records with physical descrip-
tions that specify volume updates in terms of particular byte ranges on the disk that are to be
changed, moved, and so on, unlike TxF, which uses logical descriptions that express updates in terms

482 Windows Internals, Sixth Edition, Part 2

of operations such as “delete file A.dat.” NTFS writes update records (usually several) for each of the
following transactions:

 ■ Creating a file

 ■ Deleting a file

 ■ Extending a file

 ■ Truncating a file

 ■ Setting file information

 ■ Renaming a file

 ■ Changing the security applied to a file

The redo and undo information in an update record must be carefully designed because although
NTFS undoes a transaction, recovers from a system failure, or even operates normally, it might try
to redo a transaction that has already been done or, conversely, to undo a transaction that never
occurred or that has already been undone. Similarly, NTFS might try to redo or undo a transaction
consisting of several update records, only some of which are complete on disk. The format of the
update records must ensure that executing redundant redo or undo operations is idempotent, that is,
has a neutral effect. For example, setting a bit that is already set has no effect, but toggling a bit that
has already been toggled does. The file system must also handle intermediate volume states correctly.

In addition to update records, NTFS periodically writes a checkpoint record to the log file, as il-
lustrated in Figure 12-54.

Checkpoint
record

LFS restart area

NTFS restart

Logging area

Log file records

LSN
2058

LSN
2061

... ...LSN
2059

LSN
2060

FIGURE 12-54 Checkpoint record in the log file

A checkpoint record helps NTFS determine what processing would be needed to recover a volume
if a crash were to occur immediately. Using information stored in the checkpoint record, NTFS knows,
for example, how far back in the log file it must go to begin its recovery. After writing a checkpoint
record, NTFS stores the LSN of the record in the restart area so that it can quickly find its most
recently written checkpoint record when it begins file system recovery after a crash occurs—this is
similar to the restart LSN used by TxF for the same reason.

Although the LFS presents the log file to NTFS as if it were infinitely large, it isn’t. The generous size
of the log file and the frequent writing of checkpoint records (an operation that usually frees up space

 CHAPTER 12 File Systems 483

in the log file) make the possibility of the log file filling up a remote one. Nevertheless, the LFS, just
like CLFS, accounts for this possibility by tracking several operational parameters:

 ■ The available log space

 ■ The amount of space needed to write an incoming log record and to undo the write, should
that be necessary

 ■ The amount of space needed to roll back all active (noncommitted) transactions, should that
be necessary

If the log file doesn’t contain enough available space to accommodate the total of the last two
items, the LFS returns a “log file full” error, and NTFS raises an exception. The NTFS exception handler
rolls back the current transaction and places it in a queue to be restarted later.

To free up space in the log file, NTFS must momentarily prevent further transactions on files. To
do so, NTFS blocks file creation and deletion and then requests exclusive access to all system files
and shared access to all user files. Gradually, active transactions either are completed successfully
or receive the “log file full” exception. NTFS rolls back and queues the transactions that receive the
exception.

Once it has blocked transaction activity on files as just described, NTFS calls the cache manager
to flush unwritten data to disk, including unwritten log file data. After everything is safely flushed to
disk, NTFS no longer needs the data in the log file. It resets the beginning of the log file to the cur-
rent position, making the log file “empty.” Then it restarts the queued transactions. Beyond the short
pause in I/O processing, the “log file full” error has no effect on executing programs.

This scenario is one example of how NTFS uses the log file not only for file system recovery but
also for error recovery during normal operation. You’ll find out more about error recovery in the fol-
lowing section.

Recovery
NTFS automatically performs a disk recovery the first time a program accesses an NTFS volume after
the system has been booted. (If no recovery is needed, the process is trivial.) Recovery depends
on two tables NTFS maintains in memory: a transaction table, which behaves just like the one TxF
maintains, and a dirty page table, which records which pages in the cache contain modifications to the
file system structure that haven’t yet been written to disk. This data must be flushed to disk during
recovery.

NTFS writes a checkpoint record to the log file once every 5 seconds. Just before it does, it calls the
LFS to store a current copy of the transaction table and of the dirty page table in the log file. NTFS
then records in the checkpoint record the LSNs of the log records containing the copied tables. When
recovery begins after a system failure, NTFS calls the LFS to locate the log records containing the
most recent checkpoint record and the most recent copies of the transaction and dirty page tables. It
then copies the tables to memory.

484 Windows Internals, Sixth Edition, Part 2

The log file usually contains more update records following the last checkpoint record. These
update records represent volume modifications that occurred after the last checkpoint record was
written. NTFS must update the transaction and dirty page tables to include these operations. After
updating the tables, NTFS uses the tables and the contents of the log file to update the volume itself.

To perform its volume recovery, NTFS scans the log file three times, loading the file into memory
during the first pass to minimize disk I/O. Each pass has a particular purpose:

1. Analysis

2. Redoing transactions

3. Undoing transactions

Analysis Pass
During the analysis pass, as shown in Figure 12-55, NTFS scans forward in the log file from the begin-
ning of the last checkpoint operation to find update records and use them to update the transaction
and dirty page tables it copied to memory. Notice in the figure that the checkpoint operation stores
three records in the log file and that update records might be interspersed among these records.
NTFS therefore must start its scan at the beginning of the checkpoint operation.

Analysis pass

Beginning of
checkpoint operation

End of checkpoint
operation

Dirty page
table

Update
record

Transaction
table

Checkpoint
record

Update
record

Update
record

......

FIGURE 12-55 Analysis pass

Most update records that appear in the log file after the checkpoint operation begins represent a
modification to either the transaction table or the dirty page table. If an update record is a “transac-
tion committed” record, for example, the transaction the record represents must be removed from
the transaction table. Similarly, if the update record is a “page update” record that modifies a file
system data structure, the dirty page table must be updated to reflect that change.

Once the tables are up to date in memory, NTFS scans the tables to determine the LSN of the old-
est update record that logs an operation that hasn’t been carried out on disk. The transaction table
contains the LSNs of the noncommitted (incomplete) transactions, and the dirty page table contains
the LSNs of records in the cache that haven’t been flushed to disk. The LSN of the oldest update
record that NTFS finds in these two tables determines where the redo pass will begin. If the last
checkpoint record is older, however, NTFS will start the redo pass there instead.

 CHAPTER 12 File Systems 485

Note In the TxF recovery model, there is no distinct analysis pass. Instead, as described in
the TxF recovery section, TxF performs the equivalent work in the redo pass.

Redo Pass
During the redo pass, as shown in Figure 12-56, NTFS scans forward in the log file from the LSN of
the oldest update record, which it found during the analysis pass. It looks for “page update” records,
which contain volume modifications that were written before the system failure but that might not
have been flushed to disk. NTFS redoes these updates in the cache.

Redo pass

Beginning of
checkpoint operation

Oldest unwritten
log record

Dirty page
table

Update
record

Update
record

Transaction
table

Checkpoint
record

Update
record

...... ...

FIGURE 12-56 Redo pass

When NTFS reaches the end of the log file, it has updated the cache with the necessary volume
modifications, and the cache manager’s lazy writer can begin writing cache contents to disk in the
background.

Undo Pass
After it completes the redo pass, NTFS begins its undo pass, in which it rolls back any transactions
that weren’t committed when the system failed. Figure 12-57 shows two transactions in the log file;
transaction 1 was committed before the power failure, but transaction 2 wasn’t. NTFS must undo
transaction 2.

... LSN
4044

LSN
4049

LSN
4045

LSN
4046

LSN
4047

LSN
4048

“Transaction committed” recordTransaction 1

Transaction 2

Undo pass

Power failure

FIGURE 12-57 Undo pass

486 Windows Internals, Sixth Edition, Part 2

Suppose that transaction 2 created a file, an operation that comprises three suboperations, each
with its own update record. The update records of a transaction are linked by backward pointers in
the log file because they are usually not contiguous.

The NTFS transaction table lists the LSN of the last-logged update record for each noncommit-
ted transaction. In this example, the transaction table identifies LSN 4049 as the last update record
logged for transaction 2. As shown from right to left in Figure 12-58, NTFS rolls back transaction 2.

... LSN
4044

LSN
4049

LSN
4045

LSN
4046

LSN
4047

LSN
4048

Transaction 1

Transaction 2

Redo: Allocate/initialize an MFT file record
Undo: Deallocate the file record

Redo: Add the file name to the index
Undo: Remove the file name from the index

Redo: Set bits 3–9 in the bitmap
Undo: Clear bits 3–9 in the bitmap

FIGURE 12-58 Undoing a transaction

After locating LSN 4049, NTFS finds the undo information and executes it, clearing bits 3 through
9 in its allocation bitmap. NTFS then follows the backward pointer to LSN 4048, which directs it to
remove the new file name from the appropriate file name index. Finally, it follows the last backward
pointer and deallocates the MFT file record reserved for the file, as the update record with LSN
4046 specifies. Transaction 2 is now rolled back. If there are other noncommitted transactions to
undo, NTFS follows the same procedure to roll them back. Because undoing transactions affects the
volume’s file system structure, NTFS must log the undo operations in the log file. After all, the power
might fail again during the recovery, and NTFS would have to redo its undo operations!

When the undo pass of the recovery is finished, the volume has been restored to a consistent state.
At this point, NTFS is prepared to flush the cache changes to disk to ensure that the volume is up to
date. Before doing so, however, it executes a callback that TxF registers for notifications of LFS flushes.
Because TxF and NTFS both use write-ahead logging, TxF must flush its log through CLFS before the
NTFS log is flushed to ensure consistency of its own metadata. (And similarly, the TOPS file must be
flushed before the CLFS-managed log files.) NTFS then writes an “empty” LFS restart area to indicate
that the volume is consistent and that no recovery need be done if the system should fail again im-
mediately. Recovery is complete.

NTFS guarantees that recovery will return the volume to some preexisting consistent state, but
not necessarily to the state that existed just before the system crash. NTFS can’t make that guarantee
because, for performance, it uses a “lazy commit” algorithm, which means that the log file isn’t im-
mediately flushed to disk each time a “transaction committed” record is written. Instead, numerous
“transaction committed” records are batched and written together, either when the cache manager
calls the LFS to flush the log file to disk or when the LFS writes a checkpoint record (once every 5
seconds) to the log file. Another reason the recovered volume might not be completely up to date is

 CHAPTER 12 File Systems 487

that several parallel transactions might be active when the system crashes and some of their “transac-
tion committed” records might make it to disk whereas others might not. The consistent volume that
recovery produces includes all the volume updates whose “transaction committed” records made it to
disk and none of the updates whose “transaction committed” records didn’t make it to disk.

NTFS uses the log file to recover a volume after the system fails, but it also takes advantage of an
important “freebie” it gets from logging transactions. File systems necessarily contain a lot of code
devoted to recovering from file system errors that occur during the course of normal file I/O. Because
NTFS logs each transaction that modifies the volume structure, it can use the log file to recover when
a file system error occurs and thus can greatly simplify its error handling code. The “log file full” error
described earlier is one example of using the log file for error recovery.

Most I/O errors that a program receives aren’t file system errors and therefore can’t be resolved
entirely by NTFS. When called to create a file, for example, NTFS might begin by creating a file record
in the MFT and then enter the new file’s name in a directory index. When it tries to allocate space for
the file in its bitmap, however, it could discover that the disk is full and the create request can’t be
completed. In such a case, NTFS uses the information in the log file to undo the part of the operation
it has already completed and to deallocate the data structures it reserved for the file. Then it returns a
“disk full” error to the caller, which in turn must respond appropriately to the error.

NTFS Bad-Cluster Recovery
The volume manager included with Windows (VolMgr) can recover data from a bad sector on a
fault-tolerant volume, but if the hard disk doesn’t perform bad-sector remapping or runs out of spare
sectors, the volume manager can’t perform bad-sector replacement to replace the bad sector. (See
Chapter 9 for more information on the volume manager.) When the file system reads from the sector,
the volume manager instead recovers the data and returns the warning to the file system that there is
only one copy of the data.

The FAT file system doesn’t respond to this volume manager warning. Moreover, neither FAT nor
the volume manager keeps track of the bad sectors, so a user must run the Chkdsk or Format utility
to prevent the volume manager from repeatedly recovering data for the file system. Both Chkdsk and
Format are less than ideal for removing bad sectors from use. Chkdsk can take a long time to find and
remove bad sectors, and Format wipes all the data off the partition it’s formatting.

In the file system equivalent of a volume manager’s bad-sector replacement, NTFS dynamically
replaces the cluster containing a bad sector and keeps track of the bad cluster so that it won’t be
reused. (Recall that NTFS maintains portability by addressing logical clusters rather than physical
sectors.) NTFS performs these functions when the volume manager can’t perform bad-sector replace-
ment. When a volume manager returns a bad-sector warning or when the hard disk driver returns
a bad-sector error, NTFS allocates a new cluster to replace the one containing the bad sector. NTFS
copies the data that the volume manager has recovered into the new cluster to reestablish data
redundancy.

Figure 12-59 shows an MFT record for a user file with a bad cluster in one of its data runs as it
existed before the cluster went bad. When it receives a bad-sector error, NTFS reassigns the cluster

488 Windows Internals, Sixth Edition, Part 2

containing the sector to its bad-cluster file, $BadClus. This prevents the bad cluster from being allo-
cated to another file. NTFS then allocates a new cluster for the file and changes the file’s VCN-to-LCN
mappings to point to the new cluster. This bad-cluster remapping (introduced earlier in this chapter)
is illustrated in Figure 12-59. Cluster number 1357, which contains the bad sector, must be replaced by
a good cluster.

Standard
information

0 1 2

1355 1356 1357

Filename Data

Bad

3 4 5

1588 1589 1590

VCN

User
file

LCN

1355

1588

3

3

0

3

Starting
VCN

Starting
LCN

Number of
clusters

FIGURE 12-59 MFT record for a user file with a bad cluster

Bad-sector errors are undesirable, but when they do occur, the combination of NTFS and the
volume manager provides the best possible solution. If the bad sector is on a redundant volume, the
volume manager recovers the data and replaces the sector if it can. If it can’t replace the sector, it
returns a warning to NTFS, and NTFS replaces the cluster containing the bad sector.

If the volume isn’t configured as a redundant volume, the data in the bad sector can’t be recov-
ered. When the volume is formatted as a FAT volume and the volume manager can’t recover the data,
reading from the bad sector yields indeterminate results. If some of the file system’s control structures
reside in the bad sector, an entire file or group of files (or potentially, the whole disk) can be lost.
At best, some data in the affected file (often, all the data in the file beyond the bad sector) is lost.
Moreover, the FAT file system is likely to reallocate the bad sector to the same or another file on the
volume, causing the problem to resurface.

Like the other file systems, NTFS can’t recover data from a bad sector without help from a volume
manager. However, NTFS greatly contains the damage a bad sector can cause. If NTFS discovers the
bad sector during a read operation, it remaps the cluster the sector is in, as shown in Figure 12-60.
If the volume isn’t configured as a redundant volume, NTFS returns a “data read” error to the calling
program. Although the data that was in that cluster is lost, the rest of the file—and the file system—
remains intact; the calling program can respond appropriately to the data loss, and the bad cluster
won’t be reused in future allocations. If NTFS discovers the bad cluster on a write operation rather
than a read, NTFS remaps the cluster before writing and thus loses no data and generates no error.

The same recovery procedures are followed if file system data is stored in a sector that goes bad. If
the bad sector is on a redundant volume, NTFS replaces the cluster dynamically, using the data recov-
ered by the volume manager. If the volume isn’t redundant, the data can’t be recovered, so NTFS sets

 CHAPTER 12 File Systems 489

a bit in the $Volume metadata file that indicates corruption on the volume. The NTFS Chkdsk utility
checks this bit when the system is next rebooted, and if the bit is set, Chkdsk executes, repairing the
file system corruption by reconstructing the NTFS metadata.

Standard
information

0

1357

Filename $Bad alternate data stream

Bad

VCN

Bad-
cluster

file

LCN

1357 10

Starting
VCN

Starting
LCN

Number of
clusters

Standard
information

0 1 2

1355 1356 1049

Filename $Data

3 4 5

1588 1589 1590

VCN

User
file

LCN

1355

1588

2

3

0

1049 1

1588 33

2

Starting
VCN

Starting
LCN

Number of
clusters

FIGURE 12-60 Bad-cluster remapping

In rare instances, file system corruption can occur even on a fault-tolerant disk configuration. A
double error can destroy both file system data and the means to reconstruct it. If the system crashes
while NTFS is writing the mirror copy of an MFT file record—of a file name index or of the log file,
for example—the mirror copy of such file system data might not be fully updated. If the system were
rebooted and a bad-sector error occurred on the primary disk at exactly the same location as the
incomplete write on the disk mirror, NTFS would be unable to recover the correct data from the disk
mirror. NTFS implements a special scheme for detecting such corruptions in file system data. If it ever
finds an inconsistency, it sets the corruption bit in the volume file, which causes Chkdsk to reconstruct
the NTFS metadata when the system is next rebooted. Because file system corruption is rare on a
fault-tolerant disk configuration, Chkdsk is seldom needed. It is supplied as a safety precaution rather
than as a first-line data recovery strategy.

The use of Chkdsk on NTFS is vastly different from its use on the FAT file system. Before writ-
ing anything to disk, FAT sets the volume’s dirty bit and then resets the bit after the modification

490 Windows Internals, Sixth Edition, Part 2

is complete. If any I/O operation is in progress when the system crashes, the dirty bit is left set and
Chkdsk runs when the system is rebooted. On NTFS, Chkdsk runs only when unexpected or unread-
able file system data is found and NTFS can’t recover the data from a redundant volume or from
redundant file system structures on a single volume. (The system boot sector is duplicated—in the
last sector of a volume—as are the parts of the MFT [$MftMirr] required for booting the system and
running the NTFS recovery procedure. This redundancy ensures that NTFS will always be able to boot
and recover itself.)

Table 12-10 summarizes what happens when a sector goes bad on a disk volume formatted for
one of the Windows-supported file systems according to various conditions we’ve described in this
section.

TABLE 12-10 Summary of NTFS Data Recovery Scenarios

Scenario With a Disk That Supports Bad-Sector
Remapping and Has Spare Sectors

With a Disk That Does Not Perform Bad-
Sector Remapping or Has No Spare Sectors

Fault-tolerant
volume1

 1. Volume manager recovers the data.
 2. Volume manager performs bad-sector

replacement.
 3. File system remains unaware of the error.

 1. Volume manager recovers the data.
 2. Volume manager sends the data and a

bad-sector error to the file system.
 3. NTFS performs cluster remapping.

Non-fault-tolerant
volume

 1. Volume manager can’t recover the data.
 2. Volume manager sends a bad-sector

error to the file system.
 3. NTFS performs cluster remapping. Data is

lost.2

 1. Volume manager can’t recover the data.
 2. Volume manager sends a bad-sector

error to the file system.
 3. NTFS performs cluster remapping. Data is

lost.

1 A fault-tolerant volume is one of the following: a mirror set (RAID-1) or a RAID-5 set.
2 In a write operation, no data is lost: NTFS remaps the cluster before the write.

If the volume on which the bad sector appears is a fault-tolerant volume—a mirrored (RAID-1) or
RAID-5 volume—and if the hard disk is one that supports bad-sector replacement (and that hasn’t
run out of spare sectors), it doesn’t matter which file system you’re using (FAT or NTFS). The volume
manager replaces the bad sector without the need for user or file system intervention.

If a bad sector is located on a hard disk that doesn’t support bad sector replacement, the file
system is responsible for replacing (remapping) the bad sector or—in the case of NTFS—the cluster
in which the bad sector resides. The FAT file system doesn’t provide sector or cluster remapping. The
benefits of NTFS cluster remapping are that bad spots in a file can be fixed without harm to the file
(or harm to the file system, as the case may be) and that the bad cluster will not be used ever again.

Self-Healing
With today’s multiterabyte storage devices, taking a volume offline for a consistency check can result
in a service outage of many hours. Recognizing that many disk corruptions are localized to a single
file or portion of metadata, NTFS implements a self-healing feature to repair damage while a volume
remains online. When NTFS detects corruption, it prevents access to the damaged file or files and cre-
ates a system worker thread that performs Chkdsk-like corrections to the corrupted data structures,
allowing access to the repaired files when it has finished. Access to other files continues normally dur-
ing this operation, minimizing service disruption.

 CHAPTER 12 File Systems 491

You can use the fsutil repair set command to view and set a volume’s repair options, which are
summarized in Table 12-11. The Fsutil utility uses the FSCTL_SET_REPAIR file system control code to
set these settings, which are saved in the VCB for the volume.

TABLE 12-11 NTFS Self-Healing Behaviors

Flag Behavior

SET_REPAIR_ENABLED Enable self-healing for the volume.

SET_REPAIR_WARN_ABOUT_DATA_LOSS If the self-healing process is unable to fully recover a file, specifies
whether the user should be visually warned.

SET_REPAIR_DISABLED_AND_BUGCHECK_
ON_CORRUPTION

If the NtfsBugCheckOnCorrupt NTFS registry value was set by using fsutil
behavior set NtfsBugCheckOnCorrupt 1 and this flag is set, the system
will crash with a STOP error 0x24, indicating file system corruption. This
setting is automatically cleared during boot time to avoid repeated
reboot cycles.

In all cases, including when the visual warning is disabled (the default), NTFS will log any self-
healing operation it undertook in the System event log.

Apart from periodic automatic self-healing, NTFS also supports manually initiated self-healing
cycles through the FSCTL_INITIATE_REPAIR and FSCTL_WAIT_FOR_REPAIR control codes, which can be
initiated with the fsutil repair initiate and fsutil repair wait commands. This allows the user to force the
repair of a specific file and to wait until repair of that file is complete.

To check the status of the self-healing mechanism, the FSCTL_QUERY_REPAIR control code or the
fsutil repair query command can be used, as shown here:

C:\>fsutil repair query c:
Self healing is enabled for volume c: with flags 0x1.
 flags: 0x01 - enable general repair
 0x08 - warn about potential data loss
 0x10 - disable general repair and bugcheck once on first corruption

Encrypting File System Security

As covered in Chapter 9, BitLocker encrypts and protects volumes from offline attacks, but once a
system is booted BitLocker’s job is done. The Encrypting File System (EFS) protects individual files and
directories from other authenticated users on a system. When choosing how to protect your data, it
is not an “either/or” choice between BitLocker and EFS; each provides protection from specific—and
nonoverlapping—threats. Together BitLocker and EFS provide a “defense in depth” for the data on
your system.

The paradigm used by EFS is to encrypt files and directories using symmetric encryption (a single
key that is used for encrypting and decrypting the file). The symmetric encryption key is then en-
crypted using asymmetric encryption (one key for encryption—often referred to as the “public”
key—and a different key for decryption—often referred to as the “private” key) for each user who
is granted access to the file. The details and theory behind these encryption methods is beyond the

492 Windows Internals, Sixth Edition, Part 2

scope of this book; however, a good primer is available at http://msdn.microsoft.com/en-us/library/
windows/desktop/aa380251(v=vs.85).aspx.

EFS works with the Windows Cryptography Next Generation (CNG) APIs, and thus may be con-
figured to use any algorithm supported by (or added to) CNG. By default, EFS will use the Advanced
Encryption Standard (AES) for symmetric encryption (256-bit key) and the Rivest-Shamir-Adleman
(RSA) public key algorithm for asymmetric encryption (2,048-bit keys).

Users can encrypt files via Windows Explorer by opening a file’s Properties dialog box, clicking
 Advanced, and then selecting the Encrypt Contents To Secure Data option, as shown in Figure 12-61.
(A file may be encrypted or compressed, but not both.) Users can also encrypt files via a command-
line utility named Cipher (%SystemRoot%\System32\Cipher.exe) or programmatically using Windows
APIs such as EncryptFile and AddUsersToEncryptedFile.

Windows automatically encrypts files that reside in directories that are designated as encrypted
 directories. When a file is encrypted, EFS generates a random number for the file that EFS calls the
file’s File Encryption Key (FEK). EFS uses the FEK to encrypt the file’s contents using symmetric encryp-
tion. EFS then encrypts the FEK using the user’s asymmetric public key and stores the encrypted FEK in
the $EFS alternate data stream for the file. The source of the public key may be administratively speci-
fied to come from an assigned X.509 certificate or a smartcard or randomly generated (which would
then be added to the user’s certificate store, which can be viewed using the Certificate Manager
(%SystemRoot%\System32\Certmgr.msc). After EFS completes these steps, the file is secure: other
users can’t decrypt the data without the file’s decrypted FEK, and they can’t decrypt the FEK without
the private key.

FIGURE 12-61 Encrypt files by using the Advanced Attributes dialog box

Symmetric encryption algorithms are typically very fast, which makes them suitable for encrypting
large amounts of data, such as file data. However, symmetric encryption algorithms have a weakness:
you can bypass their security if you obtain the key. If multiple users want to share one encrypted file
protected only using symmetric encryption, each user would require access to the file’s FEK. Leav-
ing the FEK unencrypted would obviously be a security problem, but encrypting the FEK once would
require all the users to share the same FEK decryption key—another potential security problem.

http://msdn.microsoft.com/en-us/library/windows/desktop/aa380251(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa380251(v=vs.85).aspx

 CHAPTER 12 File Systems 493

Keeping the FEK secure is a difficult problem, which EFS addresses with the public key–based
half of its encryption architecture. Encrypting a file’s FEK for individual users who access the file lets
multiple users share an encrypted file. EFS can encrypt a file’s FEK with each user’s public key and can
store each user’s encrypted FEK in the file’s $EFS data stream. Anyone can access a user’s public key,
but no one can use a public key to decrypt the data that the public key encrypted. The only way users
can decrypt a file is with their private key, which the operating system must access. A user’s private
key decrypts the user’s encrypted copy of a file’s FEK. Public key–based algorithms are usually slow,
but EFS uses these algorithms only to encrypt FEKs. Splitting key management between a publicly
available key and a private key makes key management a little easier than symmetric encryption algo-
rithms do and solves the dilemma of keeping the FEK secure.

Several components work together to make EFS work, as the diagram of EFS architecture in Figure
12-62 shows. EFS support is merged into the NTFS driver. Whenever NTFS encounters an encrypted
file, NTFS executes EFS functions that it contains. The EFS functions encrypt and decrypt file data as
applications access encrypted files. Although EFS stores an FEK with a file’s data, users’ public keys
encrypt the FEK. To encrypt or decrypt file data, EFS must decrypt the file’s FEK with the aid of CNG
key management services that reside in user mode.

User

User key store

Registry

Downlevel
client

Windows 7
client

Group Policy

LSA

Kerberos

RPC client

NTFS

Disk

EFS service

EFS kernel
helper library

File I/O (plaintext)

Logon

EFS APIs

EFSRPC EFSRPC
Settings

KeysSC logon
PIN, cert

EFSRPC
forwarding

EFSRPC

FSCTLs
for

EFSRPC

Ciphertext Kernel

SC logon
PIN, cert Settings

CreateFile

LSA domain
policy store

EFS
recovery policy

EFS cacheUser secrets

FIGURE 12-62 EFS architecture

494 Windows Internals, Sixth Edition, Part 2

The Local Security Authority Subsystem (LSASS; %SystemRoot%\System32\Lsass.exe) manages
logon sessions but also hosts the EFS service. For example, when EFS needs to decrypt an FEK to de-
crypt file data a user wants to access, NTFS sends a request to the EFS service inside LSASS.

Encrypting a File for the First Time
The NTFS driver calls its EFS helper functions when it encounters an encrypted file. A file’s attributes
record that the file is encrypted in the same way that a file records that it is compressed (discussed
earlier in this chapter). NTFS has specific interfaces for converting a file from nonencrypted to en-
crypted form, but user-mode components primarily drive the process. As described earlier, Windows
lets you encrypt a file in two ways: by using the cipher command-line utility or by checking the En-
crypt Contents To Secure Data check box in the Advanced Attributes dialog box for a file in Windows
Explorer. Both Windows Explorer and the cipher command rely on the EncryptFile Windows API that
Advapi32.dll (Advanced Windows APIs DLL) exports.

EFS stores only one block of information in an encrypted file, and that block contains an entry for
each user sharing the file. These entries are called key entries, and EFS stores them in the data decryp-
tion field (DDF) portion of the file’s EFS data. A collection of multiple key entries is called a key ring
because, as mentioned earlier, EFS lets multiple users share encrypted files.

Figure 12-63 shows a file’s EFS information format and key entry format. EFS stores enough in-
formation in the first part of a key entry to precisely describe a user’s public key. This data includes
the user’s security ID (SID) (note that the SID is not guaranteed to be present), the container name
in which the key is stored, the cryptographic provider name, and the asymmetric key pair certificate
hash. Only the asymmetric key pair certificate hash is used by the decryption process. The second part
of the key entry contains an encrypted version of the FEK. EFS uses the CNG to encrypt the FEK with
the selected asymmetric encryption algorithm and the user’s public key.

EFS information

Header

Data
decryption

field

Data
recovery

field

Version

Checksum

Number of DDF key entries

DDF key entry 1

DDF key entry 2

Number of DRF key entries

DRF key entry 1

Key entry

User SID
(S-1-5-21-...)

Container name
(ee341-2144-55ba...)

Provider name
(Microsoft Base Cryptographic Provider 1.0)

EFS certificate hash
(cb3e4e...)

Encrypted FEK
(03fe4f3c...)

FIGURE 12-63 Format of EFS information and key entries

EFS stores information about recovery key entries in a file’s data recovery field (DRF). The format of
DRF entries is identical to the format of DDF entries. The DRF’s purpose is to let designated accounts,

 CHAPTER 12 File Systems 495

or recovery agents, decrypt a user’s file when administrative authority must have access to the user’s
data. For example, suppose a company employee forgot his or her logon password. An administrator
can reset the user’s password, but without recovery agents, no one can recover the user’s encrypted
data.

Recovery agents are defined with the Encrypted Data Recovery Agents security policy of the local
computer or domain. This policy is available from the Local Security Policy MMC snap-in, as shown in
Figure 12-64. When you use the Add Recovery Agent Wizard (by right-clicking Encrypting File System
and then clicking Add Data Recovery Agent), you can add recovery agents and specify which private/
public key pairs (designated by their certificates) the recovery agents use for EFS recovery. Lsasrv
interprets the recovery policy when it initializes and when it receives notification that the recovery
policy has changed. EFS creates a DRF key entry for each recovery agent by using the cryptographic
provider registered for EFS recovery.

FIGURE 12-64 Encrypted Data Recovery Agents group policy

In the final step in creating EFS information for a file, Lsasrv calculates a checksum for the DDF and
DRF by using the MD5 hash facility of Base Cryptographic Provider 1.0. Lsasrv stores the checksum’s
result in the EFS information header. EFS references this checksum during decryption to ensure that
the contents of a file’s EFS information haven’t become corrupted or been tampered with.

Encrypting File Data
When a user encrypts an existing file, the following process occurs:

1. The EFS service opens the file for exclusive access.

2. All data streams in the file are copied to a plaintext temporary file in the system’s temporary
directory.

3. An FEK is randomly generated and used to encrypt the file by using DESX or 3DES, depending
on the effective security policy.

4. A DDF is created to contain the FEK encrypted by using the user’s public key. EFS automatically
obtains the user’s public key from the user’s X.509 version 3 file encryption certificate.

496 Windows Internals, Sixth Edition, Part 2

5. If a recovery agent has been designated through Group Policy, a DRF is created to contain the
FEK encrypted by using RSA and the recovery agent’s public key.

EFS automatically obtains the recovery agent’s public key for file recovery from the recov-
ery agent’s X.509 version 3 certificate, which is stored in the EFS recovery policy. If there are
multiple recovery agents, a copy of the FEK is encrypted by using each agent’s public key, and
a DRF is created to store each encrypted FEK.

Note The file recovery property in the certificate is an example of an enhanced
key usage (EKU) field. An EKU extension and extended property specify and limit
the valid uses of a certificate. File Recovery is one of the EKU fields defined by
Microsoft as part of the Microsoft public key infrastructure (PKI).

6. EFS writes the encrypted data, along with the DDF and the DRF, back to the file. Because
symmetric encryption does not add additional data, file size increase is minimal after encryp-
tion. The metadata, consisting primarily of encrypted FEKs, is usually less than 1 KB. File size in
bytes before and after encryption is normally reported to be the same.

7. The plaintext temporary file is deleted.

When a user saves a file to a folder that has been configured for encryption, the process is similar
except that no temporary file is created.

The Decryption Process
When an application accesses an encrypted file, decryption proceeds as follows:

1. NTFS recognizes that the file is encrypted and sends a request to the EFS driver.

2. The EFS driver retrieves the DDF and passes it to the EFS service.

3. The EFS service retrieves the user’s private key from the user’s profile and uses it to decrypt
the DDF and obtain the FEK.

4. The EFS service passes the FEK back to the EFS driver.

5. The EFS driver uses the FEK to decrypt sections of the file as needed for the application.

Note When an application opens a file, only those sections of the file that the
application is using are decrypted because EFS uses cipher block chaining. The
behavior is different if the user removes the encryption attribute from the file. In
this case, the entire file is decrypted and rewritten as plaintext.

6. The EFS driver returns the decrypted data to NTFS, which then sends the data to the request-
ing application.

 CHAPTER 12 File Systems 497

Backing Up Encrypted Files
An important aspect of any file encryption facility’s design is that file data is never available in un-
encrypted form except to applications that access the file via the encryption facility. This restriction
particularly affects backup utilities, in which archival media store files. EFS addresses this problem
by providing a facility for backup utilities so that the utilities can back up and restore files in their
encrypted states. Thus, backup utilities don’t have to be able to decrypt file data, nor do they need to
encrypt file data in their backup procedures.

Backup utilities use the EFS API functions OpenEncryptedFileRaw, ReadEncryptedFileRaw, Write-
EncryptedFileRaw, and CloseEncryptedFileRaw in Windows to access a file’s encrypted contents. After
a backup utility opens a file for raw access during a backup operation, the utility calls ReadEncrypted-
FileRaw to obtain the file data.

EXPERIMENT: Viewing EFS Information
EFS has a handful of other API functions that applications can use to manipulate encrypted files.
For example, applications use the AddUsersToEncryptedFile API function to give additional users
access to an encrypted file and RemoveUsersFromEncryptedFile to revoke users’ access to an
encrypted file. Applications use the QueryUsersOnEncryptedFile function to obtain information
about a file’s associated DDF and DRF key fields. QueryUsersOnEncryptedFile returns the SID,
certificate hash value, and display information that each DDF and DRF key field contains. The
following output is from the EFSDump utility, from Sysinternals, when an encrypted file is speci-
fied as a command-line argument:

C:\>efsdump test.txt
EFS Information Dumper v1.02
Copyright (C) 1999 Mark Russinovich
Systems Internals – http://www.sysinternals.com

test.txt:
DDF Entry:
 DARYL\Mark:
 CN=Mark,L=EFS,OU=EFS File Encryption Certificate
DRF Entry:
 Unknown user:
 EFS Data Recovery

You can see that the file test.txt has one DDF entry for user Mark and one DRF entry for the
EFS Data Recovery agent, which is the only recovery agent currently registered on the system.

Copying Encrypted Files
When an encrypted file is copied, the system does not decrypt the file and re-encrypt it at its destina-
tion; it just copies the encrypted data and the EFS alternate data streams to the specified destination.
However, if the destination does not support alternate data streams—if it is not an NTFS volume
(such as a FAT volume) or is a network share (even if the network share is an NTFS volume)—the copy

498 Windows Internals, Sixth Edition, Part 2

cannot proceed normally because the alternate data streams would be lost. If the copy is done with
Explorer, a dialog box informs the user that the destination volume does not support encryption and
asks the user whether the file should be copied to the destination unencrypted. If the user agrees, the
file will be decrypted and copied to the specified destination. If the copy is done from a command
prompt, the copy command will fail and return the error message “The specified file could not be
encrypted”.

Conclusion

Windows supports a wide variety of file system formats accessible to both the local system and
remote clients. The file system filter driver architecture provides a clean way to extend and augment
file system access, and NTFS provides a reliable, secure, scalable file system format for local file system
storage. In the next chapter, we’ll look at startup and shutdown in Windows.

 499

C H A P T E R 1 3

Startup and Shutdown

In this chapter, we’ll describe the steps required to boot Windows and the options that can affect
system startup. Understanding the details of the boot process will help you diagnose problems that

can arise during a boot. Then we’ll explain the kinds of things that can go wrong during the boot
process and how to resolve them. Finally, we’ll explain what occurs on an orderly system shutdown.

Boot Process

In describing the Windows boot process, we’ll start with the installation of Windows and proceed
through the execution of boot support files. Device drivers are a crucial part of the boot process, so
we’ll explain the way that they control the point in the boot process at which they load and initialize.
Then we’ll describe how the executive subsystems initialize and how the kernel launches the user-
mode portion of Windows by starting the Session Manager process (Smss.exe), which starts the initial
two sessions (session 0 and session 1). Along the way, we’ll highlight the points at which various on-
screen messages appear to help you correlate the internal process with what you see when you watch
Windows boot.

The early phases of the boot process differ significantly on systems with a BIOS (basic input output
system) versus systems with an EFI (Extensible Firmware Interface). EFI is a newer standard that does
away with much of the legacy 16-bit code that BIOS systems use and allows the loading of preboot
programs and drivers to support the operating system loading phase. The next sections describe the
portions of the boot process specific to BIOS-based systems and are followed with a section describ-
ing the EFI-specific portions of the boot process.

To support these different firmware implementations (as well as EFI 2.0, which is known as Unified
EFI, or UEFI), Windows provides a boot architecture that abstracts many of the differences away from
users and developers in order to provide a consistent environment and experience regardless of the
type of firmware used on the installed system.

BIOS Preboot
The Windows boot process doesn’t begin when you power on your computer or press the reset but-
ton. It begins when you install Windows on your computer. At some point during the execution of the
Windows Setup program, the system’s primary hard disk is prepared with code that takes part in the
boot process. Before we get into what this code does, let’s look at how and where Windows places

500 Windows Internals, Sixth Edition, Part 2

the code on a disk. Since the early days of MS-DOS, a standard has existed on x86 systems for the way
physical hard disks are divided into volumes.

Microsoft operating systems split hard disks into discrete areas known as partitions and use file
systems (such as FAT and NTFS) to format each partition into a volume. A hard disk can contain up
to four primary partitions. Because this apportioning scheme would limit a disk to four volumes, a
special partition type, called an extended partition, further allocates up to four additional partitions
within each extended partition. Extended partitions can contain extended partitions, which can con-
tain extended partitions, and so on, making the number of volumes an operating system can place on
a disk effectively infinite. Figure 13-1 shows an example of a hard disk layout, and Table 13-1 summa-
rizes the files involved in the BIOS boot process. (You can learn more about Windows partitioning in
Chapter 9, “Storage Management.”)

TABLE 13-1 BIOS Boot Process Components

Component Processor Execution Responsibilities Location

Master Boot Record
(MBR)

16-bit real mode Reads and loads the volume boot record
(VBR)

Per storage device

Boot sector (also
called volume boot
record)

16-bit real mode Understands the file system on the partition
and locates Bootmgr by name, loading it into
memory

Per active
(bootable)
partition

Bootmgr 16-bit real mode and 32-
bit without paging

Reads the Boot Configuration Database
(BCD), presents boot menu, and allows
execution of preboot programs such as the
Memory Test application (Memtest.exe). If a
64-bit installation is booted, switches to 64-
bit long mode before loading Winload.

Per system

Winload.exe 32-bit protected mode
with paging, 64-bit
protected mode if booting
a Win64 installation

Loads Ntoskrnl.exe and its dependencies
(Bootvid.dll on 32-bit systems, Hal.dll,
Kdcom.dll, Ci.dll, Clfs.sys, Pshed.dll) and boot-
start device drivers.

Per Windows
installation

Winresume.exe 32-bit protected mode,
64-bit protected mode
if resuming a Win64
installation

If resuming after a hibernation state, resumes
from the hibernation file (Hiberfil.sys) instead
of typical Windows loading.

Per Windows
installation

Memtest.exe 32-bit protected mode If selected from the Boot Manager, starts
up and provides a graphical interface for
scanning memory and detecting damaged
RAM.

Per system

Ntoskrnl.exe Protected mode with
paging

Initializes executive subsystems and boot
and system-start device drivers, prepares the
system for running native applications, and
runs Smss.exe.

Per Windows
installation

Hal.dll Protected mode with
paging

Kernel-mode DLL that interfaces Ntoskrnl
and drivers to the hardware. It also acts as a
driver for the motherboard itself, supporting
soldered components that are not otherwise
managed by another driver.

Per Windows
installation

 CHAPTER 13 Startup and Shutdown 501

Component Processor Execution Responsibilities Location

Smss.exe Native application Initial instance starts a copy of itself to initi al-
ize each session. The session 0 instance loads
the Windows subsystem driver (Win32k.sys)
and starts the Windows subsystem process
(Csrss.exe) and Windows initialization process
(Wininit.exe). All other per-session instances
start a Csrss and Winlogon process.

Per Windows
installation

Wininit.exe Windows application Starts the service control manager (SCM), the
Local Security Authority process (LSASS), and
the local session manager (LSM). Initializes
the rest of the registry and performs user-
mode initialization tasks.

Per Windows
installation

Winlogon.exe Windows application Coordinates logon and user security, launches
LogonUI.

Per Windows
installation

Logonui.exe Windows application Presents interactive logon dialog box. Per Windows
installation

Services.exe Windows application Loads and initializes auto-start device drivers
and Windows services.

Per Windows
installation

Partition 1 Partition 2

Partition table

1
2
3
4

Boot code

Partition 4Partition 3
(Extended)

Partitions within an
extended partition

MBR Boot sector Extended partition boot record

Boot partition

FIGURE 13-1 Sample hard disk layout

Physical disks are addressed in units known as sectors. A hard disk sector on a BIOS PC is typically
512 bytes (but moving to 4,096 bytes; see Chapter 9 for more information). Utilities that prepare hard
disks for the definition of volumes, such as the Windows Setup program, write a sector of data called
a Master Boot Record (MBR) to the first sector on a hard disk. (MBR partitioning is described in Chap-
ter 9.) The MBR includes a fixed amount of space that contains executable instructions (called boot
code) and a table (called a partition table) with four entries that define the locations of the primary

502 Windows Internals, Sixth Edition, Part 2

partitions on the disk. When a BIOS-based computer boots, the first code it executes is called the
BIOS, which is encoded into the computer’s flash memory. The BIOS selects a boot device, reads that
device’s MBR into memory, and transfers control to the code in the MBR.

The MBRs written by Microsoft partitioning tools, such as the one integrated into Windows Setup
and the Disk Management MMC snap-in, go through a similar process of reading and transferring
control. First, an MBR’s code scans the primary partition table until it locates a partition containing a
flag (Active) that signals the partition is bootable. When the MBR finds at least one such flag, it reads
the first sector from the flagged partition into memory and transfers control to code within the parti-
tion. This type of partition is called a system partition, and the first sector of such a partition is called
a boot sector or volume boot record (VBR). The volume defined for this partition is called the system
volume.

Operating systems generally write boot sectors to disk without a user’s involvement. For example,
when Windows Setup writes the MBR to a hard disk, it also writes the file system boot code (part of
the boot sector) to a 100-MB bootable partition of the disk, marked as hidden to prevent accidental
modification after the operating system has loaded. This is the system volume described earlier.

Before writing to a partition’s boot sector, Windows Setup ensures that the boot partition (the boot
partition is the partition on which Windows is installed, which is typically not the same as the system
partition, where the boot files are located) is formatted with NTFS, the only supported file system that
Windows can boot from when installed on a fixed disk, or formats the boot partition (and any other
partition) with NTFS. Note that the format of the system partition can be any format that Windows
supports (such as FAT32). If partitions are already formatted appropriately, you can instruct Setup
to skip this step. After Setup formats the system partition, Setup copies the Boot Manager program
(Bootmgr) that Windows uses to the system partition (the system volume).

Another of Setup’s roles is to prepare the Boot Configuration Database (BCD), which on BIOS
systems is stored in the \Boot\BCD file on the root directory of the system volume. This file contains
options for starting the version of Windows that Setup installs and any preexisting Windows installa-
tions. If the BCD already exists, the Setup program simply adds new entries relevant to the new instal-
lation. For more information on the BCD, see Chapter 3, “System Mechanisms,“ in Part 1.

The BIOS Boot Sector and Bootmgr
Setup must know the partition format before it writes a boot sector because the contents of the boot
sector vary depending on the format. For a partition that is in NTFS format, Windows writes NTFS-
capable code. The role of the boot-sector code is to give Windows information about the structure
and format of a volume and to read in the Bootmgr file from the root directory of the volume. Thus,
the boot-sector code contains just enough read-only file system code to accomplish this task. After
the boot-sector code loads Bootmgr into memory, it transfers control to Bootmgr’s entry point. If the
boot-sector code can’t find Bootmgr in the volume’s root directory, it displays the error message
“BOOTMGR is missing”.

Bootmgr is actually a concatenation of a .com file (Startup.com) and an .exe file (Bootmgr.exe), so it
begins its existence while a system is executing in an x86 operating mode called real mode, associated

 CHAPTER 13 Startup and Shutdown 503

with .com files. In real mode, no virtual-to-physical translation of memory addresses occurs, which
means that programs that use the memory addresses interpret them as physical addresses and
that only the first 1 MB of the computer’s physical memory is accessible. Simple MS-DOS programs
execute in a real-mode environment. However, the first action Bootmgr takes is to switch the system
to protected mode. Still no virtual-to-physical translation occurs at this point in the boot process, but
a full 32 bits of memory becomes accessible. After the system is in protected mode, Bootmgr can
access all of physical memory. After creating enough page tables to make memory below 16 MB ac-
cessible with paging turned on, Bootmgr enables paging. Protected mode with paging enabled is the
mode in which Windows executes in normal operation.

After Bootmgr enables protected mode, it is fully operational. However, it still relies on functions
supplied by BIOS to access IDE-based system and boot disks as well as the display. Bootmgr’s BIOS-
interfacing functions briefly switch the processor back to real mode so that services provided by the
BIOS can be executed. Bootmgr next reads the BCD file from the \Boot directory using built-in file
system code. Like the boot sector’s code, Bootmgr contains a lightweight NTFS file system library
(Bootmgr also supports other file systems, such as FAT, El Torito CDFS, and UDFS, as well as WIM and
VHD files); unlike the boot sector’s code, Bootmgr’s file system code can also read subdirectories.

Note Bootmgr and other boot applications can still write to preallocated files on NTFS
volumes, because only the data needs to be written, instead of performing all the complex
allocation work that is typically required on an NTFS volume. This is how these applications
can write to bootsect.dat, for example.

Bootmgr next clears the screen. If Windows enabled the BCD setting to inform Bootmgr of a
hibernation resume, this shortcuts the boot process by launching Winresume.exe, which will read the
contents of the hibernation file into memory and transfer control to code in the kernel that resumes
a hibernated system. That code is responsible for restarting drivers that were active when the system
was shut down. Hiberfil.sys is only valid if the last computer shutdown was hibernation, since the
hibernation file is invalidated after a resume, to avoid multiple resumes from the same point. (See the
section “The Power Manager” in Chapter 8, “I/O System,” for information on hibernation.)

If there is more than one boot-selection entry in the BCD, Bootmgr presents the user with the
boot-selection menu (if there is only one entry, Bootmgr bypasses the menu and proceeds to launch
Winload.exe). Selection entries in the BCD direct Bootmgr to the partition on which the Windows sys-
tem directory (typically \Windows) of the selected installation resides. If Windows was upgraded from
an older version, this partition might be the same as the system partition, or, on a clean install, it will
always be the 100-MB hidden partition described earlier.

Entries in the BCD can include optional arguments that Bootmgr, Winload, and other components
involved in the boot process interpret. Table 13-2 contains a list of these options and their effects for
Bootmgr, Table 13-3 shows a list of BCD options for boot applications, and Table 13-4 shows BCD op-
tions for the Windows boot loader.

The Bcdedit.exe tool provides a convenient interface for setting a number of the switches. Some
options that are included in the BCD are stored as command-line switches (“/DEBUG”, for example) to

504 Windows Internals, Sixth Edition, Part 2

the registry value HKLM\SYSTEM\CurrentControlSet\Control\SystemStartOptions; otherwise, they are
stored only in the BCD binary format in the BCD hive.

TABLE 13-2 BCD Options for the Windows Boot Manager (Bootmgr)

BCD Element Values Meaning

bcdfilepath Path Points to the Boot Configuration Database (usually \Boot\BCD) file on the disk.

displaybootmenu Boolean Determines whether the Boot Manager shows the boot menu or picks the default
entry automatically.

keyringaddress Physical
address

Specifies the physical address where the BitLocker key ring is located.

noerrordisplay Boolean Silences the output of errors encountered by the Boot Manager.

Resume Boolean Specifies whether or not resuming from hibernation should be attempted. This
option is automatically set when Windows hibernates.

Timeout Seconds Number of seconds that the Boot Manager should wait before choosing the
default entry.

resumeobject GUID Identifier for which boot application should be used to resume the system after
hibernation.

displayorder List Definition of the Boot Manager’s display order list.

toolsdisplayorder List Definition of the Boot Manager’s tool display order list.

bootsequence List Definition of the one-time boot sequence.

Default GUID The default boot entry to launch.

customactions List Definition of custom actions to take when a specific keyboard sequence has been
entered.

bcddevice GUID Device ID of where the BCD store is located.

TABLE 13-3 BCD Options for Boot Applications

BCD Element Values Meaning

avoidlowmemory Integer Forces physical addresses below the specified value to be
avoided by the boot loader as much as possible. Sometimes
required on legacy devices (such as ISA) where only memory
below 16 MB is usable or visible.

badmemoryaccess Boolean Forces usage of memory pages in the Bad Page List (see
Chapter 10, “Memory Management,” for more information on
the page lists).

badmemorylist Array of page frame
numbers (PFNs)

Specifies a list of physical pages on the system that are known
to be bad because of faulty RAM.

baudrate Baud rate in bps Specifies an override for the default baud rate (19200) at which
a remote kernel debugger host will connect through a serial
port.

bootdebug Boolean Enables remote boot debugging for the boot loader. With this
option enabled, you can use Kd.exe or Windbg.exe to connect
to the boot loader.

 CHAPTER 13 Startup and Shutdown 505

BCD Element Values Meaning

bootems Boolean Used to cause Windows to enable Emergency Management
Services (EMS) for boot applications, which reports boot
information and accepts system management commands
through a serial port.

busparams String If a physical PCI debugging device is used to provide FireWire
or serial debugging, specifies the PCI bus, function, and device
number for the device.

channel Channel between 0
and 62

Used in conjunction with {debugtype, 1394} to specify
the IEEE 1394 channel through which kernel debugging
communications will flow.

configaccesspolicy Default,
DisallowMmConfig

Configures whether the system uses memory mapped I/O to
access the PCI manufacturer’s configuration space or falls back
to using the HAL’s I/O port access routines. Can sometimes be
helpful in solving platform device problems.

debugaddress Hardware address Specifies the hardware address of the serial (COM) port used
for debugging.

debugport COM port number Specifies an override for the default serial port (usually COM2
on systems with at least two serial ports) to which a remote
kernel debugger host is connected.

debugstart Active, AutoEnable,
Disable

Specifies settings for the debugger when kernel debugging is
enabled. AutoEnable enables the debugger when a breakpoint
or kernel exception, including kernel crashes, occurs.

debugtype Serial, 1394, USB Specifies whether kernel debugging will be communicated
through a serial, FireWire (IEEE 1394), or USB 2.0 port. (The
default is serial.)

emsbaudrate Baud rate in bps Specifies the baud rate to use for EMS.

emsport COM port number Specifies the serial (COM) port to use for EMS.

extendedinput Boolean Enables boot applications to leverage BIOS support for
extended console input.

firstmegabytepolicy UseNone, UseAll,
UsePrivate

Specifies how the low 1 MB of physical memory is consumed
by the HAL to mitigate corruptions by the BIOS during power
transitions.

fontpath String Specifies the path of the OEM font that should be used by the
boot application.

graphicsmodedisabled Boolean Disables graphics mode for boot applications.

graphicsresolution Resolution Sets the graphics resolution for boot applications.

initialconsoleinput Boolean Specifies an initial character that the system inserts into the PC/
AT keyboard input buffer.

integrityservices Default, Disable,
Enable

Enables or disables code integrity services, which are used by
Kernel Mode Code Signing. Default is Enabled.

locale Localization string Sets the locale for the boot application (such as EN-US).

noumex Boolean Disables user-mode exceptions when kernel debugging
is enabled. If you experience system hangs (freezes) when
booting in debugging mode, try enabling this option.

novesa Boolean Disables the usage of VESA display modes.

506 Windows Internals, Sixth Edition, Part 2

BCD Element Values Meaning

recoveryenabled Boolean Enables the recovery sequence, if any. Used by fresh
installations of Windows to present the Windows PE-based
Startup And Recovery interface.

recoverysequence List Defines the recovery sequence (described above).

relocatephysical Physical address Relocates an automatically selected NUMA node’s physical
memory to the specified physical address.

targetname String Defines the target name for the USB debugger when used with
USB2 debugging {debugtype, usb}.

testsigning Boolean Enables test-signing mode, which allows driver developers
to load locally signed 64-bit drivers. This option results in a
watermarked desktop.

traditionalksegmappings Boolean Determines whether the kernel will honor the traditional KSEG0
mapping that was originally required for MIPS support. With
KSEG0 mappings, the bottom 24 bits of the kernel’s initial
virtual address space will map to the same physical address
(that is, 0x80800000 virtual is 0x800000 in RAM). Disabling this
requirement allows more low memory to be available, which
can help with some hardware.

truncatememory Address in bytes Disregards physical memory above the specified physical
address.

TABLE 13-4 BCD Options for the Windows Boot Loader (Winload)

BCD Element Values Meaning

advancedoptions Boolean If false, executes the default behavior of launching the
auto-recovery command boot entry when the boot fails;
otherwise, displays the boot error and offers the user the
advanced boot option menu associated with the boot entry.
This is equivalent to pressing F8.

bootlog Boolean Causes Windows to write a log of the boot to the file
%SystemRoot%\Ntbtlog.txt.

bootstatuspolicy DisplayAllFailures,
IgnoreAllFailures,
IgnoreShutdownFailures,
IgnoreBootFailures

Overrides the system’s default behavior of offering the user
a troubleshooting boot menu if the system did not complete
the previous boot or shutdown.

bootux Disabled, Basic, Standard Defines the boot graphics user experience that the user will
see. Disabled means that no graphics will be seen during
boot time (only a black screen), while Basic will display only
a progress bar during load. Standard displays the usual
Windows logo animation during boot.

clustermodeaddressing Number of processors Defines the maximum number of processors to include in a
single Advanced Programmable Interrupt Controller (APIC)
cluster.

configflags Flags Specifies processor-specific configuration flags.

dbgtransport Transport image name Overrides using one of the default kernel debugging
transports (Kdcom.dll, Kd1394, Kdusb.dll) and instead uses
the given file, permitting specialized debugging transports
to be used that are not typically supported by Windows.

debug Boolean Enables kernel-mode debugging.

 CHAPTER 13 Startup and Shutdown 507

BCD Element Values Meaning

detecthal Boolean Enables the dynamic detection of the HAL.

driverloadfailurepolicy Fatal, UseErrorControl Describes the loader behavior to use when a boot driver
has failed to load. Fatal will prevent booting, while
UseErrorControl causes the system to honor a driver’s
default error behavior, specified in its service key.

ems Boolean Instructs the kernel to use EMS as well. (If only bootems is
used, only the boot loader will use EMS.)

evstore String Stores the location of a boot preloaded hive.

exportascd Boolean If this option is set, the kernel will treat the ramdisk file
specified as an ISO image and not a Windows Installation
Media (WIM) or System Deployment Image (SDI) file.

groupaware Boolean Forces the system to use groups other than zero when
associating the group seed to new processes. Used only on
64-bit Windows.

groupsize Integer Forces the maximum number of logical processors that can
be part of a group (maximum of 64). Can be used to force
groups to be created on a system that would normally not
require them to exist. Must be a power of 2, and is used only
on 64-bit Windows.

hal HAL image name Overrides the default file name for the HAL image (hal.dll).
This option can be useful when booting a combination of
a checked HAL and checked kernel (requires specifying the
kernel element as well).

halbreakpoint Boolean Causes the HAL to stop at a breakpoint early in HAL
initialization. The first thing the Windows kernel does when
it initializes is to initialize the HAL, so this breakpoint is the
earliest one possible (unless boot debugging is used). If
the switch is used without the /DEBUG switch, the system
will elicit a blue screen with a STOP code of 0x00000078
(PHASE0_ EXCEPTION).

hypervisorbaudrate Baud rate in bps If using serial hypervisor debugging, specifies the baud rate
to use.

hypervisorchannel Channel number from
0 to 62

If using FireWire (IEEE 1394) hypervisor debugging, specifies
the channel number to use.

hypervisordebug Boolean Enables debugging the hypervisor.

hypervisordebugport COM port number If using serial hypervisor debugging, specifies the COM port
to use.

hypervisordebugtype Serial, 1394 Specifies which hardware port to use for hypervisor
debugging.

hypervisordisableslat Boolean Forces the hypervisor to ignore the presence of the Second
Layer Address Translation (SLAT) feature if supported by the
processor.

hypervisorlaunchtype Off, Auto Enables loading of the hypervisor on a Hyper-V system, or
forces it to be disabled.

hypervisorpath Hypervisor binary image
name

Specifies the path of the hypervisor binary.

hypervisoruselargevtlb Boolean Enables the hypervisor to use a larger amount of virtual TLB
entries.

508 Windows Internals, Sixth Edition, Part 2

BCD Element Values Meaning

increaseuserva Size in MB Increases the size of the user process address space from 2
GB to the specified size, up to 3 GB (and therefore reduces
the size of system space). Giving virtual-memory-intensive
applications such as database servers a larger address space
can improve their performance. (See the section “Address
Space Layout” in Chapter 9 for more information.)

kernel Kernel image name Overrides the default file name for the kernel image
(Ntoskrnl.exe). This option can be useful when booting a
combination of a checked HAL and checked kernel (requires
specifying the hal element to be used as well).

lastknowngood Boolean Boots the last known good configuration, instead of the
current control set.

loadoptions Extra command-line
parameters

This option is used to add other command-line parameters
that are not defined by BCD elements. These parameters
could be used to configure or define the operation of other
components on the system that might not be able to use the
BCD (such as legacy components).

maxgroup Boolean Maximizes the number of processor groups that are created
during processor topology configuration. See Chapter 3 in
Part 1 for more information about group selection and its
relationship to NUMA.

maxproc Boolean Forces the maximum number of supported processors
that Windows will report to drivers and applications to
accommodate the arrival of additional CPUs via dynamic
processor support.

msi Default, ForceDisable Allows disabling support for message signaled interrupts.

nocrashautoreboot Boolean Disables the automatic reboot after a system crash (blue
screen).

nointegritychecks Boolean Disables integrity checks performed by Windows when
loading drivers. Automatically removed at the next reboot.

nolowmem Boolean Requires that PAE be enabled and that the system have
more than 4 GB of physical memory. If these conditions
are met, the PAE-enabled version of the Windows kernel,
Ntkrnlpa.exe, won’t use the first 4 GB of physical memory.
Instead, it will load all applications and device drivers and
allocate all memory pools from above that boundary. This
switch is useful only to test device-driver compatibility with
large memory systems.

numproc Number of processors Specifies the number of CPUs that can be used on a
multiprocessor system. Example: /NUMPROC=2 on a four-
way system will prevent Windows from using two of the four
processors.

nx OptIn, OptOut,
AlwaysOff, AlwaysOn

This option is available only on 32-bit versions of Windows
when running on processors that support no-execute
memory and only when PAE (explained further in the pae
entry) is also enabled. It enables no-execute protection. No-
execute protection is always enabled on 64-bit versions of
Windows on x64 processors. See Chapter 9 for a description
of this behavior.

onecpu Boolean Causes Windows to use only one CPU on a multiprocessor
system.

 CHAPTER 13 Startup and Shutdown 509

BCD Element Values Meaning

optionsedit Boolean Enables the options editor in the Boot Manager. With this
option, Boot Manager allows the user to interactively set on-
demand command-line options and switches for the current
boot. This is equivalent to pressing F10.

osdevice GUID Specifies the device on which the operating system is
installed.

pae Default, ForceEnable,
ForceDisable

Default allows the boot loader to determine whether the
system supports PAE and loads the PAE kernel. ForceEnable
forces this behavior, while ForceDisable forces the loader
to load the non–PAE version of the Windows kernel, even if
the system is detected as supporting x86 PAEs and has more
than 4 GB of physical memory.

pciexpress Default, ForceDisable Can be used to disable support for PCI Express buses and
devices.

perfmem Size in MB Size of the buffer to allocate for performance data logging.
This option acts similarly to the removememory element,
since it prevents Windows from seeing the size specified as
available memory.

quietboot Boolean Instructs Windows not to initialize the VGA video driver
responsible for presenting bitmapped graphics during the
boot process. The driver is used to display boot progress
information, so disabling it will disable the ability of
Windows to show this information.

ramdiskimagelength Length in bytes Size of the ramdisk specified.

ramdiskimageoffset Offset in bytes If the ramdisk contains other data (such as a header) before
the virtual file system, instructs the boot loader where to
start reading the ramdisk file from.

ramdisksdipath Image file name Specifies the name of the SDI ramdisk to load.

ramdisktftpblocksize Block size If loading a WIM ramdisk from a network Trivial FTP (TFTP)
server, specifies the block size to use.

ramdisktftpclientport Port number If loading a WIM ramdisk from a network TFTP server,
specifies the port.

ramdisktftpwindowsize Window size If loading a WIM ramdisk from a network TFTP server,
specifies the window size to use.

removememory Size in bytes Specifies an amount of memory Windows won’t use.

restrictapiccluster Cluster number Defines the largest APIC cluster number to be used by the
system.

resumeobject Object GUID Describes which application to use for resuming from
hibernation, typically Winresume.exe.

safeboot Minimal, Network,
DsRepair

Specifies options for a safe-mode boot. Minimal
corresponds to safe mode without networking, Network to
safe mode with networking, and DsRepair to safe mode with
Directory Services Restore mode. (Safe mode is described
later in this chapter.)

safebootalternateshell Boolean Tells Windows to use the program specified by the HKLM\
SYSTEM\CurrentControlSet\Control\SafeBoot\AlternateShell
value as the graphical shell rather than the default, which is
Windows Explorer. This option is referred to as Safe Mode
With Command Prompt in the alternate boot menu.

510 Windows Internals, Sixth Edition, Part 2

BCD Element Values Meaning

sos Boolean Causes Windows to list the device drivers marked to load at
boot time and then to display the system version number
(including the build number), amount of physical memory,
and number of processors.

stampdisks Boolean Specifies that Winload will write an MBR disk signature
to a RAW disk when booting Windows PE (Preinstallation
Environment). This can be required in deployment
environments in order to create a mapping from operating
system–enumerated hard disks to BIOS-enumerated hard
disks to know which disk should be the system disk.

systemroot String Specifies the path, relative to osdevice, in which the
operating system is installed.

targetname Name For USB 2.0 debugging, assigns a name to the machine that
is being debugged.

tpmbootentropy Default, ForceDisable,
ForceEnable

Forces a specific TPM Boot Entropy policy to be selected
by the boot loader and passed on to the kernel. TPM Boot
Entropy, when used, seeds the kernel’s random number
generator (RNG) with data obtained from the TPM (if
present).

usefirmwarepcisettings Boolean Stops Windows from dynamically assigning IO/IRQ resources
to PCI devices and leaves the devices configured by the
BIOS. See Microsoft Knowledge Base article 148501 for more
information.

uselegacyapicmode Boolean Forces usage of basic APIC functionality even though the
chipset reports extended APIC functionality as present. Used
in cases of hardware errata and/or incompatibility.

usephysicaldestination Boolean Forces the use of the APIC in physical destination mode.

useplatformclock Boolean Forces usage of the platforms’s clock source as the system’s
performance counter.

vga Boolean Forces Windows to use the VGA display driver instead of the
third-party high-performance driver.

winpe Boolean Used by Windows PE, this option causes the configuration
manager to load the registry SYSTEM hive as a volatile hive
such that changes made to it in memory are not saved back
to the hive image.

x2apicpolicy Disabled, Enabled,
Default

Specifies whether extended APIC functionality should
be used if the chipset supports it. Disabled is equivalent
to setting uselegacyapicmode, while Enabled forces ACPI
functionality on even if errata are detected. Default uses the
chipset’s reported capabilities (unless errata are present).

xsavepolicy Integer Forces the given XSAVE policy to be loaded from the XSAVE
Policy Resource Driver (Hwpolicy.sys).

xsaveaddfeature0-7 Integer Used while testing support for XSAVE on modern Intel
processors; allows for faking that certain processor features
are present when, in fact, they are not. This helps increase
the size of the CONTEXT structure and confirms that
applications work correctly with extended features that
might appear in the future. No actual extra functionality will
be present, however.

xsaveremovefeature Integer Forces the entered XSAVE feature not to be reported to the
kernel, even though the processor supports it.

 CHAPTER 13 Startup and Shutdown 511

BCD Element Values Meaning

xsaveprocessorsmask Integer Bitmask of which processors the XSAVE policy should apply
to.

xsavedisable Boolean Turns off support for the XSAVE functionality even though
the processor supports it.

If the user doesn’t select an entry from the selection menu within the timeout period the BCD
specifies, Bootmgr chooses the default selection specified in the BCD (if there is only one entry, it im-
mediately chooses this one). Once the boot selection has been made, Bootmgr loads the boot loader
associated with that entry, which will be Winload.exe for Windows installations.

Winload.exe also contains code that queries the system’s ACPI BIOS to retrieve basic device and
configuration information. This information includes the following:

 ■ The time and date information stored in the system’s CMOS (nonvolatile memory)

 ■ The number, size, and type of disk drives on the system

 ■ Legacy device information, such as buses (for example, ISA, PCI, EISA, Micro Channel Architec-
ture [MCA]), mice, parallel ports, and video adapters are not queried and instead faked out

This information is gathered into internal data structures that will be stored under the HKLM\
HARDWARE\DESCRIPTION registry key later in the boot. This is mostly a legacy key as CMOS settings
and BIOS-detected disk drive configuration settings, as well as legacy buses, are no longer supported
by Windows, and this information is mainly stored for compatibility reasons. Today, it is the Plug and
Play manager database that stores the true information on hardware.

Next, Winload begins loading the files from the boot volume needed to start the kernel initializa-
tion. The boot volume is the volume that corresponds to the partition on which the system directory
(usually \Windows) of the installation being booted is located. The steps Winload follows here include:

1. Loads the appropriate kernel and HAL images (Ntoskrnl.exe and Hal.dll by default) as well as
any of their dependencies. If Winload fails to load either of these files, it prints the message
“Windows could not start because the following file was missing or corrupt”, followed by the
name of the file.

2. Reads in the VGA font file (by default, vgaoem.fon). If this file fails, the same error message as
described in step 1 will be shown.

3. Reads in the NLS (National Language System) files used for internationalization. By default,
these are l_intl.nls, c_1252.nls, and c_437.nls.

4. Reads in the SYSTEM registry hive, \Windows\System32\Config\System, so that it can deter-
mine which device drivers need to be loaded to accomplish the boot. (A hive is a file that
contains a registry subtree. You’ll find more details about the registry in Chapter 4, “Manage-
ment Mechanisms,” in Part 1.)

5. Scans the in-memory SYSTEM registry hive and locates all the boot device drivers. Boot device
drivers are drivers necessary to boot the system. These drivers are indicated in the registry

512 Windows Internals, Sixth Edition, Part 2

by a start value of SERVICE_BOOT_START (0). Every device driver has a registry subkey under
HKLM\SYSTEM\CurrentControlSet\Services. For example, Services has a subkey named fvevol
for the BitLocker driver, which you can see in Figure 13-2. (For a detailed description of the
Services registry entries, see the section “Services” in Chapter 4 in Part 1.)

FIGURE 13-2 BitLocker driver service settings

6. Adds the file system driver that’s responsible for implementing the code for the type of
partition (NTFS) on which the installation directory resides to the list of boot drivers to load.
Winload must load this driver at this time; if it didn’t, the kernel would require the drivers to
load themselves, a requirement that would introduce a circular dependency.

7. Loads the boot drivers, which should only be drivers that, like the file system driver for the
boot volume, would introduce a circular dependency if the kernel was required to load them.
To indicate the progress of the loading, Winload updates a progress bar displayed below the
text “Starting Windows”. If the sos option is specified in the BCD, Winload doesn’t display the
progress bar but instead displays the file names of each boot driver. Keep in mind that the
drivers are loaded but not initialized at this time—they initialize later in the boot sequence.

8. Prepares CPU registers for the execution of Ntoskrnl.exe.

For steps 1 and 8, Winload also implements part of the Kernel Mode Code Signing (KMCS) infra-
structure, which was described in Chapter 3 in Part 1, by enforcing that all boot drivers are signed on
64-bit Windows. Additionally, the system will crash if the signature of the early boot files is incorrect.

This action is the end of Winload’s role in the boot process. At this point, Winload calls the main
function in Ntoskrnl.exe (KiSystemStartup) to perform the rest of the system initialization.

The UEFI Boot Process
A UEFI-compliant system has firmware that runs boot loader code that’s been programmed into the
system’s nonvolatile RAM (NVRAM) by Windows Setup. The boot code reads the BCD’s contents,
which are also stored in NVRAM. The Bcdedit.exe tool mentioned earlier also has the ability to ab-
stract the firmware’s NVRAM variables in the BCD, allowing for full transparency of this mechanism.

 CHAPTER 13 Startup and Shutdown 513

The UEFI standard defines the ability to prompt the user with an EFI Boot Manager that can be
used to select an operating system or additional applications to load. However, to provide a consis-
tent user interface between BIOS systems and UEFI systems, Windows sets a 2-second timeout for
selecting the EFI Boot Manager, after which the EFI-version of Bootmgr (Bootmgfw.efi) loads instead.

Hardware detection occurs next, where the boot loader uses UEFI interfaces to determine the
number and type of the following devices:

 ■ Network adapters

 ■ Video adapters

 ■ Keyboards

 ■ Disk controllers

 ■ Storage devices

On UEFI systems, all operations and programs execute in the native CPU mode with paging
enabled and no part of the Windows boot process executes in 16-bit mode. Note that although EFI
is supported on both 32-bit and 64-bit systems, Windows provides support for EFI only on 64-bit
platforms.

Just as Bootmgr does on x86 and x64 systems, the EFI Boot Manager presents a menu of boot
selections with an optional timeout. Once a boot selection is made, the loader navigates to the sub-
directory on the EFI System partition corresponding to the selection and loads the EFI version of the
Windows boot loader (Winload.efi).

The UEFI specification requires that the system have a partition designated as the EFI System
partition that is formatted with the FAT file system and is between 100 MB and 1 GB in size or up to
1 percent of the size of the disk, and each Windows installation has a subdirectory on the EFI System
partition under EFI\Microsoft.

Note that thanks to the unified boot process and model present in Windows, the components in
Table 13-1 apply almost identically to UEFI systems, except that those ending in .exe end in .efi, and
they use EFI APIs and services instead of BIOS interrupts. Another difference is that to avoid limita-
tions of the MBR partition format (including a maximum of four partitions per disk), UEFI systems use
the GPT (GUID Partition Table) format, which uses GUIDs to identify different partitions and their roles
on the system.

Note Although the EFI standard has been available since early 2001, and UEFI since 2005,
very few computer manufacturers have started using this technology because of back-
ward compatibility concerns and the difficulty of moving from an entrenched 20-year-old
technology to a new one. Two notable exceptions are Itanium machines and Apple’s Intel
Macintosh computers.

514 Windows Internals, Sixth Edition, Part 2

Booting from iSCSI
Internet SCSI (iSCSI) devices are a kind of network-attached storage, in that remote physical disks
are connected to an iSCSI Host Bus Adapter (HBA) or through Ethernet. These devices, however, are
different from traditional network-attached storage (NAS) because they provide block-level access
to disks, unlike the logical-based access over a network file system that NAS employs. Therefore, an
iSCSI-connected disk appears as any other disk drive, both to the boot loader as well as to the OS, as
long as the Microsoft iSCSI Initiator is used to provide access over an Ethernet connection. By using
iSCSI-enabled disks instead of local storage, companies can save on space, power consumption, and
cooling.

Although Windows has traditionally supported booting only from locally connected disks, or
network booting through PXE, modern versions of Windows are also capable of natively booting
from iSCSI devices through a mechanism called iSCSI Boot. The boot loader (Winload.exe) contains a
minimalistic network stack conforming to the Universal Network Device Interface (UNDI) standard,
which allows compatible NIC ROMs to respond to Interrupt 13h (the legacy BIOS disk I/O interrupt)
and convert the requests to network I/O. On EFI systems, the network interface driver provided by the
manufacturer is used instead, and EFI Device APIs are used instead of interrupts.

Finally, to know the location, path, and authentication information for the remote disk, the boot
loader also reads an iSCSI Boot Firmware Table (iBFT) that must be present in physical memory (typi-
cally exposed through ACPI). Additionally, Windows Setup also has the capability of reading this table
to determine bootable iSCSI devices and allow direct installation on such a device, such that no imag-
ing is required. Combined with the Microsoft iSCSI Initiator, this is all that’s required for Windows to
boot from iSCSI, as shown in Figure 13-3.

Boot
parameter

driver

iBF
Table

Int13

UNDI

NIC

iSCSI Initiator

TCPIP

NDIS

NDIS miniport

NIC

Pre-boot Windows

Microsoft iSCSI Microsoft WindowsVendor

FIGURE 13-3 iSCSI boot architecture

Initializing the Kernel and Executive Subsystems
When Winload calls Ntoskrnl, it passes a data structure called the loader parameter block that
contains the system and boot partition paths, a pointer to the memory tables Winload generated to
describe the physical memory on the system, a physical hardware tree that is later used to build the

 CHAPTER 13 Startup and Shutdown 515

volatile HARDWARE registry hive, an in-memory copy of the SYSTEM registry hive, and a pointer to
the list of boot drivers Winload loaded, as well as various other information related to the boot pro-
cessing performed until this point.

EXPERIMENT: Loader Parameter Block
While booting, the kernel keeps a pointer to the loader parameter block in the KeLoaderBlock
variable. The kernel discards the parameter block after the first boot phase, so the only way to
see the contents of the structure is to attach a kernel debugger before booting and break at
the initial kernel debugger breakpoint. If you are able to do so, you can use the dt command to
dump the block, as shown:

0: kd> dt poi(nt!KeLoaderBlock) nt!_LOADER_PARAMETER_BLOCK
 +0x000 OsMajorVersion : 6
 +0x004 OsMinorVersion : 1
 +0x008 Size : 0x88
 +0x00c Reserved : 0
 +0x010 LoadOrderListHead : _LIST_ENTRY [0x8085b4c8 - 0x80869c70]
 +0x018 MemoryDescriptorListHead : _LIST_ENTRY [0x80a00000 - 0x80a00de8]
 +0x020 BootDriverListHead : _LIST_ENTRY [0x80860d10 - 0x8085eba0]
 +0x028 KernelStack : 0x88e7c000
 +0x02c Prcb : 0
 +0x030 Process : 0
 +0x034 Thread : 0x88e64800
 +0x038 RegistryLength : 0x2940000
 +0x03c RegistryBase : 0x80adf000 Void
 +0x040 ConfigurationRoot : 0x8082d450 _CONFIGURATION_COMPONENT_DATA
 +0x044 ArcBootDeviceName : 0x8082d9a0 "multi(0)disk(0)rdisk(0)partition(4)"
 +0x048 ArcHalDeviceName : 0x8082d788 "multi(0)disk(0)rdisk(0)partition(4)"
 +0x04c NtBootPathName : 0x8082d828 "\Windows\"
 +0x050 NtHalPathName : 0x80826358 "\"
 +0x054 LoadOptions : 0x8080e1b0 "NOEXECUTE=ALWAYSON DEBUGPORT=COM1
 BAUDRATE=115200"
 +0x058 NlsData : 0x808691e0 _NLS_DATA_BLOCK
 +0x05c ArcDiskInformation : 0x80821408 _ARC_DISK_INFORMATION
 +0x060 OemFontFile : 0x84a551d0 Void
 +0x064 Extension : 0x8082d9d8 _LOADER_PARAMETER_EXTENSION
 +0x068 u : <unnamed-tag>
 +0x074 FirmwareInformation : _FIRMWARE_INFORMATION_LOADER_BLOCK

Additionally, the !loadermemorylist command can be used on the MemoryDescriptorListHead
field to dump the physical memory ranges:

0: kd> !loadermemorylist 0x80a00000
Base Length Type
1 00000001 HALCachedMemory
2 00000004 HALCachedMemory
...
4a32 00000023 NlsData
4a55 00000002 BootDriver
4a57 00000026 BootDriver
4a7d 00000014 BootDriver
4a91 0000016f Free

516 Windows Internals, Sixth Edition, Part 2

4c00 0001b3f0 Free
1fff0 00000001 FirmwarePermanent
1fff1 00000002 FirmwarePermanent
1fff3 00000001 FirmwarePermanent
1fff4 0000000b FirmwarePermanent
1ffff 00000001 FirmwarePermanent
fd000 00000800 FirmwarePermanent
fec00 00000001 FirmwarePermanent
fee00 00000001 FirmwarePermanent
ffc00 00000400 FirmwarePermanent

Summary
Memory Type Pages
Free 0001bc50 (113744)
LoadedProgram 0000013d (317)
FirmwareTemporary 000006dd (1757)
FirmwarePermanent 00000c37 (3127)
OsloaderHeap 0000022a (554)
SystemCode 000005dc (1500)
BootDriver 00000968 (2408)
RegistryData 00002940 (10560)
MemoryData 00000035 (53)
NlsData 00000023 (35)
HALCachedMemory 0000001e (30)
 ======== ========
Total 00020bc5 (134085) = ~523MB

Ntoskrnl then begins phase 0, the first of its two-phase initialization process (phase 1 is the sec-
ond). Most executive subsystems have an initialization function that takes a parameter that identifies
which phase is executing.

During phase 0, interrupts are disabled. The purpose of this phase is to build the rudimentary
structures required to allow the services needed in phase 1 to be invoked. Ntoskrnl’s main func-
tion calls KiSystemStartup, which in turn calls HalInitializeProcessor and KiInitializeKernel for each
CPU. KiInitializeKernel, if running on the boot CPU, performs systemwide kernel initialization, such as
initializing internal lists and other data structures that all CPUs share. It also checks whether virtualiza-
tion was specified as a BCD option (hypervisorlaunchtype), and whether the CPU supports hardware
virtualization technology. The first instance of KiInitializeKernel then calls the function responsible for
orchestrating phase 0, InitBootProcessor, while subsequent processors only call HalInitSystem.

InitBootProcessor starts by initializing the pool look-aside pointers for the initial CPU and by check-
ing for and honoring the BCD burnmemory boot option, where it discards the amount of physical
memory the value specifies. It then performs enough initialization of the NLS files that were loaded
by Winload (described earlier) to allow Unicode to ANSI and OEM translation to work. Next, it contin-
ues by calling the HAL function HalInitSystem, which gives the HAL a chance to gain system control
before Windows performs significant further initialization. One responsibility of HalInitSystem is to
prepare the system interrupt controller of each CPU for interrupts and to configure the interval clock
timer interrupt, which is used for CPU time accounting. (See the section “Quantum Accounting” in
Chapter 5, “Processes, Threads, and Jobs,” in Part 1 for more on CPU time accounting.)

 CHAPTER 13 Startup and Shutdown 517

When HalInitSystem returns control, InitBootProcessor proceeds by computing the reciprocal for
timer expiration. Reciprocals are used for optimizing divisions on most modern processors. They can
perform multiplications faster, and because Windows must divide the current 64-bit time value in or-
der to find out which timers need to expire, this static calculation reduces interrupt latency when the
clock interval fires. InitBootProcessor then continues by setting up the system root path and search-
ing the kernel image for the location of the crash message strings it displays on blue screens, caching
their location to avoid looking up the strings during a crash, which could be dangerous and unreli-
able. Next, InitBootProcessor initializes the quota functionality part of the process manager and reads
the control vector. This data structure contains more than 150 kernel-tuning options that are part of
the HKLM\SYSTEM\CurrentControlSet\Control registry key, including information such as the licensing
data and version information for the installation.

InitBootProcessor is now ready to call the phase 0 initialization routines for the executive, Driver
Verifier, and the memory manager. These components perform the following initialization steps:

1. The executive initializes various internal locks, resources, lists, and variables and validates that
the product suite type in the registry is valid, discouraging casual modification of the registry
in order to “upgrade” to an SKU of Windows that was not actually purchased. This is only one
of the many such checks in the kernel.

2. Driver Verifier, if enabled, initializes various settings and behaviors based on the current state
of the system (such as whether safe mode is enabled) and verification options. It also picks
which drivers to target for tests that target randomly chosen drivers.

3. The memory manager constructs page tables and internal data structures that are necessary
to provide basic memory services. It also builds and reserves an area for the system file cache
and creates memory areas for the paged and nonpaged pools (described in Chapter 10). The
other executive subsystems, the kernel, and device drivers use these two memory pools for
allocating their data structures.

Next, InitBootProcessor calls HalInitializeBios to set up the BIOS emulation code part of the HAL.
This code is used both on real BIOS systems as well as on EFI systems to allow access (or to emulate
access) to 16-bit real mode interrupts and memory, which are used mainly by Bootvid to display
the early VGA boot screen and bugcheck screen. After the function returns, the kernel initializes
the Bootvid library and displays early boot status messages by calling InbvEnableBootDriver and
InbvDriverInitailize.

At this point, InitBootProcessor enumerates the boot-start drivers that were loaded by Winload
and calls DbgLoadImageSymbols to inform the kernel debugger (if attached) to load symbols for
each of these drivers. If the host debugger has configured the break on symbol load option, this will
be the earliest point for a kernel debugger to gain control of the system. InitBootProcessor now calls
HvlInit System, which attempts to connect to the hypervisor in case Windows might be running inside
a Hyper-V host system’s child partition. When the function returns, it calls HeadlessInit to initialize the
serial console if the machine was configured for Emergency Management Services (EMS).

Next, InitBootProcessor builds the versioning information that will be used later in the boot pro-
cess, such as the build number, service pack version, and beta version status. Then it copies the NLS

518 Windows Internals, Sixth Edition, Part 2

tables that Winload previously loaded into paged pool, re-initializes them, and creates the kernel
stack trace database if the global flags specify creating one. (For more information on the global
flags, see Chapter 3 in Part 1.)

Finally, InitBootProcessor calls the object manager, security reference monitor, process manager,
user-mode debugging framework, and the Plug and Play manager. These components perform the
following initialization steps:

1. During the object manager initialization, the objects that are necessary to construct the object
manager namespace are defined so that other subsystems can insert objects into it. A handle
table is created so that resource tracking can begin.

2. The security reference monitor initializes the token type object and then uses the object to
create and prepare the first local system account token for assignment to the initial process.
(See Chapter 6, “Security,” in Part 1 for a description of the local system account.)

3. The process manager performs most of its initialization in phase 0, defining the process and
thread object types and setting up lists to track active processes and threads. The process
manager also creates a process object for the initial process and names it Idle. As its last step,
the process manager creates the System process and a system thread to execute the routine
Phase1Initialization. This thread doesn’t start running right away because interrupts are still
disabled.

4. The user-mode debugging framework creates the definition of the debug object type that is
used for attaching a debugger to a process and receiving debugger events. For more informa-
tion on user-mode debugging, see Chapter 3 in Part 1.

5. The Plug and Play manager’s phase 0 initialization then takes place, which involves simply
initializing an executive resource used to synchronize access to bus resources.

When control returns to KiInitializeKernel, the last step is to allocate the DPC stack for the current
processor and the I/O privilege map save area (on x86 systems only), after which control proceeds to
the Idle loop, which then causes the system thread created in step 3 of the previous process descrip-
tion to begin executing phase 1. (Secondary processors wait to begin their initialization until step 8 of
phase 1, described in the following list.)

Phase 1 consists of the following steps:

1. Phase1InitializationDiscard, which, as the name implies, discards the code that is part of the
INIT section of the kernel image in order to preserve memory.

2. The initialization thread sets its priority to 31, the highest possible, in order to prevent
preemption.

3. The NUMA/group topology relationships are created, in which the system tries to come up
with the most optimized mapping between logical processors and processor groups, taking
into account NUMA localities and distances, unless overridden by the relevant BCD settings.

 CHAPTER 13 Startup and Shutdown 519

4. HalInitSystem prepares the system to accept interrupts from devices and to enable interrupts.

5. The boot video driver is called, which in turn displays the Windows startup screen, which by
default consists of a black screen and a progress bar. If the quietboot boot option was used,
this step will not occur.

6. The kernel builds various strings and version information, which are displayed on the boot
screen through Bootvid if the sos boot option was enabled. This includes the full version infor-
mation, number of processors supported, and amount of memory supported.

7. The power manager’s initialization is called.

8. The system time is initialized (by calling HalQueryRealTimeClock) and then stored as the time
the system booted.

9. On a multiprocessor system, the remaining processors are initialized by KeStartAllProcessors
and HalAllProcessorsStarted. The number of processors that will be initialized and supported
depends on a combination of the actual physical count, the licensing information for the
installed SKU of Windows, boot options such as numproc and onecpu, and whether dynamic
partitioning is enabled (server systems only). After all the available processors have initialized,
the affinity of the system process is updated to include all processors.

10. The object manager creates the namespace root directory (\), \ObjectTypes directory, and the
DOS device name mapping directory (\Global??). It then creates the \DosDevices symbolic link
that points at the Windows subsystem device name mapping directory.

11. The executive is called to create the executive object types, including semaphore, mutex,
event, and timer.

12. The I/O manager is called to create the I/O manager object types, including device, driver,
controller, adapter, and file objects.

13. The kernel debugger library finalizes initialization of debugging settings and parameters if the
debugger has not been triggered prior to this point.

14. The transaction manager also creates its object types, such as the enlistment, resource man-
ager, and transaction manager types.

15. The kernel initializes scheduler (dispatcher) data structures and the system service dispatch
table.

16. The user-mode debugging library (Dbgk) data structures are initialized.

17. If Driver Verifier is enabled and, depending on verification options, pool verification is en-
abled, object handle tracing is started for the system process.

18. The security reference monitor creates the \Security directory in the object manager
namespace and initializes auditing data structures if auditing is enabled.

520 Windows Internals, Sixth Edition, Part 2

19. The \SystemRoot symbolic link is created.

20. The memory manager is called to create the \Device\PhysicalMemory section object and the
memory manager’s system worker threads (which are explained in Chapter 10).

21. NLS tables are mapped into system space so that they can be easily mapped by user-mode
processes.

22. Ntdll.dll is mapped into the system address space.

23. The cache manager initializes the file system cache data structures and creates its worker
threads.

24. The configuration manager creates the \Registry key object in the object manager namespace
and opens the in-memory SYSTEM hive as a proper hive file. It then copies the initial hardware
tree data passed by Winload into the volatile HARDWARE hive.

25. The high-resolution boot graphics library initializes, unless it has been disabled through the
BCD or the system is booting headless.

26. The errata manager initializes and scans the registry for errata information, as well as the INF
(driver installation file, described in Chapter 8) database containing errata for various drivers.

27. Superfetch and the prefetcher are initialized.

28. The Store Manager is initialized.

29. The current time zone information is initialized.

30. Global file system driver data structures are initialized.

31. Phase 1 of debugger-transport-specific information is performed by calling the KdDebugger-
Initialize1 routine in the registered transport, such as Kdcom.dll.

32. The Plug and Play manager calls the Plug and Play BIOS.

33. The advanced local procedure call (ALPC) subsystem initializes the ALPC port type and ALPC
waitable port type objects. The older LPC objects are set as aliases.

34. If the system was booted with boot logging (with the BCD bootlog option), the boot log file is
initialized. If the system was booted in safe mode, a string is displayed on the boot screen with
the current safe mode boot type.

35. The executive is called to execute its second initialization phase, where it configures part of
the Windows licensing functionality in the kernel, such as validating the registry settings that
hold license data. Also, if persistent data from boot applications is present (such as memory
diagnostic results or resume from hibernation information), the relevant log files and informa-
tion are written to disk or to the registry.

 CHAPTER 13 Startup and Shutdown 521

36. The MiniNT/WinPE registry keys are created if this is such a boot, and the NLS object directory
is created in the namespace, which will be used later to host the section objects for the various
memory-mapped NLS files.

37. The power manager is called to initialize again. This time it sets up support for power requests,
the ALPC channel for brightness notifications, and profile callback support.

38. The I/O manager initialization now takes place. This stage is a complex phase of system
startup that accounts for most of the boot time.

The I/O manager first initializes various internal structures and creates the driver and device
object types. It then calls the Plug and Play manager, power manager, and HAL to begin
the various stages of dynamic device enumeration and initialization. (Because this process is
complex and specific to the I/O system, we cover the details in Chapter 8.) Then the Windows
Management Instrumentation (WMI) subsystem is initialized, which provides WMI support
for device drivers. (See the section “Windows Management Instrumentation” in Chapter 4 in
Part 1 for more information.) This also initializes Event Tracing for Windows (ETW). Next, all
the boot-start drivers are called to perform their driver-specific initialization, and then the
system-start device drivers are loaded and initialized. (Details on the processing of the driver
load control information on the registry are also covered in Chapter 8.) Finally, the Windows
subsystem device names are created as symbolic links in the object manager’s namespace.

39. The transaction manager sets up the Windows software trace preprocessor (WPP) and ETW
and initializes with WMI. (ETW and WMI are described in Chapter 4 in Part 1.)

40. Now that boot-start and system-start drivers are loaded, the errata manager loads the INF
database with the driver errata and begins parsing it, which includes applying registry PCI
configuration workarounds.

41. If the computer is booting in safe mode, this fact is recorded in the registry.

42. Unless explicitly disabled in the registry, paging of kernel-mode code (in Ntoskrnl and drivers)
is enabled.

43. The configuration manager makes sure that all processors on an SMP system are identical in
terms of the features that they support; otherwise, it crashes the system.

44. On 32-bit systems, VDM (Virtual Dos Machine) support is initialized, which includes determin-
ing whether the processor supports Virtual Machine Extensions (VME).

45. The process manager is called to set up rate limiting for jobs, initialize the static environment
for protected processes, and look up the various system-defined entry points in the user-
mode system library (Ntdll.dll).

46. The power manager is called to finalize its initialization.

522 Windows Internals, Sixth Edition, Part 2

47. The rest of the licensing information for the system is initialized, including caching the current
policy settings stored in the registry.

48. The security reference monitor is called to create the Command Server Thread that commu-
nicates with LSASS. (See the section “Security System Components” in Chapter 6 in Part 1 for
more on how security is enforced in Windows.)

49. The Session Manager (Smss) process (introduced in Chapter 2, “System Architecture,” in Part 1)
is started. Smss is responsible for creating the user-mode environment that provides the vis-
ible interface to Windows—its initialization steps are covered in the next section.

50. The TPM boot entropy values are queried. These values can be queried only once per boot,
and normally, the TPM system driver should have queried them by now, but if this driver had
not been running for some reason (perhaps the user disabled it), the unqueried values would
still be available. Therefore, the kernel manually queries them too to avoid this situation, and
in normal scenarios, the kernel’s own query should fail.

51. All the memory used up by the loader parameter block and all its references is now freed.

As a final step before considering the executive and kernel initialization complete, the phase 1
initialization thread waits for the handle to the Session Manager process with a timeout value of 5
seconds. If the Session Manager process exits before the 5 seconds elapse, the system crashes with a
SESSION5_INITIALIZATION_FAILED stop code.

If the 5-second wait times out (that is, if 5 seconds elapse), the Session Manager is assumed to have
started successfully, and the phase 1 initialization function calls the memory manager’s zero page
thread function (explained in Chapter 10). Thus, this system thread becomes the zero page thread for
the remainder of the life of the system.

Smss, Csrss, and Wininit
Smss is like any other user-mode process except for two differences. First, Windows considers Smss
a trusted part of the operating system. Second, Smss is a native application. Because it’s a trusted
operating system component, Smss can perform actions few other processes can perform, such as
creating security tokens. Because it’s a native application, Smss doesn’t use Windows APIs—it uses
only core executive APIs known collectively as the Windows native API. Smss doesn’t use the Win32
APIs because the Windows subsystem isn’t executing when Smss launches. In fact, one of Smss’s first
tasks is to start the Windows subsystem.

Smss then calls the configuration manager executive subsystem to finish initializing the registry,
fleshing the registry out to include all its keys. The configuration manager is programmed to know
where the core registry hives are stored on disk (excluding hives corresponding to user profiles), and it
records the paths to the hives it loads in the HKLM\SYSTEM\CurrentControlSet\Control\hivelist key.

The main thread of Smss performs the following initialization steps:

1. Marks itself as a critical process and its main thread as a critical thread. As discussed in Chap-
ter 5 in Part 1, this will cause the kernel to crash the system if Smss quits unexpectedly. Smss

 CHAPTER 13 Startup and Shutdown 523

also enables the automatic affinity update mode to support dynamic processor addition. (See
Chapter 5 in Part 1 for more information.)

2. Creates protected prefixes for the mailslot and named pipe file system drivers, creating privi-
leged paths for administrators and service accounts to communicate through those paths. See
Chapter 7, “Networking,” in Part 1 for more information.

3. Calls SmpInit, which tunes the maximum concurrency level for Smss, meaning the maximum
number of parallel sessions that will be created by spawning copies of Smss into other ses-
sions. This is at least four and at most the number of active CPUs.

4. SmpInit then creates an ALPC port object (\SmApiPort) to receive client requests (such as to
load a new subsystem or create a session).

5. SmpInit calls SmpLoadDataFromRegistry, which starts by setting up the default environment
variables for the system, and sets the SAFEBOOT variable if the system was booted in safe
mode.

6. SmpLoadDataFromRegistry calls SmpInitializeDosDevices to define the symbolic links for MS-
DOS device names (such as COM1 and LPT1).

7. SmpLoadDataFromRegistry creates the \Sessions directory in the object manager’s namespace
(for multiple sessions).

8. SmpLoadDataFromRegistry runs any programs defined in HKLM\SYSTEM\CurrentControlSet\
Control\Session Manager\BootExecute with SmpExecuteCommand. Typically, this value con-
tains one command to run Autochk (the boot-time version of Chkdsk).

9. SmpLoadDataFromRegistry calls SmpProcessFileRenames to perform delayed file rename and
delete operations as directed by HKLM\SYSTEM\CurrentControlSet\Control\Session Man-
ager\PendingFileRenameOperations and HKLM\SYSTEM\CurrentControlSet\Control\Session
Manager\PendingFileRenameOperations2.

10. SmpLoadDataFromRegistry calls SmpCreatePagingFiles to create additional paging files.
Paging file configuration is stored under HKLM\SYSTEM\CurrentControlSet\Control\Session
Manager\Memory Management\PagingFiles.

11. SmpLoadDataFromRegistry initializes the registry by calling the native function NtInitialize-
Registry. The configuration manager builds the rest of the registry by loading the registry
hives for the HKLM\SAM, HKLM\SECURITY, and HKLM\SOFTWARE keys. Although HKLM\
SYSTEM\CurrentControlSet\Control\hivelist locates the hive files on disk, the configuration
manager is coded to look for them in \Windows\System32\Config.

12. SmpLoadDataFromRegistry calls SmpCreateDynamicEnvironmentVariables to add system en-
vironment variables that are defined in HKLM\SYSTEM\CurrentControlSet\Session Manager\ -
Environment, as well as processor-specific environment variables such as NUMBER_
PROCESSORS, PROCESSOR_ARCHITECTURE, and PROCESSOR_LEVEL.

524 Windows Internals, Sixth Edition, Part 2

13. SmpLoadDataFromRegistry runs any programs defined in HKLM\SYSTEM\CurrentControlSet\
Control\Session Manager\SetupExecute with SmpExecuteCommand. Typically, this value is set
only if Windows is being booted as part of the second stage of installation and Setupcl.exe is
the default value.

14. SmpLoadDataFromRegistry calls SmpConfigureSharedSessionData to initialize the list of sub-
systems that will be started in each session (both immediately and deferred) as well as the
Session 0 initialization command (which, by default, is to launch the Wininit.exe process). The
initialization command can be overridden by creating a string value called S0InitialCommand
in HKLM\SYSTEM\CurrentControlSet\Control\Session Manager and setting it as the path to
another program.

15. SmpLoadDataFromRegistry calls SmpInitializeKnownDlls to open known DLLs, and creates
section objects for them in the \Knowndlls directory of the object manager namespace. The
list of DLLs considered known is located in HKLM\SYSTEM\CurrentControlSet\Control\Session
Manager\KnownDLLs, and the path to the directory in which the DLLs are located is stored in
the DllDirectory value of the key. On 64-bit systems, 32-bit DLLs used as part of Wow64 are
stored in the DllDirectory32 value.

16. Finally, SmpLoadDataFromRegistry calls SmpTranslateSystemPartitionInformation to convert
the SystemPartition value stored in HKLM\SYSTEM\Setup, which is stored in native NT object
manager path format, to a volume drive letter stored in the BootDir value. Among other com-
ponents, Windows Update uses this registry key to figure out what the system volume is.

17. At this point, SmpLoadDataFromRegistry returns to SmpInit, which returns to the main thread
entry point. Smss then creates the number of initial sessions that were defined (typically, only
one, session 0, but you can change this number through the NumberOfInitialSessions registry
value in the Smss registry key mentioned earlier) by calling SmpCreateInitialSession, which
creates an Smss process for each user session. This function’s main job is to call SmpStartCsr to
start Csrss in each session.

18. As part of Csrss’s initialization, it loads the kernel-mode part of the Windows subsystem
(Win32k.sys). The initialization code in Win32k.sys uses the video driver to switch the screen to
the resolution defined by the default profile, so this is the point at which the screen changes
from the VGA mode the boot video driver uses to the default resolution chosen for the
system.

19. Meanwhile, each spawned Smss in a different user session starts the other subsystem pro-
cesses, such as Psxss if the Subsystem for Unix-based Applications feature was installed. (See
Chapter 3 in Part 1 for more information on subsystem processes.)

20. The first Smss from session 0 executes the Session 0 initialization command (described in step
14), by default launching the Windows initialization process (Wininit). Other Smss instances
start the interactive logon manager process (Winlogon), which, unlike Wininit, is hardcoded.
The startup steps of Wininit and Winlogon are described shortly.

 CHAPTER 13 Startup and Shutdown 525

Pending File Rename Operations
The fact that executable images and DLLs are memory-mapped when they are used makes it
impossible to update core system files after Windows has finished booting (unless hotpatching
technology is used, which is only for Microsoft patches to the operating system). The Move-
FileEx Windows API has an option to specify that a file move be delayed until the next boot.
Service packs and hotfixes that must update in-use memory-mapped files install replacement
files onto a system in temporary locations and use the MoveFileEx API to have them replace
otherwise in-use files. When used with that option, MoveFileEx simply records commands in the
PendingFileRenameOperations and PendingFileRenameOperations2 keys under HKLM\SYSTEM\
CurrentControlSet\Control\Session Manager. These registry values are of type MULTI_SZ, where
each operation is specified in pairs of file names: the first file name is the source location, and
the second is the target location. Delete operations use an empty string as their target path.
You can use the Pendmoves utility from Windows Sysinternals (http://www.microsoft.com/
technet/sysinternals) to view registered delayed rename and delete commands.

After performing these initialization steps, the main thread in Smss waits forever on the pro-
cess handle of Winlogon, while the other ALPC threads wait for messages to create new sessions or
subsystems. If either Wininit or Csrss terminate unexpectedly, the kernel crashes the system because
these processes are marked as critical. If Winlogon terminates unexpectedly, the session associated
with it is logged off.

Wininit then performs its startup steps, such as creating the initial window station and desktop ob-
jects. It also configures the Session 0 window hook, which is used by the Interactive Services Detection
service (UI0Detect.exe) to provide backward compatibility with interactive services. (See Chapter 4 in
Part 1 for more information on services.) Wininit then creates the service control manager (SCM) pro-
cess (%SystemRoot%\System32\Services.exe), which loads all services and device drivers marked for
auto-start, and the Local Security Authority subsystem (LSASS) process (%SystemRoot%\System32\
Lsass.exe). Finally, it loads the local session manager (%SystemRoot%\System32\Lsm.exe). On session
1 and beyond, Winlogon runs instead and loads the registered credential providers for the system
(by default, the Microsoft credential provider supports password-based and smartcard-based logons)
into a child process called LogonUI (%SystemRoot%\System32\Logonui.exe), which is responsible for
displaying the logon interface. (For more details on the startup sequence for Wininit, Winlogon, and
LSASS, see the section “Winlogon Initialization” in Chapter 6 in Part 1.)

After the SCM initializes the auto-start services and drivers and a user has successfully logged on
at the console, the SCM deems the boot successful. The registry’s last known good control set (as
indicated by HKLM\SYSTEM\Select\LastKnownGood) is updated to match \CurrentControlSet.

http://www.microsoft.com/-technet/sysinternals
http://www.microsoft.com/-technet/sysinternals

526 Windows Internals, Sixth Edition, Part 2

Note Because noninteractive servers might never have an interactive logon, they might
not get LastKnownGood updated to reflect the control set used for a successful boot. You
can override the definition of a successful boot by setting HKLM\SOFTWARE\Microsoft\
Windows NT\CurrentVersion\Winlogon\ReportBootOk to 0, writing a custom boot verifica-
tion program that calls the NotifyBootConfigStatus Windows API when a boot is successful,
and entering the path to the verification program in HKLM\SYSTEM\CurrentControlSet\
Control\BootVerificationProgram.

After launching the SCM, Winlogon waits for an interactive logon notification from the credential
provider. When it receives a logon and validates the logon (a process for which you can find more
information in the section “User Logon Steps” in Chapter 6 in Part 1), Winlogon loads the registry
hive from the profile of the user logging on and maps it to HKCU. It then sets the user’s environment
variables that are stored in HKCU\Environment and notifies the Winlogon notification packages regis-
tered in HKLM\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Winlogon\Notify that a logon has
occurred.

Winlogon next starts the shell by launching the executable or executables specified in HKLM\
SOFTWARE\Microsoft\Windows NT\CurrentVersion\WinLogon\Userinit (with multiple executables
separated by commas) that by default points at \Windows\System32\Userinit.exe. Userinit.exe per-
forms the following steps:

1. Processes the user scripts specified in HKCU\Software\Policies\Microsoft\Windows\System\
Scripts and the machine logon scripts in HKLM\SOFTWARE\Policies\Microsoft\Windows\
System\Scripts. (Because machine scripts run after user scripts, they can override user settings.)

2. If Group Policy specifies a user profile quota, starts %SystemRoot%\System32\Proquota.exe to
enforce the quota for the current user.

3. Launches the comma-separated shell or shells specified in HKCU\Software\Microsoft\Windows
NT\CurrentVersion\Winlogon\Shell. If that value doesn’t exist, Userinit.exe launches the shell
or shells specified in HKLM\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Winlogon\
Shell, which is by default Explorer.exe.

Winlogon then notifies registered network providers that a user has logged on. The Microsoft
network provider, Multiple Provider Router (%SystemRoot%\System32\Mpr.dll), restores the user’s
persistent drive letter and printer mappings stored in HKCU\Network and HKCU\Printers, respectively.
Figure 13-4 shows the process tree as seen in Process Monitor after a logon (using its boot logging
capability). Note the Smss processes that are dimmed (meaning that they have since exited). These
refer to the spawned copies that initialized each session.

 CHAPTER 13 Startup and Shutdown 527

FIGURE 13-4 Process tree during logon

ReadyBoot
Windows uses the standard logical boot-time prefetcher (described in Chapter 10) if the system has
less than 700 MB of memory, but if the system has 700 MB or more of RAM, it uses an in-RAM cache
to optimize the boot process. The size of the cache depends on the total RAM available, but it is large
enough to create a reasonable cache and yet allow the system the memory it needs to boot smoothly.

After every boot, the ReadyBoost service (see Chapter 10 for information on ReadyBoost) uses idle
CPU time to calculate a boot-time caching plan for the next boot. It analyzes file trace information
from the five previous boots and identifies which files were accessed and where they are located on
disk. It stores the processed traces in %SystemRoot%\Prefetch\Readyboot as .fx files and saves the
caching plan under HKLM\SYSTEM\CurrentControlSet\Services\Rdyboost\Parameters in REG_BINARY
values named for internal disk volumes they refer to.

528 Windows Internals, Sixth Edition, Part 2

The cache is implemented by the same device driver that implements ReadyBoost caching
(Ecache.sys), but the cache’s population is guided by the boot plan previously stored in the regis-
try. Although the boot cache is compressed like the ReadyBoost cache, another difference between
ReadyBoost and ReadyBoot cache management is that while in ReadyBoot mode, the cache is not
encrypted. The ReadyBoost service deletes the cache 50 seconds after the service starts, or if other
memory demands warrant it, and records the cache’s statistics in HKLM\SYSTEM\CurrentControlSet\
Services\Ecache\Parameters\ReadyBootStats, as shown in Figure 13-5.

FIGURE 13-5 ReadyBoot statistics

Images That Start Automatically
In addition to the Userinit and Shell registry values in Winlogon’s key, there are many other registry
locations and directories that default system components check and process for automatic process
startup during the boot and logon processes. The Msconfig utility (%SystemRoot%\System32\
Msconfig.exe) displays the images configured by several of the locations. The Autoruns tool, which
you can download from Sysinternals and that is shown in Figure 13-6, examines more locations than
Msconfig and displays more information about the images configured to automatically run. By de-
fault, Autoruns shows only the locations that are configured to automatically execute at least one im-
age, but selecting the Include Empty Locations entry on the Options menu causes Autoruns to show
all the locations it inspects. The Options menu also has selections to direct Autoruns to hide Microsoft
entries, but you should always combine this option with Verify Image Signatures; otherwise, you risk
hiding malicious programs that include false information about their company name information.

 CHAPTER 13 Startup and Shutdown 529

FIGURE 13-6 The Autoruns tool available from Sysinternals

EXPERIMENT: Autoruns
Many users are unaware of how many programs execute as part of their logon. Original equip-
ment manufacturers (OEMs) often configure their systems with add-on utilities that execute in
the background using registry values or file system directories processed for automatic execu-
tion and so are not normally visible. See what programs are configured to start automatically
on your computer by running the Autoruns utility from Sysinternals. Compare the list shown
in Autoruns with that shown in Msconfig and identify any differences. Then ensure that you
understand the purpose of each program.

Troubleshooting Boot and Startup Problems

This section presents approaches to solving problems that can occur during the Windows startup
process as a result of hard disk corruption, file corruption, missing files, and third-party driver bugs.
First we describe three Windows boot-problem recovery modes: last known good, safe mode, and
Windows Recovery Environment (WinRE). Then we present common boot problems, their causes, and
approaches to solving them. The solutions refer to last known good, safe mode, WinRE, and other
tools that ship with Windows.

530 Windows Internals, Sixth Edition, Part 2

Last Known Good
Last known good (LKG) is a useful mechanism for getting a system that crashes during the boot
process back to a bootable state. Because the system’s configuration settings are stored in HKLM\
SYSTEM\CurrentControlSet\Control and driver and service configuration is stored in HKLM\SYSTEM\
CurrentControlSet\Services, changes to these parts of the registry can render a system unbootable.
For example, if you install a device driver that has a bug that crashes the system during the boot, you
can press the F8 key during the boot and select last known good from the resulting menu. The system
marks the control set that it was using to boot the system as failed by setting the Failed value of
HKLM\SYSTEM\Select and then changes HKLM\SYSTEM\Select\Current to the value stored in HKLM\
SYSTEM\Select\LastKnownGood. It also updates the symbolic link HKLM\SYSTEM\CurrentControlSet
to point at the LastKnownGood control set. Because the new driver’s key is not present in the Services
subkey of the LastKnownGood control set, the system will boot successfully.

Safe Mode
Perhaps the most common reason Windows systems become unbootable is that a device driver
crashes the machine during the boot sequence. Because software or hardware configurations can
change over time, latent bugs can surface in drivers at any time. Windows offers a way for an admin-
istrator to attack the problem: booting in safe mode. Safe mode is a boot configuration that consists
of the minimal set of device drivers and services. By relying on only the drivers and services that are
necessary for booting, Windows avoids loading third-party and other nonessential drivers that might
crash.

When Windows boots, you press the F8 key to enter a special boot menu that contains the safe-
mode boot options. You typically choose from three safe-mode variations: Safe Mode, Safe Mode
With Networking, and Safe Mode With Command Prompt. Standard safe mode includes the mini-
mum number of device drivers and services necessary to boot successfully. Networking-enabled safe
mode adds network drivers and services to the drivers and services that standard safe mode includes.
Finally, safe mode with command prompt is identical to standard safe mode except that Windows
runs the Command Prompt application (Cmd.exe) instead of Windows Explorer as the shell when the
system enables GUI mode.

Windows includes a fourth safe mode—Directory Services Restore mode—which is different
from the standard and networking-enabled safe modes. You use Directory Services Restore mode to
boot the system into a mode where the Active Directory service of a domain controller is offline and
 unopened. This allows you to perform repair operations on the database or restore it from backup
media. All drivers and services, with the exception of the Active Directory service, load during a
Directory Services Restore mode boot. In cases where you can’t log on to a system because of Active
Directory database corruption, this mode enables you to repair the corruption.

Driver Loading in Safe Mode
How does Windows know which device drivers and services are part of standard and networking-
enabled safe mode? The answer lies in the HKLM\SYSTEM\CurrentControlSet\Control\SafeBoot
registry key. This key contains the Minimal and Network subkeys. Each subkey contains more subkeys

 CHAPTER 13 Startup and Shutdown 531

that specify the names of device drivers or services or of groups of drivers. For example, the vga.sys
subkey identifies the VGA display device driver that the startup configuration includes. The VGA
display driver provides basic graphics services for any PC-compatible display adapter. The system uses
this driver as the safe-mode display driver in lieu of a driver that might take advantage of an adapter’s
advanced hardware features but that might also prevent the system from booting. Each subkey under
the SafeBoot key has a default value that describes what the subkey identifies; the vga.sys subkey’s
default value is “Driver”.

The Boot file system subkey has as its default value “Driver Group”. When developers design a
device driver’s installation script (.inf file), they can specify that the device driver belongs to a driver
group. The driver groups that a system defines are listed in the List value of the HKLM\SYSTEM\
CurrentControlSet\Control\ServiceGroupOrder key. A developer specifies a driver as a member of
a group to indicate to Windows at what point during the boot process the driver should start. The
 ServiceGroupOrder key’s primary purpose is to define the order in which driver groups load; some
driver types must load either before or after other driver types. The Group value beneath a driver’s
configuration registry key associates the driver with a group.

Driver and service configuration keys reside beneath HKLM\SYSTEM\CurrentControlSet\Services.
If you look under this key, you’ll find the VgaSave key for the VGA display device driver, which you
can see in the registry is a member of the Video Save group. Any file system drivers that Windows
requires for access to the Windows system drive are automatically loaded as if part of the Boot file
system group. Other file system drivers are part of the File system group, which the standard and
networking-enabled safe-mode configurations also include.

When you boot into a safe-mode configuration, the boot loader (Winload) passes an associated
switch to the kernel (Ntoskrnl.exe) as a command-line parameter, along with any switches you’ve
specified in the BCD for the installation you’re booting. If you boot into any safe mode, Winload sets
the safeboot BCD option with a value describing the type of safe mode you select. For standard safe
mode, Winload sets minimal, and for networking-enabled safe mode, it adds network. Winload adds
minimal and sets safebootalternateshell for safe mode with command prompt and dsrepair for Direc-
tory Services Restore mode.

The Windows kernel scans boot parameters in search of the safe-mode switches early during the
boot, during the InitSafeBoot function, and sets the internal variable InitSafeBootMode to a value that
reflects the switches the kernel finds. The kernel writes the InitSafeBootMode value to the registry
value HKLM\SYSTEM\CurrentControlSet\Control\SafeBoot\Option\OptionValue so that user-mode
components, such as the SCM, can determine what boot mode the system is in. In addition, if the
system is booting in safe mode with command prompt, the kernel sets the HKLM\SYSTEM\Current-
ControlSet\Control\SafeBoot\Option\UseAlternateShell value to 1. The kernel records the parameters
that Winload passes to it in the value HKLM\SYSTEM\CurrentControlSet\Control\SystemStartOptions.

When the I/O manager kernel subsystem loads device drivers that HKLM\SYSTEM\Current-
ControlSet\Services specifies, the I/O manager executes the function IopLoadDriver. When the Plug
and Play manager detects a new device and wants to dynamically load the device driver for the
detected device, the Plug and Play manager executes the function PipCallDriverAddDevice. Both
these functions call the function IopSafebootDriverLoad before they load the driver in question.

532 Windows Internals, Sixth Edition, Part 2

IopSafebootDriverLoad checks the value of InitSafeBootMode and determines whether the driver
should load. For example, if the system boots in standard safe mode, IopSafebootDriverLoad looks for
the driver’s group, if the driver has one, under the Minimal subkey. If IopSafebootDriverLoad finds the
driver’s group listed, IopSafebootDriverLoad indicates to its caller that the driver can load. Otherwise,
IopSafebootDriverLoad looks for the driver’s name under the Minimal subkey. If the driver’s name is
listed as a subkey, the driver can load. If IopSafebootDriverLoad can’t find the driver group or driver
name subkeys, the driver will not be loaded. If the system boots in networking-enabled safe mode,
IopSafebootDriverLoad performs the searches on the Network subkey. If the system doesn’t boot in
safe mode, IopSafebootDriverLoad lets all drivers load.

Note An exception exists regarding the drivers that safe mode excludes from a boot:
Winload, rather than the kernel, loads any drivers with a Start value of 0 in their registry
key, which specifies loading the drivers at boot time. Winload doesn’t check the SafeBoot
registry key because it assumes that any driver with a Start value of 0 is required for the
system to boot successfully. Because Winload doesn’t check the SafeBoot registry key to
identify which drivers to load, Winload loads all boot-start drivers (and later Ntoskrnl starts
them).

Safe-Mode-Aware User Programs
When the service control manager (SCM) user-mode component (which Services.exe implements)
 initializes during the boot process, the SCM checks the value of HKLM\SYSTEM\CurrentControlSet\
Control\SafeBoot\Option\OptionValue to determine whether the system is performing a safe-mode
boot. If so, the SCM mirrors the actions of IopSafebootDriverLoad. Although the SCM processes the
services listed under HKLM\SYSTEM\CurrentControlSet\Services, it loads only services that the appro-
priate safe-mode subkey specifies by name. You can find more information on the SCM initialization
process in the section “Services” in Chapter 4 in Part 1.

Userinit, the component that initializes a user’s environment when the user logs on
(%SystemRoot%\System32\Userinit.exe), is another user-mode component that needs to know
whether the system is booting in safe mode. It checks the value of HKLM\SYSTEM\CurrentControlSet\
Control\SafeBoot\Option\UseAlternateShell. If this value is set, Userinit runs the program specified
as the user’s shell in the value HKLM\SYSTEM\CurrentControlSet\Control\SafeBoot\AlternateShell
rather than executing Explorer.exe. Windows writes the program name Cmd.exe to the AlternateShell
value during installation, making the Windows command prompt the default shell for safe mode with
command prompt. Even though the command prompt is the shell, you can type Explorer.exe at the
command prompt to start Windows Explorer, and you can run any other GUI program from the com-
mand prompt as well.

How does an application determine whether the system is booting in safe mode? By calling the
Windows GetSystemMetrics(SM_CLEANBOOT) function. Batch scripts that need to perform certain
operations when the system boots in safe mode look for the SAFEBOOT_OPTION environment vari-
able because the system defines this environment variable only when booting in safe mode.

 CHAPTER 13 Startup and Shutdown 533

Boot Logging in Safe Mode
When you direct the system to boot into safe mode, Winload hands the string specified by the
bootlog option to the Windows kernel as a parameter, together with the parameter that requests safe
mode. When the kernel initializes, it checks for the presence of the bootlog parameter whether or not
any safe-mode parameter is present. If the kernel detects a boot log string, the kernel records the
action the kernel takes on every device driver it considers for loading. For example, if IopSafeboot-
DriverLoad tells the I/O manager not to load a driver, the I/O manager calls IopBootLog to record that
the driver wasn’t loaded. Likewise, after IopLoadDriver successfully loads a driver that is part of the
safe-mode configuration, IopLoadDriver calls IopBootLog to record that the driver loaded. You can
examine boot logs to see which device drivers are part of a boot configuration.

Because the kernel wants to avoid modifying the disk until Chkdsk executes, late in the boot pro-
cess, IopBootLog can’t simply dump messages into a log file. Instead, IopBootLog records messages
in the HKLM\SYSTEM\CurrentControlSet\BootLog registry value. As the first user-mode component
to load during a boot, the Session Manager (%SystemRoot%\System32\Smss.exe) executes Chkdsk
to ensure the system drives’ consistency and then completes registry initialization by executing the
NtInitialize Registry system call. The kernel takes this action as a cue that it can safely open a log file
on the disk, which it does, invoking the function IopCopyBootLogRegistryToFile. This function creates
the file Ntbtlog.txt in the Windows system directory (%SystemRoot%) and copies the contents of the
BootLog registry value to the file. IopCopyBootLogRegistryToFile also sets a flag for IopBootLog that
lets IopBootLog know that writing directly to the log file, rather than recording messages in the regis-
try, is now OK. The following output shows the partial contents of a sample boot log:

Microsoft (R) Windows (R) Version 6.1 (Build 7601)
10 4 2012 09:04:53.375
Loaded driver \SystemRoot\system32\ntkrnlpa.exe
Loaded driver \SystemRoot\system32\hal.dll
Loaded driver \SystemRoot\system32\kdcom.dll
Loaded driver \SystemRoot\system32\mcupdate_GenuineIntel.dll
Loaded driver \SystemRoot\system32\PSHED.dll
Loaded driver \SystemRoot\system32\BOOTVID.dll
Loaded driver \SystemRoot\system32\CLFS.SYS
Loaded driver \SystemRoot\system32\CI.dll
Loaded driver \SystemRoot\system32\drivers\Wdf01000.sys
Loaded driver \SystemRoot\system32\drivers\WDFLDR.SYS
Loaded driver \SystemRoot\system32\drivers\acpi.sys
Loaded driver \SystemRoot\system32\drivers\WMILIB.SYS
Loaded driver \SystemRoot\system32\drivers\msisadrv.sys
Loaded driver \SystemRoot\system32\drivers\pci.sys
Loaded driver \SystemRoot\system32\drivers\volmgr.sys
Loaded driver \SystemRoot\system32\DRIVERS\compbatt.sys
Loaded driver \SystemRoot\system32\DRIVERS\BATTC.SYS
Loaded driver \SystemRoot\System32\drivers\mountmgr.sys
Loaded driver \SystemRoot\system32\drivers\intelide.sys
Loaded driver \SystemRoot\system32\drivers\PCIIDEX.SYS
Loaded driver \SystemRoot\system32\DRIVERS\pciide.sys
Loaded driver \SystemRoot\System32\drivers\volmgrx.sys
Loaded driver \SystemRoot\system32\drivers\atapi.sys
Loaded driver \SystemRoot\system32\drivers\ataport.SYS
Loaded driver \SystemRoot\system32\drivers\fltmgr.sys

534 Windows Internals, Sixth Edition, Part 2

Loaded driver \SystemRoot\system32\drivers\fileinfo.sys
...
Did not load driver @battery.inf,%acpi\acpi0003.devicedesc%;Microsoft AC Adapter
Did not load driver @battery.inf,%acpi\pnp0c0a.devicedesc%;Microsoft ACPI-Compliant
Control Method Battery
Did not load driver @oem46.inf,%nvidia_g71.dev_0297.1%;NVIDIA GeForce Go 7950 GTX
Did not load driver @oem5.inf,%nic_mpciex%;Intel(R) PRO/Wireless 3945ABG Network Connection
Did not load driver @netb57vx.inf,%bcm5750a1clnahkd%;Broadcom NetXtreme 57xx Gigabit Controller
Did not load driver @sdbus.inf,%pci\cc_080501.devicedesc%;SDA Standard Compliant
SD Host Controller
...

Windows Recovery Environment (WinRE)
Safe mode is a satisfactory fallback for systems that become unbootable because a device driver
crashes during the boot sequence, but in some situations a safe-mode boot won’t help the system
boot. For example, if a driver that prevents the system from booting is a member of a Safe group,
safe-mode boots will fail. Another example of a situation in which safe mode won’t help the system
boot is when a third-party driver, such as a virus scanner driver, that loads at the boot prevents the
system from booting. (Boot-start drivers load whether or not the system is in safe mode.) Other situ-
ations in which safe-mode boots will fail are when a system module or critical device driver file that is
part of a safe-mode configuration becomes corrupt or when the system drive’s Master Boot Record
(MBR) is damaged.

You can get around these problems by using the Windows Recovery Environment. The Windows
Recovery Environment provides an assortment of tools and automated repair technologies to auto-
matically fix the most common startup problems. It includes five main tools:

 ■ Startup Repair An automated tool that detects the most common Windows startup prob-
lems and automatically attempts to repair them.

 ■ System Restore Allows restoring to a previous restore point in cases in which you cannot
boot the Windows installation to do so, even in safe mode.

 ■ System Image Recover Called Complete PC Restore, as well as ASR (Automated System
 Recovery), in previous versions of Windows, this restores a Windows installation from a com-
plete backup, not just a system restore point, which might not contain all damaged files and
lost data.

 ■ Windows Memory Diagnostic Tool Performs memory diagnostic tests that check for signs
of faulty RAM. Faulty RAM can be the reason for random kernel and application crashes and
erratic system behavior.

 ■ Command Prompt For cases where troubleshooting or repair requires manual intervention
(such as copying files from another drive or manipulating the BCD), you can use the command
prompt to have a full Windows shell that can launch almost any Windows program (as long as
the required dependencies can be satisfied)—unlike the Recovery Console on earlier versions
of Windows, which only supported a limited set of specialized commands.

 CHAPTER 13 Startup and Shutdown 535

When you boot a system from the Windows CD or boot disks, Windows Setup gives you the choice
of installing Windows or repairing an existing installation. If you choose to repair an installation, the
system displays a dialog box called System Recovery Options, shown in Figure 13-7.

FIGURE 13-7 The System Recovery Options dialog box

Newer versions of Windows also install WinRE to a recovery partition on a clean system installa-
tion. On these systems, you can access WinRE by using the F8 option to access advanced boot options
during Bootmgr execution. If you see an option Repair Your Computer, your machine has a local hard
disk copy. If for some reason yours does not, you can follow the instructions at the Microsoft WinRE
blog (http://blogs.msdn.com/winre) to install WinRE on the hard disk yourself from your Windows
installation media and Windows Automated Installation Kit (AIK).

If you select the first option, WinRE will then display the dialog box in Figure 13-8, which has the
various recovery options. Choosing the second option, on the other hand, is equivalent to the System
Image Recovery option shown in Figure 13-8.

FIGURE 13-8 The Advanced System Recovery Options dialog box

http://blogs.msdn.com/winre

536 Windows Internals, Sixth Edition, Part 2

Additionally, if your system failed to boot as the result of damaged files or for any other reason
that Winload can understand, it instructs Bootmgr to automatically start WinRE at the next reboot
cycle. Instead of the dialog box shown in Figure 13-8, the recovery environment will automatically
launch the Startup Repair tool, shown in Figure 13-9.

FIGURE 13-9 The Startup Repair tool

At the end of the scan and repair cycle, the tool will automatically attempt to fix any damage
found, including replacing system files from the installation media. You can click the details link to see
information about the damage that was fixed. For example, in Figure 13-10, the Startup Repair tool
fixed a damaged boot sector.

FIGURE 13-10 Details view of the Startup Repair tool

If the Startup Repair tool cannot automatically fix the damage, or if you cancel the operation, you’ll
get a chance to try other methods and the System Recovery Options dialog box will be displayed.

 CHAPTER 13 Startup and Shutdown 537

Boot Status File
Windows uses a boot status file (%SystemRoot%\Bootstat.dat) to record the fact that it has
progressed through various stages of the system life cycle, including boot and shutdown. This
allows the Boot Manager, Windows loader, and the Startup Repair tool to detect abnormal
shutdown or a failure to shut down cleanly and offer the user recovery and diagnostic boot op-
tions, like Last Known Good and Safe Mode. This binary file contains information through which
the system reports the success of the following phases of the system life cycle:

 ■ Boot (the definition of a successful boot is the same as the one used for determining Last
Known Good status, which was described earlier)

 ■ Shutdown

 ■ Resume from hibernate or suspend

The boot status file also indicates whether a problem was detected the last time the user
 attempted to boot the operating system and the recovery options shown, indicating that
the user has been made aware of the problem and taken action. Runtime Library APIs (Rtl) in
Ntdll.dll contain the private interfaces that Windows uses to read from and write to the file. Like
the BCD, it cannot be edited by users.

Solving Common Boot Problems
This section describes problems that can occur during the boot process, describing their symptoms,
what caused them, and approaches to solving them. To help you locate a problem that you might
encounter, they are organized according to the place in the boot at which they occur. Note that for
most of these problems, you should be able to simply boot into the Windows Recovery Environment
and allow the Startup Repair tool to scan your system and perform any automated repair tasks.

MBR Corruption
 ■ Symptoms A system that has Master Boot Record (MBR) corruption will execute the BIOS

power-on self test (POST), display BIOS version information or OEM branding, switch to a
black screen, and then hang. Depending on the type of corruption the MBR has experienced,
you might see one of the following messages: “Invalid partition table”, “Error loading operat-
ing system”, or “Missing operating system”.

 ■ Cause The MBR can become corrupt because of hard-disk errors, disk corruption as a result
of a driver bug while Windows is running, or intentional scrambling as a result of a virus.

 ■ Resolution Boot into the Windows Recovery Environment, choose the Command Prompt
option, and then execute the bootrec /fixmbr command. This command replaces the execut-
able code in the MBR.

538 Windows Internals, Sixth Edition, Part 2

Boot Sector Corruption
 ■ Symptoms Boot sector corruption can look like MBR corruption, where the system hangs

after BIOS POST at a black screen, or you might see the messages “A disk read error occurred”,
“BOOTMGR is missing”, or “ BOOTMGR is compressed” displayed on a black screen.

 ■ Cause The boot sector can become corrupt because of hard-disk errors, disk corruption as a
result of a driver bug while Windows is running, or intentional scrambling as a result of a virus.

 ■ Resolution Boot into the Windows Recovery Environment, choose the Command Prompt
option, and then execute the bootrec /fixboot command. This command rewrites the boot sec-
tor of the volume that you specify. You should execute the command on both the system and
boot volumes if they are different.

BCD Misconfiguration
 ■ Symptom After BIOS POST, you’ll see a message that begins “Windows could not start

because of a computer disk hardware configuration problem”, “Could not read from selected
boot disk”, or “Check boot path and disk hardware”.

 ■ Cause The BCD has been deleted, become corrupt, or no longer references the boot volume
because the addition of a partition has changed the name of the volume.

 ■ Resolution Boot into the Windows Recovery Environment, choose the Command Prompt
option, and then execute the bootrec /scanos and bootrec /rebuildbcd commands. These
commands will scan each volume looking for Windows installations. When they discover an
installation, they will ask you whether they should add it to the BCD as a boot option and
what name should be displayed for the installation in the boot menu. For other kinds of BCD-
related damage, you can also use Bcdedit.exe to perform tasks such as building a new BCD
from scratch or cloning an existing good copy.

System File Corruption
 ■ Symptoms There are several ways the corruption of system files—which include executables,

drivers, or DLLs—can manifest. One way is with a message on a black screen after BIOS POST
that says, “Windows could not start because the following file is missing or corrupt”, followed
by the name of a file and a request to reinstall the file. Another way is with a blue screen crash
during the boot with the text, “STOP: 0xC0000135 {Unable to Locate Component}”.

 ■ Causes The volume on which a system file is located is corrupt or one or more system files
have been deleted or become corrupt.

 ■ Resolution Boot into the Windows Recovery Environment, choose the Command Prompt
option, and then execute the chkdsk command. Chkdsk will attempt to repair volume cor-
ruption. If Chkdsk does not report any problems, obtain a backup copy of the system file
in question. One place to check is in the %SystemRoot%\winsxs\Backup directory, in which
Windows places copies of many system files for access by Windows Resource Protection. (See
the “Windows Resource Protection” sidebar.) If you cannot find a copy of the file there, see if

 CHAPTER 13 Startup and Shutdown 539

you can locate a copy from another system in the network. Note that the backup file must be
from the same service pack or hotfix as the file that you are replacing.

In some cases, multiple system files are deleted or become corrupt, so the repair process can
involve multiple reboots and boot failures as you repair the files one by one. If you believe the system
file corruption to be extensive, you should consider restoring the system from a backup image, such
as one generated by Windows Backup and Restore or from a system restore point.

When you run Backup and Restore (located in the Maintenance folder on the Start menu), you
can generate a System Image Recovery image, which includes all the files on the system and boot
volumes, plus a floppy disk on which it stores information about the system’s disks and volumes. To
restore a system from such an image, boot from the Windows setup media and select the appropriate
option when prompted (or use the recovery environment shown earlier).

If you do not have a backup from which to restore, a last resort is to execute a Windows repair
install: boot from the Windows setup media, and follow the wizard as if you were going to perform a
new installation. The wizard will ask you whether you want to perform a repair or fresh install. When
you tell it that you want to repair, Setup reinstalls all system files, leaving your application data and
registry settings intact.

Windows Resource Protection
To preserve the integrity of the many components involved in the boot process, as well as other
critical Windows files, libraries, and applications, Windows implements a technology called
Windows Resource Protection (WRP). WRP is implemented through access control lists (ACLs)
that protect critical system files on the machine. It is also exposed through an API (located in
%SystemRoot%\System32\Sfc.dll and %SystemRoot%\System32\Sfc_os.dll) that can be accessed
by the Sfc.exe utility to manually check a file for corruption and restore it.

WRP will also protect entire critical folders if required, even locking down the folder so that
it is inaccessible by administrators (without modifying the access control list on the folder). The
only supported way to modify WRP-protected files is through the Windows Modules Installer
service, which can run under the TrustedInstaller account. This service is used for the installation
of patches, service packs, hotfixes, and Windows Update. This account has access to the vari-
ous protected files and is trusted by the system (as its name implies) to modify critical files and
replace them. WRP also protects critical registry keys, and it may even lock entire registry trees
if all the values and subkeys are considered to be critical.

WRP sets the ACL on protected files, directories, or registry keys such that only the Trusted-
Installer account is able to modify or delete these files. Application developers can use the SfcIs-
FileProtected or SfcIsKeyProtected APIs to check whether a file or registry key is locked down.

For backward compatibility, certain installers are considered well-known—an application
compatibility shim exists that will suppress the “access denied” error that certain installers would
receive while attempting to modify WRP-protected resources. Instead, the installer receives a
fake “success” code, but the modification isn’t made. This virtualization is similar to the User

540 Windows Internals, Sixth Edition, Part 2

Access Control (UAC) virtualization technology discussed in Chapter 6 in Part 1, but it applies to
write operations as well. It applies if the following are true:

 ■ The application is a legacy application, meaning that it does not contain a manifest file
compatible with the requestedExecutionLevel value set.

 ■ The application is trying to modify a WRP-protected resource (the file or registry key con-
tains the TrustedInstaller SID).

 ■ The application is being run under an administrator account (always true on systems with
UAC enabled because of automatic installer program detection).

WRP copies files that are needed to restart Windows to the cache directory located at
%SystemRoot%\winsxs\Backup. Critical files that are not needed to restart Windows are not
copied to the cache directory. The size of the cache directory and the list of files copied to the
cache cannot be modified. To recover a file from the cache directory, you can use the System
File Checker (Sfc.exe) tool, which can scan your system for modified protected files and restore
them from a good copy.

System Hive Corruption
 ■ Symptoms If the System registry hive (which is discussed along with hive files in the section

“The Registry” in Chapter 4 in Part 1) is missing or corrupted, Winload will display the message
“Windows could not start because the following file is missing or corrupt: \WINDOWS\SYS-
TEM32\CONFIG\ SYSTEM”, on a black screen after the BIOS POST.

 ■ Causes The System registry hive, which contains configuration information necessary for the
system to boot, has become corrupt or has been deleted.

 ■ Resolution Boot into the Windows Recovery Environment, choose the Command Prompt
option, and then execute the chkdsk command. If the problem is not corrected, obtain a
backup of the System registry hive. Windows makes copies of the registry hives every 12
hours (keeping the immediately previous copy with a .OLD extension) in a folder called
%SystemRoot%\System32\Config\RegBack, so copy the file named System to %SystemRoot%\
System32\Config.

If System Restore is enabled (System Restore is discussed in Chapter 12, “File System”), you can
often obtain a more recent backup of the registry hives, including the System hive, from the most
recent restore point. You can choose System Restore from the Windows Recovery Environment to
restore your registry from the last restore point.

Post–Splash Screen Crash or Hang
 ■ Symptoms Problems that occur after the Windows splash screen displays, the desktop ap-

pears, or you log on fall into this category and can appear as a blue screen crash or a hang,

 CHAPTER 13 Startup and Shutdown 541

where the entire system is frozen or the mouse cursor tracks the mouse but the system is
otherwise unresponsive.

 ■ Causes These problems are almost always a result of a bug in a device driver, but they can
sometimes be the result of corruption of a registry hive other than the System hive.

 ■ Resolution You can take several steps to try and correct the problem. The first thing you
should try is the last known good configuration. Last known good (LKG), which is described
earlier in this chapter and in the “Services” section of Chapter 4 in Part 1, consists of the
registry control set that was last used to boot the system successfully. Because a control set
includes core system configuration and the device driver and services registration database,
using a version that does not reflect changes or newly installed drivers or services might avoid
the source of the problem. You access last known good by pressing the F8 key early in the
boot process to access the same menu from which you can boot into safe mode.

As stated earlier in the chapter, when you boot into LKG, the system saves the control set that you
are avoiding and labels it as the failed control set. You can leverage the failed control set in cases
where LKG makes a system bootable to determine what was causing the system to fail to boot by
 exporting the contents of the current control set of the successful boot and the failed control set to
.reg files. You do this by using Regedit’s export functionality, which you access under the File menu:

1. Run Regedit, and select HKLM\SYSTEM\CurrentControlSet.

2. Select Export from the File menu, and save to a file named good.reg.

3. Open HKLM\SYSTEM\Select, read the value of Failed, and select the subkey named HKLM\
SYSTEM\ControlXXX, where XXX is the value of Failed.

4. Export the contents of the control set to bad.reg.

5. Use WordPad (which is found under Accessories on the Start menu) to globally replace all
instances of CurrentControlSet in good.reg with ControlSet.

6. Use WordPad to change all instances of ControlXXX (replacing XXX with the value of the
Failed control set) in bad.reg with ControlSet.

7. Run Windiff from the Support Tools, and compare the two files.

The differences between a failed control set and a good one can be numerous, so you should
focus your examination on changes beneath the Control subkey as well as under the Parameters sub-
keys of drivers and services registered in the Services subkey. Ignore changes made to Enum subkeys
of driver registry keys in the Services branch of the control set.

If the problem you’re experiencing is caused by a driver or service that was present on the system
since before the last successful boot, LKG will not make the system bootable. Similarly, if a problem-
atic configuration setting changed outside the control set or was made before the last successful
boot, LKG will not help. In those cases, the next option to try is safe mode (described earlier in this
section). If the system boots successfully in safe mode and you know what particular driver was caus-
ing the normal boot to fail, you can disable the driver by using the Device Manager (accessible from

542 Windows Internals, Sixth Edition, Part 2

the System Control Panel item). To do so, select the driver in question and choose Disable from the
Action menu. If you recently updated the driver, and believe that the update introduced a bug, you
can choose to roll back the driver to its previous version instead, also with the Device Manager. To
restore a driver to its previous version, double-click on the device to open its Properties dialog box
and click Roll Back Driver on the Driver tab.

On systems with System Restore enabled, an option when LKG fails is to roll back all system state
(as defined by System Restore) to a previous point in time. Safe mode detects the existence of restore
points, and when they are present it will ask you whether you want to log on to the installation to
perform a manual diagnosis and repair or launch the System Restore Wizard. Using System Restore
to make a system bootable again is attractive when you know the cause of a problem and want the
repair to be automatic or when you don’t know the cause but do not want to invest time to determine
the cause.

If System Restore is not an option or you want to determine the cause of a crash during the normal
boot and the system boots successfully in safe mode, attempt to obtain a boot log from the unsuc-
cessful boot by pressing F8 to access the special boot menu and choosing the boot logging option.
As described earlier in this chapter, Session Manager (%SystemRoot%\System32\Smss.exe) saves a
log of the boot that includes a record of device drivers that the system loaded and chose not to load
to %SystemRoot%\ntbtlog.txt, so you’ll obtain a boot log if the crash or hang occurs after Session
Manager initializes. When you reboot into safe mode, the system appends new entries to the existing
boot log. Extract the portions of the log file that refer to the failed attempt and safe-mode boots into
separate files. Strip out lines that contain the text “Did not load driver”, and then compare them with
a text comparison tool such as Windiff. One by one, disable the drivers that loaded during the normal
boot but not in the safe-mode boot until the system boots successfully again. (Then reenable the
drivers that were not responsible for the problem.)

If you cannot obtain a boot log from the normal boot (for instance, because the system is crashing
before Session Manager initializes), if the system also crashes during the safe-mode boot, or if a com-
parison of boot logs from the normal and safe-mode boots do not reveal any significant differences
(for example, when the driver that’s crashing the normal boot starts after Session Manager initializes),
the next tool to try is Driver Verifier combined with crash dump analysis. (See Chapter 14, “Crash
Dump Analysis,” for more information on both these topics.)

Shutdown

If someone is logged on and a process initiates a shutdown by calling the Windows ExitWindowsEx
function, a message is sent to that session’s Csrss instructing it to perform the shutdown. Csrss in turn
impersonates the caller and sends an RPC message to Winlogon, telling it to perform a system shut-
down. Winlogon then impersonates the currently logged-on user (who might or might not have the
same security context as the user who initiated the system shutdown) and calls ExitWindowsEx with

 CHAPTER 13 Startup and Shutdown 543

some special internal flags. Again this call causes a message to be sent to the Csrss process inside that
session, requesting a system shutdown.

This time, Csrss sees that the request is from Winlogon and loops through all the processes in the
logon session of the interactive user (again, not the user who requested a shutdown) in reverse order
of their shutdown level. A process can specify a shutdown level, which indicates to the system when it
wants to exit with respect to other processes, by calling SetProcessShutdownParameters. Valid shut-
down levels are in the range 0 through 1023, and the default level is 640. Explorer, for example, sets
its shutdown level to 2 and Task Manager specifies 1. For each process that owns a top-level window,
Csrss sends the WM_QUERYENDSESSION message to each thread in the process that has a Windows
message loop. If the thread returns TRUE, the system shutdown can proceed. Csrss then sends the
WM_ENDSESSION Windows message to the thread to request it to exit. Csrss waits the number of
seconds defined in HKCU\Control Panel\Desktop\HungAppTimeout for the thread to exit. (The de-
fault is 5,000 milliseconds.)

If the thread doesn’t exit before the timeout, Csrss fades out the screen and displays the hung-
program screen shown in Figure 13-11. (You can disable this screen by creating the registry value
HKCU\Control Panel\Desktop\AutoEndTasks and setting it to 1.) This screen indicates which programs
are currently running and, if available, their current state. Windows indicates which program isn’t
shutting down in a timely manner and gives the user a choice of either killing the process or aborting
the shutdown. (There is no timeout on this screen, which means that a shutdown request could wait
forever at this point.) Additionally, third-party applications can add their own specific information
regarding state—for example, a virtualization product could display the number of actively running
virtual machines.

FIGURE 13-11 Hung program screen

544 Windows Internals, Sixth Edition, Part 2

EXPERIMENT: Witnessing the HungAppTimeout
You can see the use of the HungAppTimeout registry value by running Notepad, entering text
into its editor, and then logging off. After the amount of time specified by the HungAppTime-
out registry value has expired, Csrss.exe presents a prompt that asks you whether or not you
want to end the Notepad process, which has not exited because it’s waiting for you to tell it
whether or not to save the entered text to a file. If you click the Cancel button, Csrss.exe aborts
the shutdown.

As a second experiment, if you try shutting down again (with Notepad’s query dialog box
still open), Notepad will display its own message box to inform you that shutdown cannot
cleanly proceed. However, this dialog box is merely an informational message to help users—
Csrss.exe will still consider that Notepad is “hung” and display the user interface to terminate
unresponsive processes.

If the thread does exit before the timeout, Csrss continues sending the WM_QUERYENDSESSION/
WM_ENDSESSION message pairs to the other threads in the process that own windows. Once all the
threads that own windows in the process have exited, Csrss terminates the process and goes on to the
next process in the interactive session.

If Csrss finds a console application, it invokes the console control handler by sending the CTRL_
LOGOFF_EVENT event. (Only service processes receive the CTRL_SHUTDOWN_EVENT event on
shutdown.) If the handler returns FALSE, Csrss kills the process. If the handler returns TRUE or doesn’t
respond by the number of seconds defined by HKCU\Control Panel\Desktop\WaitToKillAppTimeout
(the default is 20,000 milliseconds), Csrss displays the hung-program screen shown in Figure 13-11.

Next, Winlogon calls ExitWindowsEx to have Csrss terminate any COM processes that are part of
the interactive user’s session.

At this point, all the processes in the interactive user’s session have been terminated. Wininit next
calls ExitWindowsEx, which this time executes within the system process context. This causes Wininit
to send a message to the Csrss part of session 0, where the services live. Csrss then looks at all the
processes belonging to the system context and performs and sends the WM_QUERYENDSESSION/
WM_ENDSESSION messages to GUI threads (as before). Instead of sending CTRL_LOGOFF_EVENT,
however, it sends CTRL_ SHUTDOWN_EVENT to console applications that have registered control
handlers. Note that the SCM is a console program that does register a control handler. When it

 CHAPTER 13 Startup and Shutdown 545

receives the shutdown request, it in turn sends the service shutdown control message to all services
that registered for shutdown notification. For more details on service shutdown (such as the shut-
down timeout Csrss uses for the SCM), see the “Services” section in Chapter 4 in Part 1.

Although Csrss performs the same timeouts as when it was terminating the user processes, it
doesn’t display any dialog boxes and doesn’t kill any processes. (The registry values for the system
process timeouts are taken from the default user profile.) These timeouts simply allow system pro-
cesses a chance to clean up and exit before the system shuts down. Therefore, many system processes
are in fact still running when the system shuts down, such as Smss, Wininit, Services, and LSASS.

Once Csrss has finished its pass notifying system processes that the system is shutting down, Win-
logon finishes the shutdown process by calling the executive subsystem function NtShutdownSystem.
This function calls the function PoSetSystemPowerState to orchestrate the shutdown of drivers and
the rest of the executive subsystems (Plug and Play manager, power manager, executive, I/O manager,
configuration manager, and memory manager).

For example, PoSetSystemPowerState calls the I/O manager to send shutdown I/O packets to all
device drivers that have requested shutdown notification. This action gives device drivers a chance to
perform any special processing their device might require before Windows exits. The stacks of worker
threads are swapped in, the configuration manager flushes any modified registry data to disk, and the
memory manager writes all modified pages containing file data back to their respective files. If the
option to clear the paging file at shutdown is enabled, the memory manager clears the paging file at
this time. The I/O manager is called a second time to inform the file system drivers that the system is
shutting down. System shutdown ends in the power manager. The action the power manager takes
depends on whether the user specified a shutdown, a reboot, or a power down.

Conclusion

In this chapter, we’ve examined the detailed steps involved in starting and shutting down Windows
(both normally and in error cases). We’ve examined the overall structure of Windows and the core
system mechanisms that get the system going, keep it running, and eventually shut it down. The final
chapter of this book explains how to deal with an unusual type of shutdown: system crashes.

 547

C H A P T E R 1 4

Crash Dump Analysis

Almost every Windows user has heard of, if not experienced, the infamous “blue screen of death.”
This ominous term refers to the blue screen that is displayed when Windows crashes, or stops

executing, because of a catastrophic fault or an internal condition that prevents the system from
continuing to run.

In this chapter, we’ll cover the basic problems that cause Windows to crash, describe the informa-
tion presented on the blue screen, and explain the various configuration options available to create
a crash dump, a record of system memory at the time of a crash that can help you figure out which
component caused the crash and why. This section is not intended to provide detailed troubleshoot-
ing information on how to analyze a Windows system crash. This section will also show you how to
analyze a crash dump to identify a faulty driver or component. The effort required to perform basic
crash dump analysis is minimal and takes a few minutes. Even if an analysis ascertains the problematic
driver for only one out of every five or ten crash dumps, it’s still worth doing: one successful analysis
can avoid future data loss, system downtime, and frustration.

Why Does Windows Crash?

Windows crashes (stops execution and displays the blue screen) for many possible reasons. A common
source is a reference to a memory address that causes an access violation, either a write operation to
read-only memory or a read operation on an address that is not mapped. Another common cause is
an unexpected exception or trap. Crashes also occur when a kernel subsystem (such as the memory
manager or power manager) or a driver (such as a USB or display driver) detect inconsistencies in their
operation.

When a kernel-mode device driver or subsystem causes an illegal exception, Windows faces a
difficult dilemma. It has detected that a part of the operating system with the ability to access any
hardware device and any valid memory has done something it wasn’t supposed to do.

But why does that mean Windows has to crash? Couldn’t it just ignore the exception and let the
device driver or subsystem continue as if nothing had happened? The possibility exists that the error
was isolated and that the component will somehow recover. But what’s more likely is that the de-
tected exception resulted from deeper problems—for example, from a general corruption of memory
or from a hardware device that’s not functioning properly. Permitting the system to continue oper-
ating would probably result in more exceptions, and data stored on disk or other peripherals could

548 Windows Internals, Sixth Edition, Part 2

become corrupt—a risk that’s too high to take. So Windows adopts a fail fast policy in attempting to
prevent the corruption in RAM from spreading to disk.

The Blue Screen

Regardless of the reason for a system crash, the function that actually performs the crash is KeBug-
CheckEx, documented in the Windows Driver Kit (WDK). This function takes a stop code (sometimes
called a bugcheck code) and four parameters that are interpreted on a per–stop code basis. After
KeBugCheckEx masks out all interrupts on all processors of the system, it switches the display into a
low-resolution VGA graphics mode (one implemented by all Windows-supported video cards), paints
a blue background, and then displays the stop code, followed by some text suggesting what the user
can do. Finally, KeBugCheckEx calls any registered device driver bugcheck callbacks (registered by call-
ing the KeRegisterBugCheckCallback function), allowing drivers an opportunity to stop their devices.
It then calls registered reason callbacks (registered with KeRegisterBugCheckReasonCallback), which
allow drivers to append data to the crash dump or write crash dump information to alternate devices.

The first line in the Technical information section in the sample Windows blue screen shown in
Figure 14-1 lists the stop code and the four additional parameters passed to KeBugCheckEx. A text
line near the top of the screen provides the text equivalent of the stop code’s numeric identifier. Ac-
cording to the example in Figure 14-1, the stop code 0x000000D1 is a DRIVER_IRQL_NOT_LESS_OR_
EQUAL crash. When a parameter contains an address of a piece of operating system or device driver
code (as in Figure 14-1), Windows displays the base address of the module the address falls in, the
date stamp, and the file name of the device driver. This information alone might help you pinpoint the
faulty component.

FIGURE 14-1 Example of a blue screen

 CHAPTER 14 Crash Dump Analysis 549

Although there are more than 300 unique stop codes, most are rarely, if ever, seen on production
systems. Instead, just a few common stop codes represent the majority of Windows system crashes.
Also, the meaning of the four additional parameters depends on the stop code (and not all stop codes
have extended parameter information). Nevertheless, looking up the stop code and the meaning of
the parameters (if applicable) might at least assist you in diagnosing the component that is failing (or
the hardware device that is causing the crash).

You can find stop code information in the section “Bug Checks (Blue Screens)” in the Debug-
ging Tools for Windows help file. (For information on the Debugging Tools for Windows, see
Chapter 1, “Concepts and Tools,” in Part 1.) You can also search Microsoft’s Knowledge Base (http://
sup port.microsoft.com) for the stop code and the name of the suspect hardware or driver. You might
find information about a workaround, an update, or a service pack that fixes the problem you’re hav-
ing. The Bugcodes.h file in the WDK contains a complete list of the 300 or so stop codes, with some
additional details on the reasons for some of them. Last but not least, these stop codes are listed and
documented at http://msdn.microsoft.com/en-us/library/windows/hardware/hh406232(v=vs.85).aspx.

Causes of Windows Crashes
Based on data collected from the release of Windows 7 through the release of Windows 7 SP1,
the top 20 stop codes account for 91 percent of crashes and can be grouped into the following
categories:

 ■ Page fault A page fault on memory backed by data in a paging file or a memory-mapped
file occurs at an IRQL of DPC/dispatch level or above, which would require the memory
manager to have to wait for an I/O operation to occur. The kernel cannot wait or reschedule
threads at an IRQL of DPC/dispatch level or higher. (See Chapter 3, “System Mechanisms,” in
Part 1 for details on IRQLs.) The common stop codes are:

• 0xA - IRQL_NOT_LESS_OR_EQUAL

• 0xD1 - DRIVER_IRQL_NOT_LESS_OR_EQUAL

 ■ Power management A device driver or an operating system function running in kernel
mode is in an inconsistent or invalid power state. Most frequently, some component has failed
to complete a power management I/O request operation within the default period of 10 min-
utes. The common stop code is:

• 0x9F - DRIVER_POWER_STATE_FAILURE

 ■ Exceptions and traps A device driver or an operating system function running in kernel
mode incurs an unexpected exception or trap. The common stop codes are:

• 0x1E - KMODE_EXCEPTION_NOT_HANDLED

• 0x3B - SYSTEM_SERVICE_EXCEPTION

• 0x7E - SYSTEM_THREAD_EXCEPTION_NOT_HANDLED

• 0x7F - UNEXPECTED_KERNEL_MODE_TRAP

http://sup-port.microsoft.com
http://sup-port.microsoft.com
http://msdn.microsoft.com/en-us/library/windows/hardware/hh406232(v=vs.85).aspx

550 Windows Internals, Sixth Edition, Part 2

• 0x8E - KERNEL_MODE_EXCEPTION_NOT_HANDLED with P1 != 0xC0000005
STATUS_ACCESS_VIOLATION

 ■ Access violations A device driver or an operating system function running in kernel mode
incurs a memory access violation, which is caused either by attempting to write to a read-only
page or by attempting to read an address that isn’t currently mapped and therefore is not a
valid memory location. The common stop codes are:

• 0x50 - PAGE_FAULT_IN_NONPAGED_AREA

• 0x8E - KERNEL_MODE_EXCEPTION_NOT_HANDLED with P1 = 0xC0000005
STATUS_ACCESS_VIOLATION

 ■ Display The display device driver detects that it can no longer control the graphics process-
ing unit. This indicates that an attempt to reset the display driver failed. The common stop
code is:

• 0x116 - VIDEO_TDR_FAILURE

 ■ Pool The kernel pool manager detects a corrupt pool header or an improper pool reference.
The common stop codes are:

• 0x19 - BAD_POOL_HEADER

• 0xC2 - BAD_POOL_CALLER

• 0xC5 - DRIVER_CORRUPTED_EXPOOL

 ■ Memory management The kernel memory manager detects a corruption of memory man-
agement data structures or an improper memory management request. The common stop
codes are:

• 0x1A - MEMORY_MANAGEMENT

• 0x4E - PFN_LIST_CORRUPT

 ■ Hardware A hardware error, such as a machine check or a nonmaskable interrupt (NMI), oc-
curs. This category also includes disk failures when the memory manager is attempting to read
data to satisfy page faults. The common stop codes are:

• 0x7A - KERNEL_DATA_INPAGE_ERROR

• 0x124 - WHEA_UNCORRECTABLE_ERROR

 ■ USB An unrecoverable error occurs in a universal serial bus operation. The common stop
code is:

• 0xFE - BUGCODE_USB_DRIVER

 ■ Critical object A fatal error occurs in a critical object without which Windows cannot con-
tinue to run. The common stop code is:

 CHAPTER 14 Crash Dump Analysis 551

• 0xF4 - CRITICAL_OBJECT_TERMINATION

 ■ NTFS file system A fatal error is detected by the NTFS file system. The common stop
code is:

• 0x24 - NTFS_FILE_SYSTEM

Figure 14-2 shows the distribution of these categories for Windows 7 and Windows 7 SP1 in May
2012:

Memory management,
7.0%

Pool,
7.0%

NTFS, 2.1%

Critical object, 2.3%

USB, 1.8%

Hardware, 4.5%
Power

management,
13.2%

Page fault,
18.3%

Exception and
trap, 17.0%

Access
violation,

14.0%

Display,
12.6%

FIGURE 14-2 Distribution of top 20 stop codes by category for Windows 7 and Windows 7 SP1 in May 2012.

Troubleshooting Crashes

You often begin seeing blue screens after you install a new software product or piece of hardware. If
you’ve just added a driver, rebooted, and gotten a blue screen early in system initialization, you can
reset the machine, press the F8 key when instructed, and then select Last Known Good Configura-
tion. Enabling last known good causes Windows to revert to a copy of the registry’s device driver
registration key (HKLM\SYSTEM\CurrentControlSet\Services) from the last successful boot (before you
installed the driver). From the perspective of last known good, a successful boot is one in which all
services and drivers have finished loading and at least one logon has succeeded. (Last known good is
further described in Chapter 13, “Startup and Shutdown.”)

During the reboot after a crash, the Boot Manager (Bootmgr) will automatically detect that
Windows did not shut down properly and display a Windows Error Recovery message similar to the
one shown in Figure 14-3. This screen gives you the option to attempt booting into safe mode so that
you can disable or uninstall the software component that might be broken.

552 Windows Internals, Sixth Edition, Part 2

FIGURE 14-3 An example of a Windows Error Recovery message

If you keep getting blue screens, an obvious approach is to uninstall the components you added
just before the first blue screen appeared. If some time has passed since you added something new
or you added several things at about the same time, you need to note the names of the device drivers
referenced in any of the parameters. If you recognize any of the names as being related to something
you just added (such as Storport.sys if you installed a new SCSI drive), you’ve possibly found your
culprit.

Many device drivers have cryptic names, but one approach you can take to figure out which appli-
cation or hardware device is associated with a name is to find out the name of the service in the reg-
istry associated with a device driver by searching for the name of the device driver under the HKLM\
SYSTEM\CurrentControlSet\Services key. This branch of the registry is where Windows stores regis-
tration information for every device driver in the system. If you find a match, look for values named
DisplayName and Description. Some drivers fill in these values to describe the device driver’s purpose.
For example, you might find the string “Virus Scanner” in the DisplayName value, which can implicate
the antivirus software you have running. The list of drivers can be displayed in the System Informa-
tion tool (from the Start menu, select All Programs, Accessories, System Tools, System Information). In
System Information, expand Software Environment, and then select System Drivers. Process Explorer
also lists the currently loaded drivers, including their version numbers and load addresses, in the DLL
view of the System process. Another option is to open the Properties dialog box for the driver file
and examine the information on the Details tab, which often contains the description and company

 CHAPTER 14 Crash Dump Analysis 553

information for the driver. Keep in mind that the registry information and file description are provided
by the driver manufacturer, and there is nothing to guarantee their accuracy.

More often than not, however, the stop code and the four associated parameters aren’t enough in-
formation to troubleshoot a system crash. For example, you might need to examine the kernel-mode
call stack to pinpoint the driver or system component that triggered the crash. Also, because the
default behavior on Windows systems is to automatically reboot after a system crash, it’s unlikely that
you would have time to record the information displayed on the blue screen. That is why, by default,
Windows attempts to record information about the system crash to the disk for later analysis, which
takes us to our next topic, crash dump files.

Crash Dump Files

By default, all Windows systems are configured to attempt to record information about the state of
the system when the system crashes. You can see these settings by opening the System Properties
tool in Control Panel (under System, Advanced System Settings), clicking the Advanced tab, and then
clicking the Settings button under Startup And Recovery. The default settings for a Windows system
are shown in Figure 14-4.

FIGURE 14-4 Crash dump settings

Three levels of information can be recorded on a system crash:

 ■ Complete memory dump A complete memory dump contains all physical memory ac-
cessible by Windows at the time of the crash. This type of dump requires that a page file be
at least the size of physical memory plus 1 MB for the header. Device drivers can add up to

554 Windows Internals, Sixth Edition, Part 2

256 MB for secondary crash dump data, so to be safe, it’s recommended to increase the size
of the page file by an additional 256 MB. Because it can require an inordinately large page file
on large memory systems, this type of dump file is the least common setting. If the system has
more than 2 GB of RAM, this option will be disabled in the UI, but you can manually enable it
by running the following command from an elevated command prompt:

wmic recoveros set DebugInfoType=1

When using Wmic.exe to enable a complete dump, the WMI Win32 Provider sets the Crash-
DumpEnabled value to 1 in the HKLM\SYSTEM\CurrentControlSet\Control\CrashControl reg-
istry key. At initialization time, Windows will check whether the page-file size is large enough
for a complete dump and automatically switch to creating a small memory dump if not.

 ■ Kernel memory dump A kernel memory dump contains only the kernel-mode pages al-
located by the operating system and device drivers that are present in physical memory at
the time of the crash. This type of dump doesn’t contain pages belonging to user processes.
Because only kernel-mode code can directly cause Windows to crash, however, it’s unlikely
that user process pages are necessary to debug a crash. In addition, all data structures relevant
for crash dump analysis—including the list of running processes, the kernel-mode stack of
the current thread, and list of loaded drivers—are stored in nonpaged memory that saves in a
kernel memory dump. There is no way to predict the size of a kernel memory dump because its
size depends on the amount of kernel-mode memory allocated by the operating system and
drivers present on the machine. This is the default setting for both Windows client and server
systems.

 ■ Small memory dump A small memory dump, which is typically between 128 KB and 1 MB
in size and is also called a minidump or triage dump, contains the stop code and parameters,
the list of loaded device drivers, the data structures that describe the current process and
thread (called the EPROCESS and ETHREAD—described in Chapter 5, “Processes, Threads, and
Jobs,” in Part 1), the kernel stack for the thread that caused the crash, and additional memory
considered potentially relevant by crash dump heuristics, such as the pages referenced by pro-
cessor registers that contain memory addresses and secondary dump data added by drivers.

Note Device drivers can register a secondary dump data callback routine by calling
KeRegisterBugCheckReasonCallback. The kernel invokes these callbacks after a crash and
a callback routine can add additional data to a crash dump file, such as device hardware
memory or device information for easier debugging. Up to 256 MB can be added system-
wide by all drivers, depending on the space required to store the dump and the size of the
file into which the dump is written, and each callback can add at most one-eighth of the
available additional space. Once the additional space is consumed, drivers subsequently
called are not offered the chance to add data.

The debugger indicates that it has limited information available to it when it loads a minidump,
and basic commands like !process, which lists active processes, don’t have the data they need. Here is
an example of !process executed on a minidump:

 CHAPTER 14 Crash Dump Analysis 555

Microsoft (R) Windows Debugger Version 6.12.0002.633 AMD64

Copyright (c) Microsoft Corporation. All rights reserved.

Loading Dump File [C:\Windows\Minidump\100911-22965-01.dmp]

Mini Kernel Dump File: Only registers and stack trace are available

...

0: kd> !process 0 0

**** NT ACTIVE PROCESS DUMP ****

GetPointerFromAddress: unable to read from fffff800030c5000

Error in reading nt!_EPROCESS at 0000000000000000

A kernel memory dump includes more information, but switching to a different process’s address
space mappings won’t work because required data isn’t in the dump file. Here is an example of the
debugger loading a kernel memory dump, followed by an attempt to switch process address spaces:

Microsoft (R) Windows Debugger Version 6.12.0002.633 AMD64

Copyright (c) Microsoft Corporation. All rights reserved.

Loading Dump File [C:\Windows\MEMORY.DMP]

Kernel Summary Dump File: Only kernel address space is available

...

0: kd> !process 0 0 explorer.exe

PROCESS fffffa8009b47540 ...

0: kd> .process fffffa8009b47540

Process fffffa80`09b47540 has invalid page directories

While a complete memory dump is a superset of the other options, it has the drawback that its
size tracks the amount of physical memory on a system and can therefore become unwieldy. Because
user-mode code and data are not used during the analysis of most crashes (because crashes origi-
nate as a result of problems in kernel memory, and system data structures reside in kernel memory),
much of the data stored in a complete memory dump is not relevant to crash analysis and therefore
contributes wastefully to the size of a dump file. A final disadvantage is that the paging file must be
at least as large as the amount of physical memory on the system plus 1 MB for the dump header,
plus up to an additional 256 MB for secondary crash dump data. Because the size of the paging files
required, in general, inversely tracks the amount of physical memory present, this requirement can
force the paging file to be unnecessarily large. You should therefore consider the advantages offered
by the small and kernel memory dump options.

An advantage of a minidump is its small size, which makes it convenient for exchange via e-mail,
for example. In addition, each crash generates a file in the directory %SystemRoot%\Minidump with
a unique file name consisting of the date, the number of milliseconds that have elapsed since the
system was started, and a sequence number (for example, 040712-24835-01.dmp). If there's a conflict,
the system will attempt to create additional unique file names by calling the Windows GetTickCount
function to return an updated system tick count, and it will also increment the sequence number.
By default, Windows saves the last 50 minidumps. The number of minidumps saved is configurable
by modifying the MinidumpsCount value under the HKLM\SYSTEM\CurrentControlSet\Control\
CrashControl registry key.

556 Windows Internals, Sixth Edition, Part 2

A disadvantage of minidumps is that to analyze them, you must have access to the exact images
used on the system that generated the dump at the time of analysis. (At a minimum, a copy of the
matching Ntoskrnl.exe is needed to perform the most basic analysis.) This can be problematic if you
want to analyze a dump on a system different from the system that generated the dump. However,
the Microsoft symbol server contains images (and symbols) for all recent Windows versions, so you
can set the symbol path in the debugger to point to the symbol server, and the debugger will auto-
matically download the needed images. (Of course, the Microsoft symbol server won’t have images
for third-party drivers you have installed.)

A more significant disadvantage is that the limited amount of data stored in the dump can hamper
effective analysis. You can also get the advantages of minidumps even when you configure a system
to generate kernel or complete crash dumps by opening the larger crash with WinDbg and using the
.dump /m command to extract a minidump. Note that a minidump is automatically created even if the
system is set for full or kernel dumps.

Note You can use the .dump command from within LiveKd to generate a memory image
of a live system that you can analyze offline without stopping the system. This approach is
useful when a system is exhibiting a problem but is still delivering services, and you want
to troubleshoot the problem without interrupting service. To prevent creating crash images
that aren’t necessarily fully consistent because the contents of different regions of memory
reflect different points in time, LiveKd supports the –m flag. The mirror dump option pro-
duces a consistent snapshot of kernel-mode memory by leveraging the memory manager’s
memory mirroring APIs, which give a point-in-time view of the system. For information
about using LiveKd with Hyper-V guests, refer to the “Dumping Hyper-V Guests Using
LiveKd” experiment later in the chapter.

The kernel memory dump option offers a practical middle ground. Because it contains all of
kernel-mode-owned physical memory, it has the same level of analysis-related data as a complete
memory dump, but it omits the usually irrelevant user-mode data and code, and therefore can be sig-
nificantly smaller. As an example, on a system running a 64-bit version of Windows with 4 GB of RAM,
a kernel memory dump was 294 MB in size.

When you configure kernel memory dumps, the system checks whether the paging file is large
enough, as described earlier. Some general recommendations follow in Table 14-1, but these are only
estimated sizes because there is no way to predict the size of a kernel memory dump. The reason you
can’t predict the size of a kernel memory dump is that its size depends on the amount of kernel-mode
memory in use by the operating system and drivers present on the machine at the time of the crash.

Therefore, it is possible that at the time of the crash, the paging file is too small to hold a kernel
dump, in which case the system will switch to generating a minidump. If you want to see the size of
a kernel dump on your system, force a manual crash either by configuring the option to allow you to
initiate a manual system crash from the console or by using the Notmyfault tool. (Both Notmyfault
and initiating a crash are described later in the chapter.) When you reboot, you can check to make
sure that a kernel dump was generated and check its size to gauge how large to make your paging

 CHAPTER 14 Crash Dump Analysis 557

file. To be conservative, on 32-bit systems you can choose a page file size of 2 GB plus up to 256 MB,
because 2 GB is the maximum kernel-mode address space available (unless you are booting with
the increaseuserva boot option, in which case this can be as low as 1 GB). If you do not have enough
space on the boot volume for saving the Memory.dmp file, you can choose a location on any other
local hard disk through the dialog box shown earlier in Figure 14-4.

TABLE 14-1 Default Minimum Paging File Sizes for Kernel Dumps

System Memory Size Minimum Page File Size for Kernel Dumps

< 4 GB 200 MB

< 8 GB 400 MB

>= 8 GB 800 MB

To limit the amount of disk space that is taken up by crash dumps, Windows needs to deter-
mine whether it should maintain a copy of the last kernel or complete dump. After reporting the
kernel fault (described later), Windows uses the following algorithm to decide if it should keep the
Memory.dmp file. If the system is a server, Windows will always store the dump file. On a Windows
client system, only domain-joined machines will store a crash dump by default. For a non-domain-
joined machine, Windows will maintain a copy of the crash dump only if there is more than 25 GB
of free disk space on the destination volume—that is, the volume where the system is configured to
write the Memory.dmp file. If the system, due to disk space constraints, is unable to keep a copy of
the crash dump file, an event is written to the System event log indicating that the dump file was de-
leted, as shown in Figure 14-5. This behavior can be overridden by creating the DWORD registry value
HKLM\SYSTEM\CurrentControlSet\Control\CrashControl\AlwaysKeepMemoryDump and setting it to
1, in which case Windows will always keep a crash dump, regardless of the amount of free disk space.

FIGURE 14-5 Dump file deletion event log entry

558 Windows Internals, Sixth Edition, Part 2

EXPERIMENT: Viewing Dump File Information
Each crash dump file contains a dump header that describes the stop code and its parameters,
the type of system the crash occurred on (including version information), and a list of pointers
to important kernel-mode structures required during analysis. The dump header also contains
the type of crash dump that was written and any information specific to that type of dump. The
.dumpdebug debugger command can be used to display the dump header of a crash dump file.
For example, the following output is from a crash of a system that was configured for a kernel
(or summary) dump:

0: kd> .dumpdebug
----- 64 bit Kernel Summary Dump Analysis

DUMP_HEADER64:
MajorVersion 0000000f
MinorVersion 00001db1
KdSecondaryVersion 00000000
DirectoryTableBase 00000001`ad6a2000
PfnDataBase fffffa80`00000000
PsLoadedModuleList fffff800`02a47670
PsActiveProcessHead fffff800`02a29350
MachineImageType 00008664
NumberProcessors 00000002
BugCheckCode 000000d1
BugCheckParameter1 fffff8a0`027475c0
BugCheckParameter2 00000000`00000002
BugCheckParameter3 00000000`00000000
BugCheckParameter4 fffff880`0343a361
KdDebuggerDataBlock fffff800`029f30a0
SecondaryDataState 00000000
ProductType 00000001
SuiteMask 00000110

SUMMARY_DUMP64:
DumpOptions 504d4453
HeaderSize 00049000
BitmapSize 00230000
Pages 000151f0
Bitmap.SizeOfBitMap 00230000

KiProcessorBlock at fffff800`02ab1c40
 2 KiProcessorBlock entries:
 fffff800`029f4e80 fffff880`009ec180

 CHAPTER 14 Crash Dump Analysis 559

The .enumtag command displays all secondary dump data stored within a crash dump. For
each callback of secondary data, the tag, the length of the data, and the data itself (in byte
and ASCII format) are displayed. Developers can utilize Debugger Extension APIs to create
custom debugger extensions to also read secondary dump data. (See the Debugging Tools for
Windows help file for more information.)

0: kd> .enumtag
{270A33FD-3DA6-460D-BA893C1BAE21E39B} - 0xfc8 bytes
 09 00 00 00 00 00 00 00 48 00 00 00 13 00 00 00 H.......
 48 08 00 00 14 00 00 00 C8 0F 00 00 15 00 00 00 H...............
 C8 0F 00 00 17 00 00 00 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00 EF B2 01 00 00 00 00 00
...

Crash Dump Generation
When the system boots, it checks the crash dump options configured by reading the HKLM\SYSTEM\
CurrentControlSet\Control\CrashControl registry key. If a dump is configured, it makes a copy of
the disk miniport driver used to write to the volume in memory and gives it the same name as the
miniport with the word “dump_” prefixed. The system also queries the DumpFilters value for any filter
drivers that are required for writing to the volume, an example being Dumpfve.sys, the BitLocker
Drive Encryption Crashdump Filter driver. (See Chapter 9, “Storage Management,” for more details
on BitLocker Drive Encryption.) It also collects information related to the components involved with
writing a crash dump—including the name of the disk miniport driver, the I/O manager structures
that are necessary to write the dump, and the map of where the paging file is on disk—and saves two
copies of the data in dump-context structures.

When the system crashes, the crash dump driver (%SystemRoot%\System32\Drivers\Crashdmp.sys)
verifies the integrity of the two dump-context structures obtained at boot by performing a memory
comparison. If there’s not a match, it does not write a crash dump, because doing so would likely fail
or corrupt the disk. Upon a successful verification match, Crashdmp.sys, with support from the disk
miniport driver and any required filter drivers, writes the dump information directly to the sectors
on disk occupied by the paging file, bypassing the file system driver and storage driver stack (which
might be corrupted or even have caused the crash).

560 Windows Internals, Sixth Edition, Part 2

Note Because the page file is opened early during system startup for crash dump use,
most crashes that are caused by bugs in system-start driver initialization result in a dump
file. Crashes in early Windows boot components such as the HAL or the initialization of
boot drivers occur too early for the system to have a page file, so using another computer
to debug the startup process is the only way to perform crash analysis in those cases. (See
the “Attaching a Kernel Debugger” experiment later in the chapter.)

During the boot process, the Session Manager (Smss.exe) checks the registry value HKLM\ SYSTEM\
CurrentControlSet\Control\Session Manager\Memory Management\ExistingPageFiles for a list of
existing page files from the previous boot. (See Chapter 10, “Memory Management,” for more infor-
mation on page files.) It then cycles through the list, calling the function SmpCheckForCrashDump
on each file present, looking to see whether it contains crash dump data. It checks by searching the
header at the top of each paging file for the signature PAGEDUMP or PAGEDU64 on 32-bit or 64-
bit systems, respectively. (A match indicates that the paging file contains crash dump information.)
If crash dump data is present, the Session Manager then reads a set of crash parameters from the
HKLM\SYSTEM\CurrentControlSet\Control\CrashControl registry key, one of which contains the name
of the target dump file (typically %SystemRoot%\Memory.dmp, unless configured otherwise).

Smss.exe then checks whether the target dump file is on a different volume than the paging file.
If so, it checks whether the target volume has enough free disk space (the size required for the crash
dump is stored in the dump header of the page file) before truncating the paging file to the size of
the crash data and renaming it to a temporary dump file name. (A new page file will be created later
when the Session Manager calls the NtCreatePagingFile function.) The temporary dump file name
takes the format DUMPxxxx.tmp, where xxxx is the current low-word value of the system’s tick count.
(The system will attempt 100 times to find a nonconflicting value.) After renaming the page file, the
system removes both the hidden and system attributes from the file and sets the appropriate security
descriptors to secure the crash dump.

Next the Session Manager creates the volatile registry key HKLM\SYSTEM\CurrentControlSet\
Control\CrashControl\MachineCrash and stores the temporary dump file name in the value Dump-
File. It then writes a DWORD to the TempDestination value indicating whether the dump file location
is only a temporary destination. If the paging file is on the same volume as the destination dump
file, a temporary dump file isn’t used, because the paging file is truncated and directly renamed to
the target dump file name. In this case, the DumpFile value will be that of the target dump file and
 TempDestination will be 0.

Later in the boot, Wininit checks for the presence of the MachineCrash key, and if it exists, Wininit
launches WerFault (described in the next section), which reads the TempDestination and DumpFile
values. If the TempDestination value is set to 1, which indicates a temporary file was used, WerFault
moves the temporary file to its target location and secures the target file by allowing only the System
account and the local Administrators group access. WerFault then writes the final dump file name to
the FinalDumpFileLocation value in the MachineCrash key. These steps are shown in Figure 14-6.

 CHAPTER 14 Crash Dump Analysis 561

Session
Manager WerFault

SmpCheckForCrashDump

Dumpxxxx.tmp

Paging file
2

3
1

Wininit
Memory.dmp

4

SMSS

“MachineCrash”
5

WerFault
6

7

FIGURE 14-6 Crash dump file generation

To provide more control over where the dump file data is written to, for example on systems
that boot from a SAN or systems with insufficient disk space on the volume where the paging file is
configured, Windows also supports the use of a dedicated dump file that is configured in the Dedi-
catedDumpFile and DumpFileSize values under the HKLM\SYSTEM\CurrentControlSet\Control\
CrashControl registry key. When a dedicated dump file is specified, the crash dump driver creates
the dump file of the specified size and writes the crash data there instead of to the paging file. If no
DumpFileSize value is given, Windows creates a dedicated dump file using the largest file size that
would be required to store a complete dump. Windows calculates the required size as the size of the
total number of physical pages of memory present in the system plus the size required for the dump
header (one page on 32-bit systems, and two pages on 64-bit), plus the maximum value for second-
ary crash dump data, which is 256 MB. If a full or kernel dump is configured but there is not enough
space on the target volume to create the dedicated dump file of the required size, the system falls
back to writing a minidump.

Windows Error Reporting

As mentioned in Chapter 3 in Part 1, Windows includes a facility called Windows Error Reporting
(WER), which facilitates the automatic submission of process and system failures (such as crashes
and/or hangs) to Microsoft (or an internal error reporting server) for analysis. This feature is enabled
by default, but it can be modified by changing WER’s behavior since WER takes the additional step of
determining whether the system is configured to send a crash dump to Microsoft (or a private server,
explained further in the “Online Crash Analysis” section later in the chapter) for analysis on a reboot
following a crash. The main Problem Reporting Settings page, which you access from the Control
Panel’s Action Center applet by following the Change Action Center Settings link, is shown in Figure
14-7. This page allows you to configure the system’s error reporting settings.

562 Windows Internals, Sixth Edition, Part 2

FIGURE 14-7 Problem reporting configuration page

As mentioned earlier, if Wininit.exe finds the HKLM\SYSTEM\CurrentControlSet\Control\Crash-
Control\MachineCrash key, it executes WerFault.exe with the –k –c flags (the k flag indicates kernel
error reporting, and the c flag indicates that the full or kernel dump should be converted to a mini-
dump) to have WerFault.exe check for the kernel-mode crash dump file. WerFault takes the following
steps in preparing to send a crash dump report to the Microsoft Online Crash Analysis (OCA) site (or,
if configured, an internal error reporting server):

1. If the type of dump generated was not a minidump, it extracts a minidump from the dump file
and stores it in the default location of %SystemRoot%\Minidump, unless otherwise configured
through the MinidumpDir value in the HKLM\SYSTEM\CurrentControlSet\Control\Crash-
Control key.

2. It writes the name of the minidump files to HKLM\SOFTWARE\Microsoft\Windows\Windows
Error Reporting\KernelFaults\Queue.

3. It adds a command to execute WerFault.exe (%SystemRoot%\System32\WerFault.exe) with the
–k –qr flags (the qr flag specifies to use queued reporting mode and that WerFault should be
restarted) to HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\RunOnce so that Wer-
Fault is executed during the first user’s logon to the system for purposes of actually sending
the error report.

 CHAPTER 14 Crash Dump Analysis 563

Online Crash Analysis

When the WerFault utility executes during logon, as a result of having configured itself to start, it
launches itself again using the –k –q flags (the q flag on its own specifies queued reporting mode)
and terminates the previous instance. It does this to prevent the Windows shell from waiting on Wer-
Fault by returning control to RunOnce as quickly as possible. The newly launched WerFault.exe checks
the HKLM\SOFTWARE\Microsoft\Windows\Windows Error Reporting\KernelFaults\Queue key to look
for queued reports that may have been added in the previous dump conversion phase. It also checks
whether there are previously unsent crash reports from previous sessions. If there are, WerFault.exe
generates two XML-formatted files:

 ■ The first contains a basic description of the system, including the operating system version, a
list of drivers installed on the machine, and the list of devices present in the system.

 ■ The second contains metadata used by the OCA service, including the event type that trig-
gered WER and additional configuration information such as the system manufacturer.

If configured to ask for user input (which is the default), it then presents the dialog box shown in
Figure 14-8, which prompts the user whether he or she wants to check online for a solution to the
problem. If the user chooses to check for a solution, and unless overridden by Group Policy, WerFault
sends a copy of the two XML files and the minidump to https://oca.microsoft.com, which forwards the
data to a server farm for automated analysis, described in the next section.

FIGURE 14-8 Crash dump error reporting dialog box

The server farm’s automated analysis uses the same analysis engine that the Microsoft kernel
debuggers use when you load a crash dump file into them (described shortly). The analysis gener-
ates a bucket ID, which is a signature that identifies a particular crash type. The server farm queries a
database using the bucket ID to see whether a resolution has been found for the crash, and it sends a
URL back to WerFault that refers it to the WER website (https://wer.microsoft.com). Any solutions are
made available on the main Action Center page of Control Panel under System And Security. When
browsing for solutions, the Action Center contains an Internet browser frame to open the page on the

564 Windows Internals, Sixth Edition, Part 2

WER website that reports the preliminary crash analysis. If a resolution is available, the page instructs
the user where to obtain a hotfix, service pack, or third-party driver update.

Basic Crash Dump Analysis

If OCA fails to identify a resolution or you are unable to submit the crash to OCA, an alternative is
analyzing crashes yourself. As mentioned earlier, WinDbg and Kd both execute the same analysis
engine used by OCA when you load a crash dump file, and the basic analysis can sometimes pinpoint
the problem. As a result, you might be fortunate and have the crash dump solved by the automatic
analysis. If not, there are some straightforward techniques to try to solve the crash.

This section explains how to perform basic crash analysis steps, followed by tips on leveraging
Driver Verifier (which is introduced in Chapter 8, “I/O System”) to catch buggy drivers when they cor-
rupt the system so that a crash dump analysis pinpoints them.

Note OCA’s automated analysis may occasionally identify a highly likely cause of a crash
but not be able to inform you of the suspected driver. This happens because it only reports
the cause for crashes that have their bucket ID entry populated in the OCA database, and
entries are created only when Microsoft crash-analysis engineers have verified the cause. If
there’s no bucket ID entry, OCA reports that the crash was caused by “unknown driver.”

Notmyfault
You can use the Notmyfault utility from Windows Sysinternals (http://technet.microsoft.com/en-us/
sysinternals/bb963901) to generate the crashes described here. Notmyfault consists of an executable
named Notmyfault.exe and a driver named Myfault.sys. When you run the Notmyfault executable, it
loads the driver and presents the dialog box shown in Figure 14-9, which allows you to crash or hang
the system in various ways or to cause the driver to leak paged or nonpaged pool. The crash types
offered represent the ones most commonly seen by Microsoft’s Customer Service and Support group.
Selecting an option and clicking the Crash, Hang, Leak Paged, or Leak Nonpaged button causes the
executable to tell the driver, by using the DeviceIoControl Windows API, which type of bug to trigger.

Note You should execute Notmyfault crashes on a test system or on a virtual machine be-
cause there is a small risk that memory it corrupts will be written to disk and result in file or
disk corruption.

Note The names of the Notmyfault executable and driver highlight the fact that user
mode cannot directly cause the system to crash. The Notmyfault executable can cause a
crash only by loading a driver to perform an illegal operation for it in kernel mode.

http://technet.microsoft.com/en-us/sysinternals/bb963901
http://technet.microsoft.com/en-us/sysinternals/bb963901

 CHAPTER 14 Crash Dump Analysis 565

User mode

Kernel mode

IOCTL Interface

MyFault.sys

FIGURE 14-9 Notmyfault

Basic Crash Dump Analysis
The most straightforward Notmyfault crash to debug is the one caused by selecting the High IRQL
Fault (Kernel-Mode) option and clicking the Crash button. This causes the driver to allocate a page of
paged pool, free the pool, raise the IRQL to DPC/dispatch level, and then touch the page it has freed.
(See Chapter 3 in Part 1 for more information on IRQLs.) If that doesn’t cause a crash, the process con-
tinues by reading memory past the end of the page until it causes a crash by accessing invalid pages.
The driver performs several illegal operations as a result:

1. It references memory that doesn’t belong to it.

2. It references paged pool at an IRQL that’s DPC/dispatch level or higher, which is illegal be-
cause page faults are not permitted when the processor IRQL is DPC/dispatch level or higher.

3. When it goes past the end of the memory that it had allocated, it tries to reference memory
that is potentially invalid.

The reason the first page reference might not cause a crash is that it won’t generate a page fault if
the page that the driver frees remains in the system working set. (See Chapter 10 for information on
the system working set.)

566 Windows Internals, Sixth Edition, Part 2

When you load a crash generated with this bug into WinDbg, the tool’s analysis displays some-
thing like this:

Microsoft (R) Windows Debugger Version 6.12.0002.633 AMD64
Copyright (c) Microsoft Corporation. All rights reserved.

Loading Dump File [C:\Windows\MEMORY.DMP]
Kernel Complete Dump File: Full address space is available

Symbol search path is: srv*c:\symbols*http://msdl.microsoft.com/download/symbols
Executable search path is:
Windows 7 Kernel Version 7601 (Service Pack 1) MP (2 procs) Free x86 compatible

Product: WinNt, suite: TerminalServer SingleUserTS
Built by: 7601.17514.x86fre.win7sp1_rtm.101119-1850
Machine Name:

Kernel base = 0x82814000 PsLoadedModuleList = 0x8295e850
Debug session time: Wed Mar 21 08:12:50.194 2012 (UTC - 7:00)
System Uptime: 8 days 8:54:38.580
Loading Kernel Symbols
...

...........

Loading User Symbols
......................

Loading unloaded module list
.....

* *
* Bugcheck Analysis *
* *

Use !analyze -v to get detailed debugging information.

BugCheck D1, {946ae800, 2, 0, 91df15ab}

*** ERROR: Module load completed but symbols could not be loaded for myfault.sys
Probably caused by : myfault.sys (myfault+5ab)

Followup: MachineOwner

The first thing to note is that WinDbg reports errors trying to load symbols for Myfault.sys. This is
expected because the symbol file for Myfault.sys is not stored in the symbol-file path (which is con-
figured to point at the Microsoft symbol server). You’ll see similar errors for third-party drivers that do
not ship with the operating system.

The analysis text itself is terse, showing the numeric stop code and bug-check parameters followed
by a “Probably caused by” line that shows the analysis engine’s best guess at the offending driver. In
this case it’s on the mark and points directly at Myfault.sys, so there’s no need for manual analysis.

The “Followup” line is not generally useful except within Microsoft, where the debugger looks for
the module name in the Triage.ini file that’s located within the Triage directory of the Debugging
Tools for Windows installation directory. The Microsoft-internal version of that file lists the developer

 CHAPTER 14 Crash Dump Analysis 567

or group responsible for handling crashes in a specific driver, and the debugger displays the devel-
oper’s or group’s name in the Followup line when appropriate.

Verbose Analysis
Even though the basic analysis of the Notmyfault crash identifies the faulty driver, you should always
have the debugger execute a verbose analysis by entering the command:

!analyze –v

The first obvious difference between the verbose and default analysis is the description of the stop
code and its parameters. Following is the output of the command when executed on the same dump:

DRIVER_IRQL_NOT_LESS_OR_EQUAL (d1)
An attempt was made to access a pageable (or completely invalid) address at an
interrupt request level (IRQL) that is too high. This is usually
caused by drivers using improper addresses.
If kernel debugger is available get stack backtrace.
Arguments:

Arg1: 946ae800, memory referenced
Arg2: 00000002, IRQL
Arg3: 00000000, value 0 = read operation, 1 = write operation
Arg4: 91df15ab, address which referenced memory

This saves you the trouble of opening the help file to find the same information, and the text
sometimes suggests troubleshooting steps, an example of which you’ll see in the next section on
advanced crash dump analysis.

The other potentially useful information in a verbose analysis is the stack trace of the thread that
was executing on the processor that crashed at the time of the crash. Here’s what it looks like for the
same complete dump:

STACK_TEXT:
93cdbb3c 91df15ab badb0d00 84f3e380 946ad800 nt!KiTrap0E+0x2cf

WARNING: Stack unwind information not available. Following frames may be wrong.

93cdbbb8 91df19db 86d77900 93cdbbfc 91df1b26 myfault+0x5ab

93cdbbc4 91df1b26 85e38488 00000001 00000000 myfault+0x9db

93cdbbfc 8284b593 86c9a510 86d77900 86d77900 myfault+0xb26

93cdbc14 82a3f99f 85e38488 86d77900 86d77970 nt!IofCallDriver+0x63

93cdbc34 82a42b71 86c9a510 85e38488 00000000 nt!IopSynchronousServiceTail+0x1f8

93cdbcd0 82a893f4 86c9a510 86d77900 00000000 nt!IopXxxControlFile+0x6aa

93cdbd04 828521ea 000000c4 00000000 00000000 nt!NtDeviceIoControlFile+0x2a

93cdbd04 77af70b4 000000c4 00000000 00000000 nt!KiFastCallEntry+0x12a

0009f370 77af5864 75cb989d 000000c4 00000000 ntdll!KiFastSystemCallRet

0009f374 75cb989d 000000c4 00000000 00000000 ntdll!NtDeviceIoControlFile+0xc

0009f3d4 77a1a671 000000c4 83360018 00000000 KERNELBASE!DeviceIoControl+0xf6

0009f400 00c421f9 000000c4 83360018 00000000 kernel32!DeviceIoControlImplementation+0x80

0009f4a0 7749c4e7 000201ec 00000111 000003f9 NotMyfault+0x21f9

The preceding stack shows that the Notmyfault executable image, shown at the bottom, invoked
the DeviceIoControlImplementation function in Kernel32.dll, which in turn invoked DeviceIoControl in
Kernelbase.dll, and so on, until finally the system crashed with the execution of an instruction in the

568 Windows Internals, Sixth Edition, Part 2

Myfault image. A stack trace like this can be useful because crashes sometimes occur as the result
of one driver passing another one data that is improperly formatted or corrupt or contains illegal
parameters. The driver that’s passed the invalid data might cause a crash and get the blame in an
analysis, when the stack reveals that another driver was involved. In this sample trace, no driver other
than Myfault is listed. (The module “nt” is Ntoskrnl.)

If the driver singled out by an analysis is unfamiliar to you, use the lm (list modules) command to
look at the driver’s version information. Add the k (kernel modules) and v (verbose) options along
with the m (match) option followed by the name of the driver:

0: kd> lm kv m myfault
start end module name
91df1000 91df2880 myfault (no symbols)
 Loaded symbol image file: myfault.sys

 Image path: \??\C:\Windows\system32\drivers\myfault.sys
 Image name: myfault.sys
 Timestamp: Sat Apr 07 09:34:40 2012 (4F806CA0)
 CheckSum: 00003871
 ImageSize: 00001880
 File version: 4.0.0.0
 Product version: 4.0.0.0
 File flags: 0 (Mask 3F)
 File OS: 40004 NT Win32
 File type: 3.7 Driver
 File date: 00000000.00000000
 Translations: 0409.04b0
 CompanyName: Sysinternals
 ProductName: Sysinternals Myfault
 InternalName: myfault.sys
 OriginalFilename: myfault.sys
 ProductVersion: 4.0
 FileVersion: 4.0 (sysinternals.com)
 FileDescription: Crash Test Driver
 LegalCopyright: Copyright © 2002-2012 Mark Russinovich

Before you spend additional time and energy further analyzing crashes, you should ensure that
your system’s kernel and drivers are the most recent available by using the services of Windows
 Update and third-party driver support sites.

In addition to using the description to identify the purpose of a driver, you can also use the file and
product version numbers to see whether the version installed is the most up-to-date version avail-
able. If version information isn’t present (because it might have been paged out of physical memory
at the time of the crash), look at the driver image file’s properties in Windows Explorer on the system
that crashed.

To use Windows Update to check for a newer version of a driver, open Device Manager and locate
the device that the driver is associated with. Right-click on the device, and select Update Driver Soft-
ware. If Windows Update reports that no newer version of the driver is available for download, it may
be worthwhile checking the website of the original equipment manufacturer (OEM) for the system.
Finally, since both Windows Update and the OEM may not have the latest drivers, also check the web-
site of the actual driver author for a newer version.

 CHAPTER 14 Crash Dump Analysis 569

Using Crash Troubleshooting Tools

The crash generated in the preceding section with Notmyfault’s High IRQL Fault (Kernel-Mode)
option poses no challenge for the debugger’s automated analysis. Unfortunately, most crashes are
not so easy and sometimes are impossible to debug. There are several levels of increasing sever-
ity in terms of system performance degradation that might help turn system crashes that cannot be
analyzed into ones that can be. If the crashes generated after you configure a level and reboot aren’t
revealing the cause, try the next level.

1. If there are one or more drivers you consider likely sources of the crashes—because they were
introduced into the system relatively recently, they were recently updated, or the circum-
stances of the crash implicate them—enable them for verification using Driver Verifier and
check all the verification options except for low resources simulation. (See Chapter 8 for more
information on Driver Verifier.)

2. If the computer is running a 32-bit version of Windows, enable the same level of verification as
in level 1 on all unsigned drivers in the system. (All drivers on a 64-bit system must be signed
unless this restriction is disabled manually at boot time by pressing F8 and choosing the ad-
vanced boot option Disable Driver Signature Enforcement.)

3. Enable the same verification as in level 1 on all drivers in the system. To maintain reasonable
performance, you may want to divide the drivers into groups, enabling Driver Verifier on one
group at a time between reboots.

Note If your system becomes unbootable because Driver Verifier detects a driver error
and crashes the system, start in safe mode (where verification is disabled), run Driver
Verifier, and delete the verification settings.

The following sections demonstrate how Driver Verifier can make impossible-to-debug crashes
into ones that you can solve.

Buffer Overruns, Memory Corruption, and Special Pool
One of the most common sources of crashes on Windows is pool corruption. Pool corruption usually
occurs when a driver suffers from a buffer overrun or buffer underrun bug that causes it to over-
write data past either the end or start of a buffer it has allocated from paged or nonpaged pool. The
Executive’s pool-tracking structures reside on either side of a pool buffer and separate buffers from
each other. These bugs, therefore, cause corruption to the pool tracking structures, to buffers owned
by other drivers, or to both. You can often catch the culprit of a pool overrun by using the !pool
command to examine the surrounding pool tags. Find the address at which the corruption occurred,
and use !pool address_of_corruption. This command will display all the pool allocations that are on
the same page as the corruption. Looking in the left column, find the range of the corrupted address
and then look at the allocation just previous to it and find its pool tag. This will likely be the culprit
in a buffer overrun. You can use the Pooltag.txt file in the Triage folder of the Debugging Tools for

570 Windows Internals, Sixth Edition, Part 2

Windows installation directory to find the driver that owns the pool tag, or use the Strings utility from
Sysinternals.

Pool corruption can also occur when a driver writes to pool it had previously owned but subse-
quently freed. This is called a use after free bug and is usually caused by a race condition in a driver.
These bugs are particularly hard to debug because the driver that corrupts memory no longer has
any traceable ties to the memory, such as a neighboring pool tag as in a buffer overrun. Another fairly
common cause of pool corruption is direct memory access (DMA). DMA occurs when hardware writes
directly to RAM instead of going through a driver; however, the driver is still responsible for coordi-
nating the whole process by allocating the memory that the hardware will write to and program-
ming the hardware registers of the device with the details of the operation. If a driver has a bug that
releases the memory it is using for DMA before the hardware writes to it, the memory can be given to
another driver or even to a user-mode application, which will certainly not expect to have hardware
writing to it.

The crashes caused by pool corruption are virtually impossible to debug because the system
crashes when corrupted data is referenced, not when the corruption occurs. However, sometimes
you can take steps to at least obtain a clue about what corrupted the memory. The first step is to try
to determine the size of the corruption by looking at the corrupted data. If the corruption is a single
bit, it was likely caused by bad RAM or a faulty processor. If the corruption is fairly small, it could be
caused by hardware or software, and finding a root cause will be nearly impossible. In the case of
large corruptions, you can look for patterns in the corruption, like strings (for example, HTTP packet
payloads, file contents of text-based files, and so on).

Note To assist in catching pool corruptions, Windows checks the consistency of a buffer’s
pool-tracking structures, and those of the buffer’s immediate neighbors, on every pool
allocation and free operation. Thus, buffer overruns are likely to be detected shortly after
the corruption and identified with a crash that has the BAD_POOL_HEADER (0x19) stop
code.

You can generate a pool corruption crash by running Notmyfault and selecting the Buffer Over-
flow bug. This causes Myfault to allocate a buffer and then overwrite the 48 bytes following the
buffer. There can be a significant delay between the time you click the Crash button and when a crash
occurs, and you might even have to generate pool usage by exercising applications before a crash oc-
curs, which highlights the distance between a corruption and its effect on system stability. An analysis
of the resultant crash almost always reports Ntoskrnl or another driver as being the likely cause, which
demonstrates the usefulness of a verbose analysis with its description of the stop code:

DRIVER_CORRUPTED_EXPOOL (c5)
An attempt was made to access a pageable (or completely invalid) address at an
interrupt request level (IRQL) that is too high. This is
caused by drivers that have corrupted the system pool. Run the driver
verifier against any new (or suspect) drivers, and if that doesn’t turn up
the culprit, then use gflags to enable special pool.

 CHAPTER 14 Crash Dump Analysis 571

Arguments:
Arg1: 4f4f4f53, memory referenced
Arg2: 00000002, IRQL
Arg3: 00000000, value 0 = read operation, 1 = write operation
Arg4: 829234a7, address which referenced memory

The advice in the description is to run Driver Verifier against any new or suspect drivers or to use
Gflags to enable special pool. Both accomplish the same thing: to have the system detect a potential
corruption when it occurs and crash the system in a way that makes the automated analysis point at
the driver causing the corruption.

If Driver Verifier’s special pool option is enabled, verified drivers use special pool, rather than
paged or nonpaged pool, for any allocations they make for buffers slightly less than a page in size. A
buffer allocated from special pool is sandwiched between two invalid pages and by default is aligned
against the top of the page. The special pool routines also fill the unused portions of the page in
which the buffer resides with a random pattern (based on the system’s tick count). See Chapter 10 for
more information on special pool.

The system detects any buffer overruns of under a page in size at the time of the overrun because
they cause a page fault on the invalid page following the buffer. The signature serves to catch buffer
underruns at the time the driver frees a buffer because the integrity of the pattern placed there at the
time of allocation will have been compromised.

EXPERIMENT: Enabling Special Pool with Driver Verifier
To see how the use of special pool causes a crash that the analysis engine easily diagnoses, run
the Driver Verifier Manager to configure the special pool option. The Driver Verifier Manager
provides the ability to activate most verification features without having to restart the system.
The following steps show how to use the Driver Verifier Manager to enable the special pool
feature, without requiring a restart:

1. From the Start menu, type verifier, and then press Enter to run the Driver Verifier
Manager.

2. Select the option Display Information About The Currently Verified Drivers, and then
click Next.

3. Click the Change button, select Special Pool, and click OK to enable the special pool
option. (The Enabled? option will read No until you select a driver for verification.)

4. Next, click the Add button, type myfault.sys in the File Name field, and then click
Open. (You do not have to find Myfault.sys in the dialog box; just enter its name.)

5. Click the Next button to progress to where the Driver Verifier Manager displays a list
of global counters for any currently verified drivers. Clicking the Next button again
shows you a list of counters specific to each verified driver. You should see Myfault.sys
in the list.

572 Windows Internals, Sixth Edition, Part 2

6. Finally, click the Finish button to complete the wizard.

Drivers that are verified using the No Reboot feature of Driver Verifier are not monitored as
thoroughly as drivers that are loaded after a reboot. Whenever possible, enable the driver for
verification, and then restart the system. Running the following command from an elevated
command prompt causes Driver Verifier to preserve verification settings across reboots:

C:\>verifier /flags 0x1 /driver myfault.sys

New verifier settings:

Special pool: Enabled
Pool tracking: Disabled
Force IRQL checking: Disabled
I/O verification: Disabled
Deadlock detection: Disabled
DMA checking: Disabled
Security checks: Disabled
Force pending I/O requests: Disabled
Low resources simulation: Disabled
IRP Logging: Disabled
Miscellaneous checks: Disabled

Verified drivers:

myfault.sys

You must restart this computer for the changes to take effect.

When you run Notmyfault and cause a buffer overflow, the system will immediately crash
and the analysis of the dump reports this:

Probably caused by : myfault.sys (myfault+61d)

A verbose analysis describes the stop code like this:

DRIVER_PAGE_FAULT_BEYOND_END_OF_ALLOCATION (d6)
N bytes of memory was allocated and more than N bytes are being referenced.
This cannot be protected by try-except.
When possible, the guilty driver’s name (Unicode string) is printed on
the bugcheck screen and saved in KiBugCheckDriver.
Arguments:
Arg1: beb50000, memory referenced
Arg2: 00000001, value 0 = read operation, 1 = write operation
Arg3: 9201161d, if non-zero, the address which referenced memory.
Arg4: 00000000, (reserved)

Special pool made an elusive bug into one that instantly reveals itself and makes the analysis
trivial.

 CHAPTER 14 Crash Dump Analysis 573

Code Overwrite and System Code Write Protection
A driver with a bug that causes corruption or misinterpretation of its own data structures can refer-
ence memory the driver doesn’t own when it interprets corrupted data as a memory pointer value.
The target of the pointer can be anything in the virtual address space, including data belonging to
other drivers, invalid memory, or the code of other drivers or the kernel. As with buffer overruns, by
the time that corruption is detected and the system crashes, it’s usually impossible to identify the
driver that caused the corruption. Enabling special pool increases the chance of catching wild-pointer
bugs, but it does not catch code corruption.

When you run Notmyfault and select the Code Overwrite option, the Myfault driver corrupts the
entry point to the NtReadFile kernel function. One of two things will happen at this point: if your sys-
tem has 2 GB or less of physical memory, you’ll get a crash for which an analysis points at Myfault.sys.
The stop code description that a verbose analysis displays tells you that Myfault attempted to write to
read-only memory:

ATTEMPTED_WRITE_TO_READONLY_MEMORY (be)
An attempt was made to write to readonly memory. The guilty driver is on the
stack trace (and is typically the current instruction pointer).
When possible, the guilty driver’s name (Unicode string) is printed on
the bugcheck screen and saved in KiBugCheckDriver.
Arguments:
Arg1: 826a023c, Virtual address for the attempted write.
Arg2: 026a0121, PTE contents.
Arg3: 90f83b4c, (reserved)
Arg4: 0000000b, (reserved)

However, if you have more than 2 GB of memory, you’ll get a different type of crash because the
attempt to corrupt the memory isn’t caught. Because NtReadFile is a commonly executed system
service that is used by Windows, the system will almost immediately crash as a thread attempts to ex-
ecute the corrupted code and generates an illegal instruction fault. The analysis of crashes generated
with this bug is always wrong, but it might vary, with Win32k.sys and Ntoskrnl.exe commonly being
the analyzer’s best guess as to what’s responsible. The bugcheck description for these crashes is:

KERNEL_MODE_EXCEPTION_NOT_HANDLED (8e)
This is a very common bugcheck. Usually the exception address pinpoints
the driver/function that caused the problem. Always note this address
as well as the link date of the driver/image that contains this address.
Some common problems are exception code 0x80000003. This means a hard
coded breakpoint or assertion was hit, but this system was booted
/NODEBUG. This is not supposed to happen as developers should never have
hardcoded breakpoints in retail code, but ...
If this happens, make sure a debugger gets connected, and the
system is booted /DEBUG. This will let us see why this breakpoint is
happening.

Arguments:

Arg1: c0000005, The exception code that was not handled
Arg2: 826a0240, The address that the exception occurred at
Arg3: 978eb9c4, Trap Frame
Arg4: 00000000

574 Windows Internals, Sixth Edition, Part 2

The reason for the different behaviors on different configurations relates to a mechanism called
system code write protection. If system code write protection is enabled, the memory manager maps
Ntoskrnl.exe, the HAL, and boot drivers using standard physical pages (4 KB on x86 and x64, and 8 KB
on IA64). Because the granularity of protection in an image is the standard page size, the memory
manager can write-protect code pages so that an attempt to modify them generates an access fault
(as seen in the first crash). However, when system code write protection is disabled on systems with
more than 2 GB of RAM, the memory manager uses large pages (4 MB on x86, and 16 MB on IA64
and x64) to map Ntoskrnl.exe and the HAL.

If system code write protection is off and crash analysis reports unlikely causes for a crash or you
suspect code corruption, you should enable it. Verifying at least one driver with Driver Verifier is the
easiest way to enable it. You can also enable it manually by adding a registry value under HKLM\
SYSTEM\CurrentControlSet\Control\Session Manager\Memory Management. You need to specify the
amount of RAM at which the memory manager uses large pages instead of standard pages to map
Ntoskrnl.exe as an effectively infinite value. You do this by creating a DWORD value called Large-
PageMinimum and setting it to 0xFFFFFFFF. You must reboot for the changes to take effect.

Advanced Crash Dump Analysis

The preceding section leverages Driver Verifier to create crashes that the debugger’s automated
analysis engine can resolve. You might still encounter cases where you cannot get a system to pro-
duce easily analyzable crashes, and, if so, you will need to execute manual analysis to try to determine
what the problem is. Here are some examples of basic commands that can provide clues during crash
analysis. The Debugging Tools for Windows help file provides complete documentation on these and
other commands as well as examples of how to use them during crash analysis:

 ■ Use the !cpuinfo command to display a list of processors the system is configured to use.

 ■ Use the processor ID with the k command to display the stack trace of each processor in the
system—for example, 1k. Be sure you recognize each of the modules listed in the stack trace
and that you have the most recent versions.

 ■ Use the !thread command to display information about the current thread on each processor.
The ~s command can be used with the processor ID to change the current processor (such as
~1s). Look for any pending I/O request packets (explained in the next section).

 ■ Use the .time command to display information about the system time, including when the sys-
tem crashed and for how long it had been running. A short uptime value can indicate frequent
problems.

 ■ Use the lm command with the k t option (the t flag specifies to display time stamp informa-
tion—that is, when the file was compiled, not what appears on the file system, which might
differ) to list the loaded kernel-mode drivers. Be sure you understand the purpose of any
third-party drivers and that you have the most recent versions.

 ■ Use the !vm command to see whether the system has exhausted virtual memory, paged pool,
or nonpaged pool. If virtual memory is exhausted, the committed pages will be close to the

 CHAPTER 14 Crash Dump Analysis 575

commit limit, so try to identify a potential memory leak by examining the list of processes to
see which one reports high commit usage. If nonpaged pool or paged pool is exhausted (that
is, the usage is close to the maximum), see the “Troubleshooting a Pool Leak” experiment in
Chapter 10.

 ■ Use the !process 0 0 debugger command to look at the processes running, and be sure that
you understand the purpose of each one. Try disabling or uninstalling unnecessary applica-
tions and services.

There are other debugging commands that can prove useful, but more advanced knowledge is
required to apply them. The !irp command is one of them. The next section shows the use of this
command to identify a suspect driver.

Stack Trashes
Stack overruns or stack trashing typically results from a buffer overrun or underrun or when a driver
passes a buffer address located on the stack to a lower driver on the device stack, which then per-
forms the work asynchronously.

In the case of a stack overrun or underrun, instead of residing in pool, as you saw with Notmy-
fault’s buffer overrun bug, the target buffer is on the stack of the thread that executes the bug. This
type of bug is another one that’s difficult to debug because the stack is the foundation for any crash
dump analysis.

In the case of passing buffers on the stack to lower drivers, if the lower driver returns to the caller
immediately because it used a completion routine to perform the work, instead of returning synchro-
nously, when the completion routine is called, it will use the stack address that was passed previously,
which could now correspond to a different state on the caller’s stack and result in corruption.

When you run Notmyfault and select Stack Trash, the Myfault driver overruns a buffer it allocates
on the kernel stack of the thread that executes it. When Myfault tries to return control to the Ntoskrnl
function that was invoked, it reads the return address, which is the address at which it should con-
tinue executing, from the stack. The address was corrupted by the stack-buffer overrun, so the thread
continues execution at some different address in memory—an address that might not even contain
code. An illegal exception and crash occur when the thread executes an illegal CPU instruction or it
references invalid memory.

The driver that the crash dump analysis of a stack overrun points the blame at will vary from crash
to crash, but the stop code will almost always be KERNEL_MODE_EXCEPTION_NOT_HANDLED (0x8E)
on a 32-bit system and KMODE_EXCEPTION_NOT_HANDLED (0x1E) on a 64-bit one. If you execute a
verbose analysis, the stack trace looks like this:

STACK_TEXT:
9569b6b4 828c108c 0000008e c0000005 00000000 nt!KeBugCheckEx+0x1e
9569badc 8284add6 9569baf8 00000000 9569bb4c nt!KiDispatchException+0x1ac
9569bb44 8284ad8a 00000000 00000000 badb0d00 nt!CommonDispatchException+0x4a
9569bbfc 82843593 853422b0 86b99278 86b99278 nt!Kei386EoiHelper+0x192
00000000 00000000 00000000 00000000 00000000 nt!IofCallDriver+0x63

576 Windows Internals, Sixth Edition, Part 2

Notice how the call to IofCallDriver leads immediately to Kei386EoiHelper and into an exception,
instead of a driver’s IRP dispatch routine. This is consistent with the stack having been corrupted and
the IRP dispatch routine causing an exception when attempting to return to its caller by referencing a
corrupted return address. Unfortunately, mechanisms like special pool and system code write protec-
tion can’t catch this type of bug. Instead, you must take some manual analysis steps to determine
indirectly which driver was operating at the time of the corruption. One way is to examine the IRPs
that are in progress for the thread that was executing at the time of the stack trash. When a thread
issues an I/O request, the I/O manager stores a pointer to the outstanding IRP on the IRP list of the
ETHREAD structure for the thread. The !thread debugger command dumps the IRP list of the target
thread. (If you don’t specify a thread object address, !thread dumps the processor’s current thread.)
Then you can look at the IRP with the !irp command:

0: kd> !thread
THREAD 8527fa58 Cid 0d0c.0d10 Teb: 7ffdf000 Win32Thread: fe4ec4f8 RUNNING on processor 0
IRP List:
 86b99278: (0006,0094) Flags: 00060000 Mdl: 00000000
Not impersonating
...

0: kd> !irp 86b99278
Irp is active with 1 stacks 1 is current (= 0x86b992e8)
 No Mdl: No System Buffer: Thread 8527fa58: Irp stack trace.
 cmd flg cl Device File Completion-Context
>[e, 0] 5 0 853422b0 85e3aed8 00000000-00000000
 \Driver\MYFAULT
 Args: 00000000 00000000 83360010 00000000

The output shows that the IRP’s current and only stack location (designated with the “>” prefix)
is owned by the Myfault driver. If this were a real crash, the next steps would be to ensure that the
driver version installed is the most recent available, install the new version if it isn’t, and if it is, to en-
able Driver Verifier on the driver (with all settings except low memory simulation).

Note Most newer drivers built using the WDK are compiled by default to use the /GS
(Buffer Security Check) compiler flag. When the Buffer Security Check option is enabled,
the compiler reserves space before the return address on the stack, which, when the func-
tion executes, is filled with a security cookie. On function exit, the security cookie is veri-
fied. A mismatch indicates that a stack overwrite may have occurred, in which case, the
compiler-generated code will call KeBugCheckEx, passing the DRIVER_OVERRAN_STACK_
BUFFER (0xF7) stop code.

Manually analyzing the stack is often the most powerful technique when dealing with crashes such
as these. Typically, this involves dumping the current stack pointer register (for example, esp and rsp
on x86 and x64 processors, respectively). However, because the code responsible for crashing the
system itself might modify the stack in ways that make analysis difficult, the processor responsible
for crashing the system provides a backing store for the current data in the stack, called KiPreBug-
checkStackSaveArea, which contains a copy of the stack before any code in KeBugCheckEx executes.

 CHAPTER 14 Crash Dump Analysis 577

By using the dps (dump pointer with symbols) command in the debugger, you can dump this area (in-
stead of the CPU’s stack pointer register) and resolve symbols in an attempt to discover any potential
stack traces. In this crash, here’s what dumping the stack area eventually revealed on a 32-bit system:

0: kd> dps KiPreBugcheckStackSaveArea KiPreBugcheckStackSaveArea+3000
81d7dd20 881fcc44
81d7dd24 98fcf406 myfault+0x406
81d7dd28 badb0d00

Although this data was located among many other different functions, it is of special interest be-
cause it mentions a function in the Myfault driver, which as we’ve seen was currently executing an IRP,
that doesn’t show on the stack. For more information on manual stack analysis, see the Debugging
Tools for Windows help file and the additional resources referenced later in this chapter.

Hung or Unresponsive Systems
If a system becomes unresponsive (that is, you are receiving no response to keyboard or mouse
input), the mouse freezes, or you can move the mouse but the system doesn’t respond to clicks, the
system is said to have hung. A number of things can cause the system to hang:

 ■ A device driver does not return from its interrupt service (ISR) routine or deferred procedure
call (DPC) routine

 ■ A high priority real-time thread preempts the windowing system driver’s input threads

 ■ A deadlock (when two threads or processors hold resources each other wants and neither will
yield what they have) occurs in kernel mode

You can check for deadlocks by using the Driver Verifier option called deadlock detection. Deadlock
detection monitors the use of spinlocks, mutexes, and fast mutexes, looking for patterns that could
result in a deadlock. (For more information on these and other synchronization primitives, see Chap-
ter 3 in Part 1.) If one is found, Driver Verifier crashes the system with an indication of which driver
causes the deadlock. The simplest form of deadlock occurs when two threads hold resources each
other thread wants and neither will yield what they have or give up waiting for the one they want. The
first step to troubleshooting hung systems is therefore to enable deadlock detection on suspect driv-
ers, then unsigned drivers, and then all drivers, until you get a crash that pinpoints the driver causing
the deadlock.

There are two ways to approach a hanging system so that you can apply the manual crash trouble-
shooting techniques described in this chapter to determine what driver or component is causing the
hang: the first is to crash the hung system and hope that you get a dump that you can analyze, and
the second is to break into the system with a kernel debugger and analyze the system’s activity. Both
approaches require prior setup and a reboot. You use the same exploration of system state with both
approaches to try to determine the cause of the hang.

To manually crash a hung system, you must first add the DWORD registry value HKLM\SYSTEM\
CurrentControlSet\Services\i8042prt\Parameters\CrashOnCtrlScroll and set it to 1. After rebooting,
the i8042 port driver, which is the port driver for PS/2 keyboard input, monitors keystrokes in its

578 Windows Internals, Sixth Edition, Part 2

ISR (discussed further in Chapter 3 in Part 1) looking for two presses of the Scroll Lock key while the
right Control key is depressed. When the driver sees that sequence, it calls KeBugCheckEx with the
 MANUALLY_INITIATED_CRASH (0xE2) stop code that indicates a manually initiated crash. When the
system reboots, open the crash dump file and apply the techniques mentioned earlier to try to deter-
mine why the system was hung (for example, determining what thread was running when the system
hung, what the kernel stack indicates was happening, and so on). Note that this works for most hung
system scenarios, but it won’t work if the i8042 port driver’s ISR doesn’t execute. (The i8042 port
driver’s ISR won’t execute if all processors are hung as a result of their IRQL being higher than the
ISR’s IRQL, or if corruption of system data structures extends to interrupt-related code or data.)

Note Manually crashing a hung system by using the support provided in the i8042
port driver does not work with USB keyboards. It works with PS/2 keyboards only. See
http://msdn.microsoft.com/en-us/library/windows/hardware/ff545499.aspx for information
about enabling USB keyboard support.

You can also trigger a crash if your hardware has a built-in “crash” button. (Some high-end servers
have these embedded on their motherboards or exposed via remote management interfaces.) In this
case, the crash is initiated by signaling the nonmaskable interrupt (NMI) pin of the system’s mother-
board. To enable this, set the registry DWORD value HKLM\SYSTEM\CurrentControlSet\Control\
CrashControl\NMICrashDump to 1. Then, when you press the dump switch, an NMI is delivered to the
system and the kernel’s NMI interrupt handler calls KeBugCheckEx. This works in more cases than the
i8042 port driver mechanism because the NMI IRQL is always higher than that of the i8042 port driver
interrupt. See http://support.microsoft.com/kb/927069 for more information.

If you are unable to manually generate a crash dump, you can attempt to break into the hung
system by first making the system boot into debugging mode. You do this in one of two ways. You
can press the F8 key during the boot and select Debugging Mode, or you can create a debugging-
mode boot option in the BCD by copying an existing boot entry and adding the debug option. When
using the F8 approach, the system will use the default connection (serial port COM1 and 115200
baud), but you can use the F10 key to display the Edit Boot Options screen to edit debug-related boot
options. With the debug option enabled, you must also configure the connection mechanism to be
used between the host system running the kernel debugger and the target system booting in debug-
ging mode and then configure the transport parameters appropriately for the connection type. The
three connection types are a null modem cable using a serial port, an IEEE 1394 (FireWire) cable using
1394 ports on each system, or a USB 2.0 host-to-host dongle using USB ports on each system. For
details on configuring the host and target system for kernel debugging, see the Debugging Tools for
Windows help file and the “Attaching a Kernel Debugger” experiment later in the chapter.

When booting in debugging mode, the system loads the kernel debugger at boot time and makes
it ready for a connection from a kernel debugger running on a different computer connected through
a serial cable, IEEE 1394 cable, or USB 2.0 host-to-host dongle. Note that the kernel debugger’s pres-
ence does not affect performance. When the system hangs, run the WinDbg or Kd debugger on the
connected system, establish a kernel debugging connection, and break into the hung system. This
approach will not work if interrupts are disabled or the kernel debugger has become corrupted.

http://msdn.microsoft.com/en-us/library/windows/hardware/ff545499.aspx
http://support.microsoft.com/kb/927069

 CHAPTER 14 Crash Dump Analysis 579

Note Booting a system in debugging mode does not affect performance if it’s not con-
nected to another system. Also, if a system booted in debugging mode is configured to
automatically reboot after a crash, it will not wait for a connection from another system if a
debugger isn’t already connected.

Instead of leaving the system in its halted state while you perform analysis, you can also use the
debugger .dump command to create a crash dump file on the host debugger machine. Then you can
reboot the hung system and analyze the crash dump offline (or submit it to Microsoft). Note that
this can take a long time if you are connected using a serial null modem cable or USB 2.0 connection
 (versus a higher speed 1394 connection), so you might want to just capture a minidump using the
.dump /m command. Alternatively, if the target machine is capable of writing a crash dump, you can
force it to do so by issuing the .crash command from the debugger. This will cause the target machine
to create a dump on its local hard drive that you can examine after the system reboots.

EXPERIMENT: Dumping Hyper-V Guests Using LiveKd
The LiveKd tool, in addition to allowing the use of the .dump command on a live system, also
permits a crash dump of a running Hyper-V guest to be created. To query the list of running
guests on a Hyper-V host, the –hvl option can be specified. LiveKd will display both the name of
the guest virtual machine and its partition GUID:

C:\Users\Administrator>livekd -hvl

LiveKd v5.2 - Execute kd/windbg on a live system
Sysinternals - www.sysinternals.com
Copyright (C) 2000-2012 Mark Russinovich and Ken Johnson

Partition GUID Name
7EB669F2-EB6E-405D-94EA-21CB2ABD0A52 Windows Server 2008
D57D7601-D154-473B-847D-C3C77413AD0B Windows Server 2003

Once the name or the partition GUID of the target Hyper-V guest has been obtained, it can
be passed to LiveKd using the –hv option, along with the –o switch, specifying where to write
the crash dump file. LiveKd will write a complete dump, which requires enough free disk space
on the destination volume equal to the amount of memory assigned to the virtual machine.
Because the Hyper-V guest is still running, LiveKd might run into situations in which data struc-
tures are in the middle of being changed by the system and are inconsistent. To prevent such an
event from occurring, LiveKd is able to pause the Hyper-V guest before writing the crash dump
by specifying the –p option.

580 Windows Internals, Sixth Edition, Part 2

LiveKd takes the additional step of writing a comment to the header of the crash dump file,
specifying that a live system view was taken—notifying the user performing analysis of any
possible inconsistencies. After LiveKd finishes writing the crash dump file, the file can then be
analyzed using any of the kernel debuggers and techniques described earlier in the chapter.
If the Hyper-V guest was previously in the running state, LiveKd will automatically resume the
target system.

You can cause a hang by running Notmyfault and selecting the Hang With DPC option. This causes
the Myfault driver to queue a DPC on each processor of the system that executes an infinite loop.
Because the IRQL of the processor while executing DPC functions is DPC/dispatch level, the keyboard
ISR will respond to the special keyboard crashing sequence.

Once you’ve broken into a hung system or loaded a manually generated dump from a hung sys-
tem into a debugger, you should execute the !analyze command with the –hang option. This causes
the debugger to examine the locks on the system and try to determine whether there’s a deadlock
and, if so, what driver or drivers are involved. However, for a hang like the one that Notmyfault’s Hang
With DPC option generates, the !analyze analysis command will report nothing useful.

If the !analyze command doesn’t pinpoint the problem, execute !thread and !process in each
of the dump’s CPU contexts to see what each processor is doing. (Switch CPU contexts with the ~s
 command—for example, use ~1s to switch to processor 1’s context.) If a thread has hung the sys-
tem by executing in an infinite loop at an IRQL of DPC/dispatch level or higher, you’ll see the driver
module in which it has become stuck in the stack trace of the !thread command. The stack trace of the
crash dump you get when you crash a system experiencing the Notmyfault hang bug looks like this:

STACK_TEXT:
8078ae30 8cb49160 000000e2 00000000 00000000 nt!KeBugCheckEx+0x1e
8078ae60 8cb49768 00527658 010001c6 00000000 i8042prt!I8xProcessCrashDump+0x251
8078aeac 8287c7ad 851c8780 855275a0 8078aed8 i8042prt!I8042KeyboardInterruptService+0x2ce
8078aeac 91d924ca 851c8780 855275a0 8078aed8 nt!KiInterruptDispatch+0x6d
WARNING: Stack unwind information not available. Following frames may be wrong.
8078afa4 828a5218 82966d20 86659780 00000000 myfault+0x4ca
...

 CHAPTER 14 Crash Dump Analysis 581

The top few lines of the stack trace reference the routines that execute when you type the i8042
port driver’s crash key sequence. The presence of the Myfault driver indicates that it might be re-
sponsible for the hang. Another command that might be revealing is !locks, which dumps the status
of all executive resource locks. By default, the command lists only resources that are under conten-
tion, which means that they are both owned and have at least one thread waiting to acquire them.
Examine the thread stacks of the owners with the !thread command to see what driver they might
be executing in. Sometimes you will find that the owner of one of the locks is waiting for an IRP to
complete (a list of IRPs related to a thread is displayed in the !thread output). In these cases it is very
hard to tell why an IRP is not making forward progress. (IRPs are usually queued to privately managed
driver queues before they are completed). One thing you can do is examine the IRP with the !irp com-
mand and find the driver that pended the IRP (it will have the word “pending” displayed in its stack
location from the !irp output). Once you have the driver name, you can use the !stacks command to
look for other threads that the driver might be running on, which often provides clues about what
the lock-owning driver is doing. Much of the time you will find the driver is deadlocked or waiting on
some other resource that is blocked waiting for the driver.

When There Is No Crash Dump
In this section, we’ll address how to troubleshoot systems that for some reason are not recording a
crash dump. One reason why a crash dump might not be recorded is if no paging file is configured to
hold the dump. This can easily be remedied by creating a paging file of the required size. A second
reason why there might not be a crash dump recorded is because the kernel code and data structures
needed to write the crash dump have been corrupted at the time of the crash. As described earlier,
this data is captured when the system boots, and if the integrity verification check made at the time
of the crash does not match, the system does not even attempt to save the crash dump (so as not to
risk corrupting data on the disk). So in this case, you need to catch the system as it crashes and then
try to determine the reason for the crash.

Another reason occurs when the disk subsystem for the system disk is not able to process disk
write requests (a condition that might have triggered the system failure itself). One such condition
would be a hardware failure in the disk controller or maybe a cabling issue near the hard disk.

Yet another possibility occurs when the system has drivers that have registered callbacks that are
invoked before the crash dump is written. When the driver callbacks are called, they might incorrectly
access data structures located in paged memory (for example), which will lead to a second crash. In
the case of a crash inside of a secondary dump callback, the system should still have a valid crash
dump file but any secondary crash dump data may be missing or incomplete.

One simple option is to turn off the Automatically Restart option in the Startup And Recovery set-
tings so that if the system crashes, you can examine the blue screen on the console. However, only the
most straightforward crashes can be solved from just the blue-screen text.

To perform more in-depth analysis, you need to use the kernel debugger to look at the system at
the time of the crash. This can be done by booting the system in debugging mode, which is described

582 Windows Internals, Sixth Edition, Part 2

in the previous section. When a system is booted in debugging mode (with a debugger attached) and
crashes, instead of painting the blue screen and attempting to record the dump, it will break into the
host kernel debugger. In this way, you can see the reason for the crash and perhaps perform some
basic analysis using the kernel debugger commands described earlier. As mentioned in the previous
section, you can use the .dump command in the debugger to save a copy of the crashed system’s
memory space for later debugging, thus allowing you to reboot the crashed system and debug the
problem offline.

EXPERIMENT: Attaching a Kernel Debugger
Connecting a kernel debugger to a live, running system requires two computers—a target
and a host. The target, the system being debugged, must be booted in debugging mode by
pressing F8 during the boot process and selecting Debugging Mode or by modifying the boot
configuration database from within an elevated command prompt using the BCDEdit tool:

bcdedit /debug on

The system will use the default settings of serial port COM1 and baud rate 115200 if no
other settings are specified. On the host system—the computer running the debugger—the
symbol path option needs to be set so that the debugger can locate the required symbol files.
One option for configuring the symbol path is to use the systemwide environment variable
_NT_SYMBOL_PATH. Setting the systemwide variable allows for other applications, such as
Process Explorer and Process Monitor, to take advantage of the symbol path without requiring
additional configuration. The symbol path can be set via an elevated command prompt by us-
ing the following command:

setx _NT_SYMBOL_PATH srv*c:\symbols*http://msdl.microsoft.com/download/symbols /m

The /m switch specifies that the variable should be set system wide. Without it, the default
option is to set it only for the current user. One final step that’s required is to configure the
transport layer. If two physical computers are being used, this is done by connecting the serial
ports of the computers to each other by using a null modem cable.

In the following example, a Hyper-V guest has been selected as the target. Hyper-V (as is the
case with other virtual-machine technologies) supports the option of configuring a virtual serial
port to communicate with a physical computer through a named pipe. If you are using multiple
named pipes, each pipe name should be unique to avoid a conflict.

 CHAPTER 14 Crash Dump Analysis 583

Before restarting the target system, the debugger on the host needs to be configured to
specify the named pipe that should be used as a transport. Both the resets=0 and reconnect op-
tions specified in the following command are required when connecting to Hyper-V guests. (For
other virtual-machine technologies, refer to the Debugging Tools for Windows help file.) The
command shown here will start a debugging session on a virtual machine, which is running on
the same physical computer as the debugger:

windbg -k com:pipe,port=\\.\pipe\debugger,resets=0,reconnect

The WinDbg command window should appear with a prompt that the debugger is waiting
to connect:

Microsoft (R) Windows Debugger Version 6.12.0002.633 AMD64
Copyright (c) Microsoft Corporation. All rights reserved.

Waiting for pipe \\.\pipe\debugger
Waiting to reconnect...

At this point, the target system should be restarted. After a brief period, the two systems
should connect via the named pipe. The following output confirms that the host is now con-
nected to the target system through the kernel debugger:

Connected to Windows 7 7601 x86 compatible target at
 (Mon Mar 12 19:34:01.295 2012 (UTC - 7:00)), ptr64 FALSE
Kernel Debugger connection established.
Symbol search path is: srv*c:\symbols*http://msdl.microsoft.com/download/symbols

584 Windows Internals, Sixth Edition, Part 2

Executable search path is:
Windows 7 Kernel Version 7601 (Service Pack 1) MP (1 procs) Free x86 compatible
Built by: 7601.17514.x86fre.win7sp1_rtm.101119-1850
Machine Name:
Kernel base = 0x82813000 PsLoadedModuleList = 0x8295d850
System Uptime: not available

To verify that the system will break into the debugger when a crash occurs, the /bugcheck
option of Notmyfault can be used to crash the system. As is the case with other Notmyfault
functions, a control code is sent to the Myfault.sys driver. The control code specifies that the
KeBugCheckEx routine should be called, passing it a reference to the stop code. Here is an ex-
ample of using a user-defined stop code:

notmyfault /bugcheck 0xdeaddead

When a debugger is connected to the system and a crash occurs, control is given to the
debugger before painting the blue screen and any bugcheck callbacks have been called. This
allows for further analysis to be performed or for breakpoints to be set:

*** Fatal System Error: 0xdeaddead
 (0x00000000,0x00000000,0x00000000,0x00000000)

Break instruction exception - code 80000003 (first chance)

A fatal system error has occurred.
Debugger entered on first try; Bugcheck callbacks have not been invoked.

A fatal system error has occurred.
...

The operating system code and data structures that handle processor exceptions can become
corrupted such that a series of recursive faults occur. One example of this would be if the operating
system trap handler got corrupted and caused a page fault. This would invoke the page fault handler,
which would fault again, and so on. If such a situation occurred, the system would be hopelessly stuck.
To prevent such a situation from occurring, CPUs have a built-in recursive fault protection mechanism,
which sets a hard limit on the depth of a recursive fault. On most x86 processors, a fault can nest to
two levels deep. When the third recursive fault occurs, the processor resets itself and the machine re-
boots. This is called a triple fault. This can happen when there’s a faulty hardware component as well.
Even a kernel debugger won’t be invoked in a triple fault situation. However, sometimes the mere
fact that the kernel debugger doesn’t activate can confirm that there’s a problem with newly added
hardware or drivers.

Note You can use the kernel debugger to trigger a triple fault on a machine by setting
a breakpoint on the kernel debugger dispatch routine KiDispatchException. This happens
because the exception dispatcher now causes a breakpoint exception, which invokes the
exception dispatcher, and so on.

 CHAPTER 14 Crash Dump Analysis 585

Analysis of Common Stop Codes

The following sections provide a walkthrough of common stop codes reported to Microsoft’s Online
Crash Analysis service. For each stop code presented, the analysis begins with the verbose output of
the analysis engine’s !analyze –v command.

The reasons for each type of crash may vary, as will the commands and techniques used to analyze
them. For more information on analyzing common stop codes, see the Debugging Tools for Windows
help file and the additional resources referenced later in this chapter.

0xD1 - DRIVER_IRQL_NOT_LESS_OR_EQUAL
The DRIVER_IRQL_NOT_LESS_OR_EQUAL (0xD1) stop code is the result of a device driver attempting
to access a pageable or invalid address at an interrupt request level that is too high. This stop code is
usually the result of device drivers using improper addresses.

DRIVER_IRQL_NOT_LESS_OR_EQUAL (d1)
An attempt was made to access a pageable (or completely invalid) address at an
interrupt request level (IRQL) that is too high. This is usually
caused by drivers using improper addresses.
If kernel debugger is available get stack backtrace.
Arguments:

Arg1: a0a91660, memory referenced
Arg2: 00000002, IRQL
Arg3: 00000000, value 0 = read operation, 1 = write operation
Arg4: 85701579, address which referenced memory

In analyzing a stop DRIVER_IRQL_NOT_LESS_OR_EQUAL (0xD1), viewing the stack trace of the
thread that was executing at the time of the crash will reveal the device driver that was referencing
pageable or invalid memory:

STACK_TEXT:

8b94bb3c 85701579 badb0d00 84f40600 a0a4f660 nt!KiTrap0E+0x2cf
WARNING: Stack unwind information not available. Following frames may be wrong.
8b94bbb8 85701849 86ffe5d8 8b94bbfc 857018ac myfault+0x579
8b94bbc4 857018ac 850d6890 00000001 00000000 myfault+0x849
8b94bbfc 8283e593 86efaa98 86ffe5d8 86ffe5d8 myfault+0x8ac
8b94bc14 82a3299f 850d6890 86ffe5d8 86ffe648 nt!IofCallDriver+0x63
8b94bc34 82a35b71 86efaa98 850d6890 00000000 nt!IopSynchronousServiceTail+0x1f8
8b94bcd0 82a7c3f4 86efaa98 86ffe5d8 00000000 nt!IopXxxControlFile+0x6aa
8b94bd04 828451ea 000000b8 00000000 00000000 nt!NtDeviceIoControlFile+0x2a
8b94bd04 776f70b4 000000b8 00000000 00000000 nt!KiFastCallEntry+0x12a
0012f994 00000000 00000000 00000000 00000000 0x776f70b4

The debugger’s analysis engine is able to locate and display the trap frame that was created when
the exception that caused the crash occurred. The trap frame contains the kernel thread’s machine
state, which includes the register values of the CPU that the thread was executing on. The instruction
pointer register (eip on an x86 processor and rip on an x64) contains the address of the instruction
that, when executed, generated the trap. The lower line of the output from the .trap command in the

586 Windows Internals, Sixth Edition, Part 2

debugger lists the address of the instruction that caused the crash, its binary code, assembly lan-
guage mnemonic, and assembly language details:

TRAP_FRAME: 8b94bb3c -- (.trap 0xffffffff8b94bb3c)
ErrCode = 00000000
eax=a0a91660 ebx=86ffe5f0 ecx=00200073 edx=84f40600 esi=a0a4f660 edi=00000000
eip=85701579 esp=8b94bbb0 ebp=8b94bbb8 iopl=0 nv up ei ng nz na pe nc
cs=0008 ss=0010 ds=0023 es=0023 fs=0030 gs=0000 efl=00010286
myfault+0x579:

85701579 8b08 mov ecx,dword ptr [eax] ds:0023:a0a91660=????????

The first bugcheck parameter of a stop DRIVER_IRQL_NOT_LESS_OR_EQUAL (0xD1) points to the
memory address that was being referenced by the device driver. If the debugger is unable to dis-
play an address (because it is invalid or not present in the dump file), a series of question marks is
displayed. In the trap frame just shown, the debugger has been unable to resolve the address of the
memory referenced by the device driver.

Viewing the output of the !pte command for the address that was referenced confirms that the
valid bit for the page table entry is not set, which indicates that the address does not map to a page
in physical memory:

0: kd> !pte a0a91660
 VA a0a91660
PDE at C0602828 PTE at C0505488
contains 0000000010BE6863 contains 00007A1800000000
pfn 10be6 ---DA--KWEV not valid
 PageFile: 0
 Offset: 7a18
 Protect: 0

0x8E - KERNEL_MODE_EXCEPTION_NOT_HANDLED
The KERNEL_MODE_EXCEPTION_NOT_HANDLED (0x8E) stop message is caused by a kernel-mode
thread generating an exception that was not handled. The first bugcheck parameter identifies the ex-
ception code for which a handler was not found. Common exception codes are STATUS_BREAKPOINT
(0x80000003) and STATUS_ACCESS_VIOLATION (0xC0000005).

KERNEL_MODE_EXCEPTION_NOT_HANDLED (8e)

This is a very common bugcheck. Usually the exception address pinpoints

the driver/function that caused the problem. Always note this address

as well as the link date of the driver/image that contains this address.

Some common problems are exception code 0x80000003. This means a hard

coded breakpoint or assertion was hit, but this system was booted

/NODEBUG. This is not supposed to happen as developers should never have

hardcoded breakpoints in retail code, but ...

If this happens, make sure a debugger gets connected, and the

system is booted /DEBUG. This will let us see why this breakpoint is

happening.Arguments:

Arg1: 80000003, The exception code that was not handled

Arg2: 92c70a78, The address that the exception occurred at

Arg3: 9444fb4c, Trap Frame

Arg4: 00000000

 CHAPTER 14 Crash Dump Analysis 587

Viewing the stack trace of the crashed thread can give an indication of the driver or function that
caused the problem. If there’s nothing that looks suspicious, viewing the address where the exception
occurred should provide more details. The stack trace from a crashed system looks like this:

STACK_TEXT:

9444f6b4 828ba08c 0000008e 80000003 92c70a78 nt!KeBugCheckEx+0x1e
9444fadc 82843dd6 9444faf8 00000000 9444fb4c nt!KiDispatchException+0x1ac
9444fb44 82844678 9444fbc4 92c70a79 badb0d00 nt!CommonDispatchException+0x4a
9444fb44 92c70a79 9444fbc4 92c70a79 badb0d00 nt!KiTrap03+0xb8
WARNING: Stack unwind information not available. Following frames may be wrong.
9444fbc4 92c70b1c 8730f980 00000001 00000000 myfault+0xa79
9444fbfc 8283c593 87314a08 87279950 87279950 myfault+0xb1c
9444fc14 82a3099f 8730f980 87279950 872799c0 nt!IofCallDriver+0x63
9444fc34 82a33b71 87314a08 8730f980 00000000 nt!IopSynchronousServiceTail+0x1f8
9444fcd0 82a7a3f4 87314a08 87279950 00000000 nt!IopXxxControlFile+0x6aa
9444fd04 828431ea 000000c4 00000000 00000000 nt!NtDeviceIoControlFile+0x2a
9444fd04 772c70b4 000000c4 00000000 00000000 nt!KiFastCallEntry+0x12a
0012f2ac 00000000 00000000 00000000 00000000 0x772c70b4

The second bugcheck parameter contains the location in memory that the exception occurred at.
In the case of a STATUS_BREAKPOINT exception, unassembling the address will confirm the presence
of a breakpoint instruction. The processor instruction INT 3 is called the trap to debugger instruction.
An INT 3 instruction, when executed, causes the system to call the kernel’s debugger exception han-
dler. If a debugger is attached to the computer, the system will break in.

0: kd> u 92c70a78
myfault+0xa78:

92c70a78 cc int 3
...

Breakpoints shouldn’t usually appear in retail versions of device drivers. Using the lm command, it’s
sometimes possible to determine which environment a device driver was targeted for. When compil-
ing a driver for release (and unless overridden by the developer), a flag is set indicating the release
type. When viewing the File flags property, the presence of the word Debug indicates that the driver
was built using a checked (or debug) environment:

0: kd> lm kv m myfault
start end module name
92c70000 92c71880 myfault (no symbols)
 Loaded symbol image file: myfault.sys
 Image path: \??\C:\Windows\system32\drivers\myfault.sys
 Image name: myfault.sys
 Timestamp: Sat Apr 07 09:34:40 2012 (4F806CA0)
 CheckSum: 00004227
 ImageSize: 00001880
 File version: 4.0.0.0
 Product version: 4.0.0.0
 File flags: 1 (Mask 3F) Debug
 File OS: 40004 NT Win32
...

588 Windows Internals, Sixth Edition, Part 2

A breakpoint in a debug version of a driver could also indicate the failure of an ASSERT macro. If a
kernel debugger is attached to the system, a message would be displayed followed by a prompt ask-
ing the user what to do about the assertion failure.

0x7F - UNEXPECTED_KERNEL_MODE_TRAP
An UNEXPECTED_KERNEL_MODE_TRAP (0x7F) stop code indicates that the CPU generated a trap that
the Windows kernel failed to handle. The trap could be the result of a bound trap (which the kernel is
not permitted to catch) or a double fault (a fault that occurs while the kernel is processing an earlier
fault). The first bugcheck parameter defines the type of trap.

UNEXPECTED_KERNEL_MODE_TRAP (7f)
This means a trap occurred in kernel mode, and it's a trap of a kind
that the kernel isn't allowed to have/catch (bound trap) or that
is always instant death (double fault). The first number in the
bugcheck params is the number of the trap (8 = double fault, etc)
Consult an Intel x86 family manual to learn more about what these
traps are. Here is a *portion* of those codes:
If kv shows a taskGate
 use .tss on the part before the colon, then kv.
Else if kv shows a trapframe
 use .trap on that value
Else

 .trap on the appropriate frame will show where the trap was taken
 (on x86, this will be the ebp that goes with the procedure KiTrap)
Endif

kb will then show the corrected stack.
Arguments:

Arg1: 00000008, EXCEPTION_DOUBLE_FAULT
Arg2: 801db000
Arg3: 00000000
Arg4: 00000000

Most traps in this category are the result of faulty or failed hardware. If you recently added new
hardware to the computer, try removing it to see whether the problem no longer occurs. Remove
any existing hardware that may have failed and have it replaced. It’s also recommended to run any
manufacturer-supplied hardware-diagnostic tools to determine which components may have failed.

There are, however, certain traps that are the result of software errors. Viewing the trap frame that
was generated or the task gate (depending on the type of trap) displays the instruction that gener-
ated the trap:

TSS: 00000028 -- (.tss 0x28)
eax=8336001c ebx=86d57388 ecx=83360044 edx=00000000 esi=86d57388 edi=00000000
eip=96890918 esp=92985000 ebp=92987bc4 iopl=0 nv up ei pl zr na pe nc
cs=0008 ss=0010 ds=0023 es=0023 fs=0030 gs=0000 efl=00010246
myfault+0x918:

96890918 e8f9ffffff call myfault+0x916 (96890916)

The type of trap described earlier, an EXCEPTION_DOUBLE_FAULT, is usually the result of one of
two common causes—a kernel stack overflow or faulty hardware. A kernel stack overflow occurs

 CHAPTER 14 Crash Dump Analysis 589

when a kernel thread’s guard page is hit, as a result of having exhausted all of the current thread’s
stack allocation. The kernel attempts to push a trap frame onto the stack—for which no more space
exists—causing a double fault.

Using the !thread command to verify the stack limits of the thread that was executing confirms
whether the double fault was caused by a kernel stack overflow:

0: kd> !thread
THREAD 850e3918 Cid 0fb8.0fbc Teb: 7ffde000 Win32Thread: fe4f0dd8 RUNNING on processor 0
IRP List:
 86d57370: (0006,0094) Flags: 00060000 Mdl: 00000000
Not impersonating
DeviceMap 8fa3b8e8
Owning Process 85100670 Image: NotMyfault.exe
Attached Process N/A Image: N/A
Wait Start TickCount 21664 Ticks: 0
Context Switch Count 461
UserTime 00:00:00.000
KernelTime 00:00:00.046
Win32 Start Address 0x00fe27ff
Stack Init 92987fd0 Current 92987af8 Base 92988000 Limit 92985000 Call 0
Priority 12 BasePriority 8 UnusualBoost 0 ForegroundBoost 2 IoPriority 2 PagePriority 5
ChildEBP RetAddr Args to Child
00000000 96890918 00000000 00000000 00000000 nt!KiTrap08+0x75 (FPO: TSS 28:0)
WARNING: Stack unwind information not available. Following frames may be wrong.
92987bc4 96890b1c 87015038 00000001 00000000 myfault+0x918
92987bfc 82845593 85154158 86d57370 86d57370 myfault+0xb1c
92987c14 82a3999f 87015038 86d57370 86d573e0 nt!IofCallDriver+0x63
92987c34 82a3cb71 85154158 87015038 00000000 nt!IopSynchronousServiceTail+0x1f8
92987cd0 82a833f4 85154158 86d57370 00000000 nt!IopXxxControlFile+0x6aa
92987d04 8284c1ea 000000c4 00000000 00000000 nt!NtDeviceIoControlFile+0x2a
92987d04 779a70b4 000000c4 00000000 00000000 nt!KiFastCallEntry+0x12a (FPO: [0,3]
 TrapFrame @ 92987d34)
0012f424 00000000 00000000 00000000 00000000 0x779a70b4

The two values of interest are the stack base and the stack limit. Comparing the value of the stack
limit with the value stored in the stack pointer register (esp in this case) of the task state segment
shown earlier confirms that the lower limit of the stack has been reached. (Both locations contain the
same value.)

To understand what component has used all of the kernel thread’s stack allocation requires the
two values obtained earlier—the stack base and the stack limit. Using the dps command with both
values displays the thread’s stack, using symbols to resolve any function names:

0: kd> dps 92985000 92988000
92985000 9689091d myfault+0x91d
92985004 9689091d myfault+0x91d
92985008 9689091d myfault+0x91d
...

In this output, a repeating address is shown for the Myfault.sys driver. This is consistent with a de-
vice driver that is recursively calling into itself. Each call to a function pushes the return address onto
the stack—growing the stack and contributing to the thread’s overall stack limit. The return address

590 Windows Internals, Sixth Edition, Part 2

is popped off the stack only when the function returns. In the case of a driver or function recursively
calling itself, each function called never returns.

0xC5 - DRIVER_CORRUPTED_EXPOOL
Diagnosing the cause of pool corruption can be difficult, if not virtually impossible, without the use of
additional tools. The recommended course of action for troubleshooting any type of pool corruption
issue is to enable the special pool option of Driver Verifier against any new or suspect drivers. Before
you enable Driver Verifier, spending a few extra minutes analyzing the crash may yield some interest-
ing results.

The cause of a DRIVER_CORRUPTED_EXPOOL (0xC5) stop code is the result of an attempt to access
a pageable or invalid address at an IRQL that is too high. The stop code originates from the kernel as
a stop IRQL_NOT_LESS_OR_EQUAL (0xA). Inside the kernel’s KeBugCheck2 function (for which KeBug-
CheckEx is just a stub), the system checks the value of the stop code. If the stop code’s value is equal
to IRQL_NOT_LESS_OR_EQUAL (0xA), the system queries the fourth bugcheck parameter, which is the
address that referenced the memory that led to the crash. If the address lies between the regions of
memory that contain the Windows executive’s pool functions, the system changes the stop code to
DRIVER_CORRUPTED_EXPOOL (0xC5). The reason for modifying the stop code is to highlight that it's
not the fault of the pool routines, but rather that one of the pool structures they manage has been
corrupted.

DRIVER_CORRUPTED_EXPOOL (c5)

An attempt was made to access a pageable (or completely invalid) address at an

interrupt request level (IRQL) that is too high. This is

caused by drivers that have corrupted the system pool. Run the driver

verifier against any new (or suspect) drivers, and if that doesn't turn up

the culprit, then use gflags to enable special pool.

Arguments:

Arg1: 4f4f4f53, memory referenced

Arg2: 00000002, IRQL

Arg3: 00000000, value 0 = read operation, 1 = write operation

Arg4: 829234a7, address which referenced memory

In the case of pool corruption, a stack trace almost always points to Ntoskrnl or another device
driver as being the likely cause of the crash. In the following example, the stack trace of the thread
that was executing when the system crashed lists only Windows operating system functions:

STACK_TEXT:

8b8e3554 829234a7 badb0d00 00000000 91470d90 nt!KiTrap0E+0x2cf
8b8e3610 8288d2c6 00000000 00000280 76615358 nt!ExAllocatePoolWithTag+0x49d
8b8e3620 8288d19d 00000001 00000053 8b8e38a8 nt!KeAllocateXStateContext+0x25
8b8e3644 8288d6b5 00000003 00000000 8b8e37b4 nt!KeSaveExtendedProcessorState+0x104
8b8e3658 9139b443 8b8e37b4 fe7b8010 8288d038 nt!KeSaveFloatingPointState+0x14
8b8e3864 9139bfdb fe8af408 ffbbd540 00000000 win32k!EngAlphaBlend+0x230
8b8e38d0 9139c394 fe7b8010 fe989010 fe1c0010 win32k!SURFREFDC::vUnlock+0x1e5
8b8e3974 913a4a2f fe7b8010 fe989010 00000000 win32k!SURFREFDC::vUnlock+0x59e
8b8e39d4 913a4981 fe7b8010 fe989010 00000000 win32k!EngNineGrid+0x6e

 CHAPTER 14 Crash Dump Analysis 591

8b8e3a34 913a4847 fe7b8010 fe989010 00000000 win32k!EngDrawStream+0x109
8b8e3aa8 913a13a3 8b8e3ba4 00000000 fe989000 win32k!NtGdiDrawStreamInternal+0x232
8b8e3bd4 913a0e09 3a010231 00000000 fe9ef140 win32k!GreDrawStream+0x557
8b8e3d20 828401ea 3a010231 00000060 0012f628 win32k!NtGdiDrawStream+0x8c
8b8e3d20 774570b4 3a010231 00000060 0012f628 nt!KiFastCallEntry+0x12a
0012f49c 75c973a5 75c9738f 3a010231 00000060 ntdll!KiFastSystemCallRet
0012f4a0 75c9738f 3a010231 00000060 0012f628 GDI32!NtGdiDrawStream+0xc
0012f5a4 74243efa 3a010231 00000060 0012f628 GDI32!GdiDrawStream+0x432

The trap frame that was generated when the attempt to access pageable or invalid memory was
made displays the processor instruction that was executed and the register values of the CPU the
thread was executing on. The debugger, with the assistance of the symbol file for the kernel image, is
able to display the name of the function that crashed, using the instruction pointer as a reference:

TRAP_FRAME: 8b8e3554 -- (.trap 0xffffffff8b8e3554)
eax=8b8e35f8 ebx=82939940 ecx=4f4f4f4f edx=00000000 esi=82939da8 edi=82939944
eip=829234a7 esp=8b8e35c8 ebp=8b8e3610 iopl=0 ov up ei ng nz na po cy
cs=0008 ss=0010 ds=0023 es=0023 fs=0030 gs=0000 efl=00010a83
nt!ExAllocatePoolWithTag+0x49d:

829234a7 8b4104 mov eax,dword ptr [ecx+4] ds:0023:4f4f4f53=????????

As with previous examples, the series of question marks is used to represent invalid addresses that
were unable to be displayed by the debugger. In the case of the preceding instruction, the processor
read the address stored in the ecx register, added a value of four to it, and then attempted to refer-
ence the memory pointed to by that address (for storage into the eax register). The resulting address
to be fetched was invalid, causing an exception to be raised by the processor.

To understand why the invalid value was stored in the ecx register, analyzing the set of instruc-
tions that executed prior to the crash may give an indication. The following output shows the results
of unassembling the instruction stream of the crashed thread, backward from the current instruction
pointer:

0: kd> ub 829234a7
nt!ExAllocatePoolWithTag+0x479:

...

829234a5 8b0e mov ecx,dword ptr [esi]

Analysis reveals that the address in the ecx register was written to by an instruction that read the
value pointed to by the esi register. Using the dc command with the address stored in the esi register
of the trap frame shows from where the value 4f4f4f4f originated. What is of interest in the output of
the command is that each of the addresses listed appears as a pair and that the first value—the one
that contains the invalid address—doesn’t match the value adjacent to it:

0: kd> dc 82939da8
82939da8 4f4f4f4f 85045810 82939db0 82939db0 OOOO.X..........
82939db8 82939db8 82939db8 86f749f8 86f749f8 I...I..
82939dc8 82939dc8 82939dc8 82939dd0 82939dd0
82939dd8 82939dd8 82939dd8 82939de0 82939de0
82939de8 82939de8 82939de8 82939df0 82939df0
...

592 Windows Internals, Sixth Edition, Part 2

Following the suspicion that these values are address pairs and that the first value is invalid, dis-
playing the address next to the corrupted value leads toward determining the cause of the corrup-
tion. The value 4f4f4f4f is OOOO in ASCII, which is apparent in the output shown here:

0: kd> dc 85045810
85045810 4f4f4f4f 4f4f4f4f 4f4f4f4f 4f4f4f4f OOOOOOOOOOOOOOOO
85045820 4f4f4f4f 4f4f4f4f 4f4f4f4f 4f4f4f4f OOOOOOOOOOOOOOOO
85045830 46524556 00574f4c 00000000 00000000 VERFLOW.........
85045840 00000000 00000000 00000000 00000000
85045850 00000000 00000000 00000000 00000000
...

Checking the pool allocation with the !pool command confirms that the allocation, along with its
pool headers, have been corrupted:

0: kd> !pool 85045810
Pool page 85045810 region is Nonpaged pool
 85045000 size: 808 previous size: 0 (Allocated) None
85045808 is not a valid large pool allocation, checking large session pool...
85045808 is freed (or corrupt) pool
Bad previous allocation size @85045808, last size was 101

It’s important to note that although corruption has been identified, it may or may not have directly
caused the crash currently being analyzed. Any pool corruption that has been discovered requires
further investigation. Pool corruption left undiagnosed risks further crashes to the system or corrup-
tion of data stored on disk.

Of further interest in the output of the corrupted pool allocation is a reference to the string
OVERFLOW. Using the !for_each_module command, it’s possible to search each loaded module for any
occurrences of the suspect string. The following debugger command displays the name of any loaded
drivers that contain a match for the search phrase:

0: kd> !for_each_module .foreach (address {s -[1]a @#Base @#End "OVERFLOW"}) {lm 1m a address}
BTHUSB

CLASSPNP

CLASSPNP

rfcomm

rfcomm

rfcomm

...

myfault

Further analysis of a crash dump that appears at first to be virtually impossible to diagnose has
narrowed down the list of suspect drivers. The next step would be to enable the special pool option
of Driver Verifier with the device drivers listed.

 CHAPTER 14 Crash Dump Analysis 593

Hardware Malfunctions
Another type of stop message is the hardware malfunction screen. This type of screen is displayed
when the processor detects a hardware condition. Figure 14-10 shows a sample hardware malfunction
screen. Depending on the type of condition that generated the hardware malfunction, the system
might display additional information indicating the cause of the error. When displaying the hardware
malfunction screen, the system ignores the AutoReboot value of the HKLM\SYSTEM\CurrentControl-
Set\Control\CrashControl registry key and will display the screen indefinitely.

FIGURE 14-10 Example of a hardware malfunction screen

As you should with any stop messages that are suspected to be caused by hardware failures, run
any manufacturer-supplied hardware-diagnostic tools to determine which components, if any, may
have failed. If you recently added new hardware to the computer, try removing it to see whether the
problem no longer occurs. Remove any existing hardware that may have failed, and have it replaced.

Signaling the nonmaskable interrupt (NMI) pin of the system’s motherboard when the HKLM\
SYSTEM\CurrentControlSet\Control\CrashControl\NMICrashDump registry value isn’t set will also
generate a hardware malfunction screen. If the intention was to generate a manual crash dump using
an NMI button for offline analysis, verify that the NMICrashDump value is configured correctly.

594 Windows Internals, Sixth Edition, Part 2

EXPERIMENT: The Blue Screen Screen Saver
A great way to remind yourself of what a blue screen looks like or to fool your office workers
and friends is to run the Sysinternals Blue Screen screen saver from Sysinternals. The screen
saver simulates authentic looking blue screens that reflect the version of Windows on which you
run it, generating all blue screen text using actual system information, such as the list of loaded
drivers. It also mimics an automatic reboot, complete with the Windows startup splash screen.
Note that unlike other screen savers, where a mouse movement dismisses them, the Blue Screen
screen saver requires a key press.

By using the following syntax for the Psexec tool from Sysinternals, you can even run the
screen saver on another system:

psexec \\computername –c –f –i –d "SysInternalsBluescreen.scr" –s –accepteula

The command requires that you have administrative privilege on the remote system. (You
can use the –u and –p Psexec switches to specify alternate credentials.) Make sure that your
coworker has a sense of humor!

Conclusion

Although many crashes can be analyzed with some of the techniques described in this chapter, many
require analysis that goes beyond the scope of this book. Here are some additional resources that
may be useful if you want to learn more advanced crash analysis techniques and information:

 ■ The Microsoft Platforms Global Escalation Services team blog, at http://blogs.msdn.com/
ntdebugging, provides various tips and tricks and real-life scenarios encountered by the team.

 ■ The website http://www.dumpanalysis.org provides hundreds of patterns and advanced analy-
sis scenarios and hints.

http://blogs.msdn.com/ntdebugging
http://blogs.msdn.com/ntdebugging
http://www.dumpanalysis.org

 595

A P P E N D I X

Contents of
Windows Internals, Sixth Edition, Part 1

Introduction

Chapter 1 Concepts and Tools
Windows Operating System Versions
Foundation Concepts and Terms

Windows API
Services, Functions, and Routines
Processes, Threads, and Jobs
Virtual Memory
Kernel Mode vs. User Mode
Terminal Services and Multiple Sessions
Objects and Handles
Security
Registry
Unicode

Digging into Windows Internals
Performance Monitor
Kernel Debugging
Windows Software Development Kit
Windows Driver Kit
Sysinternals Tools

Conclusion

Chapter 2 System Architecture
Requirements and Design Goals
Operating System Model
Architecture Overview

Portability
Symmetric Multiprocessing
Scalability
Differences Between Client and Server Versions
Checked Build

596 Windows Internals, Sixth Edition, Part 2

Key System Components
Environment Subsystems and Subsystem DLLs
Ntdll.dll
Executive
Kernel
Hardware Abstraction Layer
Device Drivers
System Processes

Conclusion

Chapter 3 System Mechanisms
Trap Dispatching

Interrupt Dispatching
Timer Processing
Exception Dispatching
System Service Dispatching

Object Manager
Executive Objects
Object Structure

Synchronization
High-IRQL Synchronization
Low-IRQL Synchronization

System Worker Threads
Windows Global Flags
Advanced Local Procedure Call

Connection Model
Message Model
Asynchronous Operation
Views, Regions, and Sections
Attributes
Blobs, Handles, and Resources
Security
Performance
Debugging and Tracing

Kernel Event Tracing
Wow64

Wow64 Process Address Space Layout
System Calls
Exception Dispatching

 APPENDIX Contents of Windows Internals, Sixth Edition, Part 1 597

User APC Dispatching
Console Support
User Callbacks
File System Redirection
Registry Redirection
I/O Control Requests
16-Bit Installer Applications
Printing
Restrictions

User-Mode Debugging
Kernel Support
Native Support
Windows Subsystem Support

Image Loader
Early Process Initialization
DLL Name Resolution and Redirection
Loaded Module Database
Import Parsing
Post-Import Process Initialization
SwitchBack
API Sets

Hypervisor (Hyper-V)
Partitions
Parent Partition
Child Partitions
Hardware Emulation and Support

Kernel Transaction Manager
Hotpatch Support
Kernel Patch Protection
Code Integrity
Conclusion

Chapter 4 Management Mechanisms
The Registry

Viewing and Changing the Registry
Registry Usage
Registry Data Types
Registry Logical Structure
Transactional Registry (TxR)

598 Windows Internals, Sixth Edition, Part 2

Monitoring Registry Activity
Process Monitor Internals
Registry Internals

Services
Service Applications
The Service Control Manager
Service Startup
Startup Errors
Accepting the Boot and Last Known Good
Service Failures
Service Shutdown
Shared Service Processes
Service Tags

Unified Background Process Manager
Initialization
UBPM API
Provider Registration
Consumer Registration
Task Host
Service Control Programs

Windows Management Instrumentation
Providers
The Common Information Model and the Managed Object

Format Language
Class Association
WMI Implementation
WMI Security

 Windows Diagnostic Infrastructure
WDI Instrumentation
Diagnostic Policy Service
Diagnostic Functionality

Conclusion

Chapter 5 Processes, Threads, and Jobs
Process Internals

Data Structures
Protected Processes

 APPENDIX Contents of Windows Internals, Sixth Edition, Part 1 599

Flow of CreateProcess
Stage 1: Converting and Validating Parameters and Flags
Stage 2: Opening the Image to Be Executed
Stage 3: Creating the Windows Executive Process Object

(PspAllocateProcess)
Stage 4: Creating the Initial Thread and Its Stack and Context
Stage 5: Performing Windows Subsystem–Specific Post-

Initialization
Stage 6: Starting Execution of the Initial Thread
Stage 7: Performing Process Initialization in the Context of the

New Process
Thread Internals

Data Structures
Birth of a Thread

Examining Thread Activity
Limitations on Protected Process Threads

Worker Factories (Thread Pools)
Thread Scheduling

Overview of Windows Scheduling
Priority Levels
Thread States
Dispatcher Database
Quantum
Priority Boosts
Context Switching
Scheduling Scenarios
Idle Threads
Thread Selection
Multiprocessor Systems
Thread Selection on Multiprocessor Systems
Processor Selection

Processor Share-Based Scheduling
Distributed Fair Share Scheduling
CPU Rate Limits

Dynamic Processor Addition and Replacement
Job Objects

Job Limits
Job Sets

Conclusion

600 Windows Internals, Sixth Edition, Part 2

Chapter 6 Security
Security Ratings

Trusted Computer System Evaluation Criteria
The Common Criteria

Security System Components
Protecting Objects

Access Checks
Security Identifiers
Virtual Service Accounts
Security Descriptors and Access Control

The AuthZ API
Account Rights and Privileges

Account Rights
Privileges
Super Privileges

Access Tokens of Processes and Threads
Security Auditing

Object Access Auditing
Global Audit Policy
Advanced Audit Policy Settings

Logon
Winlogon Initialization
User Logon Steps
Assured Authentication
Biometric Framework for User Authentication

User Account Control and Virtualization
File System and Registry Virtualization
Elevation

Application Identification (AppID)
AppLocker
Software Restriction Policies
Conclusion

 APPENDIX Contents of Windows Internals, Sixth Edition, Part 1 601

Chapter 7 Networking
Windows Networking Architecture

The OSI Reference Model
Windows Networking Components

Networking APIs
Windows Sockets
Winsock Kernel
Remote Procedure Call
Web Access APIs
Named Pipes and Mailslots
NetBIOS
Other Networking APIs

Multiple Redirector Support
Multiple Provider Router
Multiple UNC Provider
Surrogate Providers
Redirector
Mini-Redirectors
Server Message Block and Sub-Redirectors

Distributed File System Namespace
Distributed File System Replication
Offline Files

Caching Modes
Ghosts
Data Security
Cache Structure

BranchCache
Caching Modes
BranchCache Optimized Application Retrieval:

SMB Sequence
BranchCache Optimized Application Retrieval:

HTTP Sequence
Name Resolution

Domain Name System
Peer Name Resolution Protocol

Location and Topology
Network Location Awareness
Network Connectivity Status Indicator
Link-Layer Topology Discovery

602 Windows Internals, Sixth Edition, Part 2

Protocol Drivers
Windows Filtering Platform

NDIS Drivers
Variations on the NDIS Miniport
Connection-Oriented NDIS
Remote NDIS
QoS

Binding
Layered Network Services

Remote Access
Active Directory
Network Load Balancing
Network Access Protection
Direct Access

Conclusion

Index

Index

 603

Symbols and
Numbers
. (periods in file names), 449
3DES algorithm, 495
16-bit applications, 200, 450
16-bit real mode components, 500
16-bit Unicode characters, 428
32-bit protected mode, 500
32-bit real mode components, 500
32-bit systems

crash dump paging files, 550
driver verification, 569
file names, 450
kernel address space, 250
numbers of threads, 280
PAE support, 260
page faults. See page faults and fault

handling
physical memory support, 321–323
troubleshooting, 569
UEFI support, 513
VDM support, 521

32-bit virtual addresses, 253–254
32-bit Windows

address space layouts, 229–232
AWE, 210, 211
execution protection, 205, 206
no-execute page protection, 205
process size, 187
system address space layouts,

232–233
system PTEs, 235
virtual address spaces, 244, 245
virtual allocator mechanism, 242

64-bit address space layouts, 237–239
64-bit protected mode, 500
64-bit systems

client memory limitations, 321
crash dump paging files, 550
driver verification, 569
dynamic address spaces, 242–245
execution protection, 205
kernel address space, 250

numbers of threads and, 280
UEFI support, 513
virtual address allocation, 244

64-bit Windows, 187, 235, 240–242
512e emulation, 127
1394 ports, 578

A
abort records, 477
absolute paths, 430
abstraction (I/O system), 1
access bit tracking (Superfetch), 341
access control lists. See ACLs (access

control lists)
access-denied errors, 416
Accessed bit (PTEs), 257, 264, 330
access fault trap handler, 188
access violations

crashes, 547, 550
heap-related, 226–227
page faults, 267–268
protecting memory, 203–204
special pool, 293
VADs and, 283

ACLs (access control lists)
exFAT file system, 397
I/O process and, 21
section objects, 204
tokens in, 440–441
UDF format, 393
Windows Resource Protection, 538

ACPI (Advanced Configuration and
Power Interface), 86, 92, 98–100,
511

Action Center, 561–562, 563–564
Active Directory, 174, 231, 530
active pages, 270, 316, 339
Active PFN state, 297, 299
Active Template Library (ATL), 207
Active Template Library thunk

emulation, 207–208
active threads, 54, 55

active VACBs, 366, 367
adapters, initializing, 519
add-device routines, 12, 69, 82–83, 98
AddiSNSSever command, 133
Add Recovery Agent Wizard, 495
address space

64-bit address space layouts,
237–239

commit charge, 275–277
commit limits, 275–277
dynamic address space, 232–233,

242–245
increasing, 229
locks, 189
mapping to physical pages. See

address translation
memory management, 189
paged and nonpaged pools, 213
status, 283
switching for processes, 555
system PTEs, 235–236
user layouts, 246–251
views, 360
virtual address space layouts. See

virtual address space layouts
virtual address space quotas,

245–246
x64 virtual address limitations,

240–242
x86 layouts, 229–232, 232–233
x86 session space, 233–235

Address Space Layout Randomization.
See ASLR (Address Space Layout
Randomization)

address translation
AS64 translation, 266–267
IA64 systems, 266–267
overview, 251
PAE, 260–264
page sizes and, 194
translation look-aside buffer,

259–260
x64 translation, 265–266
x86 translation, 252–259

Address Windowing Extensions

604

Address Windowing Extensions (AWE),
210–212, 276, 317

AddTarget command, 134
AddTargetPortal command, 134
AddUsersToEncryptedFile API, 492, 497
Adelson-Velskii and Landis (AVL), 283
“A disk read error occurred” error, 538
administrator privileges, 95
Advanced Configuration and Power

Interface (ACPI), 86, 92,
98–100, 511

Advanced Encryption Standard. See
AES (Advanced Encryption
Standard)

advanced format (disks), 126–127, 350
advanced local procedure calls (ALPC),

78, 520, 523
advancedoptions element, 506
AES (Advanced Encryption Standard)

AES128-CBC encryption, 165
AES256-CBC encryption, 165
AES-CCM keys, 172
authentication schemes and, 166
BitLocker To Go, 175
EFS usage, 492
ReadyBoost, 348

affinitized cores, 119
affinity counts, 113
affinity history policies, 115
affinity manager, 224
aged pages, 330, 341
agents (Superfetch), 339
AGP ports, 284
Algorithm for Recovery and Isolation

Exploiting Semantics (ARIES),
417

AllocateUserPhysicalPages function,
211, 302

AllocateUserPhysicalPagesNuma
function, 211, 302

allocation
explicit and implicit, 294
Low Fragmentation Heap, 222,

223–224
master file table entries, 445
pool, 216, 569
PTE failures, 235
states, 445

allocation granularity
defined, 199–200
in load offset number, 248–249
Low Fragmentation Heap (LFH),

223–224
no execute page protection, 205
smaller blocks (heaps), 220

ALPC (advanced local procedure calls),
78, 520, 523

alternate data streams, 393, 428, 474,
498

ALUA (asymmetrical logical unit
arrays), 134

AlwaysOff or AlwaysOn mode, 206,
208

analysis pass (recovery), 484–485
!analyze command, 567–568, 580, 585
APCs (asynchronous procedure calls),

30, 37–38, 271
APIC (Advanced Programmable

Interrupt Controller), 506,
509, 510

APIs
defragmentation, 436
EFI, 513
transactions, 472–473
Windows native, 522

Apple Macintosh machines, 513
application launch agent, 344
applications

cache coherency, 356
calling functions, 4–5
default heap, 221
failed, traces, 416
hung program screens, 543
large-address-space aware, 187
large page sizes, 194
locking pages in memory, 199
memory management, 193
page priority, 311, 343
power management control, 105
safe mode boots, 532
shadow copies, 180
Superfetch agents, 339
UMDF interaction, 79

application threads, 4–5
Application Verifier, 65
archival utilities, 427
archived files, 448
areal density (disk), 126–128
ARIES (Algorithm for Recovery and

Isolation Exploiting Semantics),
417

AS64 address translation, 266–267
ASLR (Address Space Layout

Randomization)
heap randomization, 250
kernel address space, 250
load offset numbers, 248–249
memory manager, 189
overview, 246–248
security mitigations, 250
stack randomization, 249–250
symbolic exception registration

records, 208
viewing processes, 251

ASR (Automated System Recovery),
534

assembly language, 14
ASSERT macros, 588
Assign API, 70
associated IRPs, 44, 46, 159
asymmetrical logical unit arrays

(ALUA), 134

asymmetric encryption. See private
keys; public key cryptography

asymmetric key pair certificate hashes,
494

asynchronous callbacks, 65
asynchronous I/O

APC calls, 38
cancellation, 49, 50
checking drivers’ handling, 68
completion, 37
completion context, 56
defined, 25–26
file object attributes, 19
layered drivers, 40
optimizing, 20
packet-based I/O, 1
scalability, 4
scatter/gather I/O, 28
testing status, 26
write throttling, 388

asynchronous procedures calls (APCs),
30, 37–38, 271

asynchronous read or write, 376, 378
ATA (AT attachment), 60
ATA-8, 348
ATAPI-based IDE devices, 133
Atapi.sys driver, 133
Ataport.sys driver, 132, 133
ATL (Active Template Library), 207
ATL thunk emulation, 207–208
atomic transactions, 424–425
attaching memory to processes, 196
Attachment Execution Service, 427
attachments, web or mail, 427
$AttDef metadata file, 449
ATTEMPTED_EXECUTE_OF_

NOEXECUTE_MEMORY code,
204

attribute definition table (AttrDef),
446

$ATTRIBUTE_LIST attribute, 448
attributes

files, list, 448–449
resident and nonresident, 453–456

attribute streams, 447
audio adapters, 321
auditing, 519
authentication schemes (BitLocker),

166, 174
authorization (NTFS security), 425
Autochk.exe, 158, 523
automated crash analysis, 563
Automated System Recovery (ASR),

534
automatic rebooting, 508, 579
auto-recovery BCD element behavior,

506
Autoruns tool, 528, 529
auto-start device drivers, 501, 525
auto-start (2) value, 85, 88
auxiliary displays, 78

 Boot Manager

 605

available memory, 190, 191
available pages, 315, 318
average frequency (processors), 110
AVL trees, 283
avoidlowmemory element, 504
“away-mode” power requests, 106
AWE (Address Windowing Extensions),

210–212, 276, 317

B
background activity priority, 58
background application page priority,

343
background priority mode, 63
backing store, 275–277, 349, 576
backing up encrypted files, 497
Backup and Restore utility, 539
backup applications

change logging, 433
data streams, 427
file system filter drivers, 413
shadow copies, 180, 181–182
shadow copy service and, 178

backup components (VSS writers), 178
backups, 130, 538
bad-cluster files ($BadClus), 445–446,

488
bad clusters, 429, 487–490
badmemoryaccess element, 504
badmemorylist element, 504
bad pages, 316, 336, 504
Bad PFN state, 297, 299
BAD_POOL_CALLER stop code, 550
BAD_POOL_HEADER stop code, 550,

570
bad-sector remapping, 487
balanced trees, 465
balance set manager and swapper

defined, 188
look-aside lists, 219
page writer events, 314
trimming working sets, 330
working sets, 333–334

bandwidth reservations, 20, 64
Base Cryptographic Provider, 495
based sections, 287
base file records, 443–444
base-log files, 420, 474
base LSNs, 476
basic disks

defined, 138
GUID partition table partitioning,

139–140
MBR-style partitioning, 139
multipartition volumes on, 139
registry information, 153
storage management, 139–141
volume manager, 141

batching log records, 478

batch oplocks, 401–402
BAT files, 401
baudrate element, 504
baud rates, 504, 507, 582
BCD (Boot Configuration Database)

BitLocker encryption, 166, 173
BitLocker volumes, 145
boot application options, 504–506
Bootmgr options, 504
boot process, 500, 503
boot volumes, 132
corruption and startup issues, 538
debug option, 578
increaseuserva configuration, 229,

280, 329, 557
increasing virtual memory, 210
installing, 502
loading non-PAE kernel, 205
nolowmem option, 260, 321
NVRAM code, 512–513
nx values, 205, 206
pae options, 260
safe mode options, 531
Winload options, 506–511

bcddevice element, 504
BCDEdit tool, 503, 538, 582
bcdfilepath element, 504
binary buddy systems, 223–224
BIOS

BIOS vs. EFI, 499
boot process components,

500–501
bootstrap data, 445
emulation code, 517
loading, 502
partitioning, 139
passwords, 163
preboot, 499–502

BIOS boot sector, 502–512
BIOS-detected disk drives, 511
BitLocker

BitLocker To Go, 164, 175–176
boot process, 170–172
Control Panel applet, 171, 175
Crashdump Filter driver, 559
encryption keys, 165–168
full-volume encryption driver,

173–174, 435
key rings, 504
management, 174–175
overview, 163–165
recovery keys, 172–173
storage management, 163–176
suspending, 171
system volumes and, 145
Trusted Platform Module, 168–170

BitLocker To Go, 164, 175–176
$BITMAP attribute, 448
bitmap attributes, 455, 465
bitmap files, 148, 249, 443, 445
black screens, 537

blanket boosting, 61
BLF (base-log file), 420, 474
blocking

completion ports, 54
control block data structures,

56–57
thread, 53

block metadata randomization, 225
block offsets, 421
blocks

addresses, 126
block-level access, 514
core heap, 222
logical, 127
NAND-type flash memory, 129
store page size, 349
updating sectors, 130

block size, 349
block-storage devices, 133
“blue screen of death”

faked crash screen saver, 594
overview, 548–549
post-splash-screen hangs,

540–542
system file corruption, 538
top 20 stop codes, 549–551
troubleshooting without crash

dumps, 581
Bluetooth, 78
Blu-ray drives, 125, 393
body (IRPs), 29
boosting I/O priority, 62–64
bootable partitions, 139
boot applications, BCD and, 504–506
boot code (MBR), 501
Boot Configuration Database. See BCD

(Boot Configuration Database)
boot data, 164, 348
bootdebug element, 504
boot device drivers, 511–512
boot disks, 503
boot drivers

boot process, 132
crashes in, 550
listing, 515
loading, 512
loading failures, 507
system code write protection, 574

bootems element, 505
boot entropy values, 522
boot files ($Boot), 445
boot graphics library, 520
boot loader (Winload.exe). See

Winload.exe
bootlog element, 506
boot logging, 520, 533–534, 542
bootlog option, 533–534
Boot Manager (Bootmgr)

BCD options, 504
BitLocker code in, 164
BitLocker encryption, 166

“BOOTMGR is compressed” error

606

Boot Manager, continued
BitLocker volumes, 145
boot process tasks, 500
boot volumes, 132
installing, 502
options editor, 509
overview, 502–503
post-crash functions, 551

“BOOTMGR is compressed” error, 538
“BOOTMGR is missing” error, 538
boot parameter block (BPB), 444
boot partition paths, 514
boot partitions, 502
boot preloaded hives, 507
boot process

BIOS boot sector and Bootmgr,
502–512

BIOS preboot, 499–502
BitLocker, 170–172
boot logging, 533–534
boot-time caching (ReadyBoot),

527–528
changes to encrypted

components, 170
common boot problems, 537–542
Csrss.exe, 522–526
driver loading, 529–532
image autoruns, 528–529
iSCSI booting, 514
kernel and executive subsystems,

514–522
last known good (LKG), 529
overview, 499
preboot process, 171
ReadyBoot, 527–528
repairing installations, 535–537
safe mode, 529–534
safe-mode-aware programs, 532
Smss.exe, 522–526
successful boots, 551
troubleshooting, 529–534,

537–542
UEFI boot process, 512–513
verification chain, encryption,

170–171
virtual hard disks, 162
Windows Recovery Environment,

534–537
Wininit.exe, 522–526

bootrec command, 537–542
boot-sector code, 166, 502
boot sectors

boot process tasks, 500
corruption and startup issues, 538
defined, 139, 502
duplicated, 490
file system drivers and, 399

boot-selection menu, 503
bootsequence element, 504
boot-start drivers, 87, 517, 534
boot-start (0) value, 84, 85

boot status files (bootstat.dat), 150,
537

bootstatuspolicy element, 506
bootstrap data, 443, 445
boot-time caching (ReadyBoot),

527–528
boot traces, 326
bootux element, 506
boot video driver (Bootvid.dll), 500,

517, 519
boot volumes

defined, 145
encrypting, 164
loading process, 511–512
mirroring, 150
partitioning, 145

bottom dirty page threshold, 389
boundary operations, 66
bound traps, 588
BPB (boot parameter block), 444
breaking into hung systems, 578–581
break on symbol load option, 517
breakpoints

copy-on-write process and, 210
drivers compiled in debug

environment, 587
HAL initialization, 507
host computers, 584

broken oplocks, 402
BSOD. See “blue screen of death”
BTG (BitLocker To Go), 164, 175–176
B-trees, 448, 455, 465, 468
bucket IDs (crash analysis), 563
buckets, 223–224, 314
buffered I/O, 29, 32
buffer overflows, 416, 572
buffer overruns, 569–572, 575–577
buffers and buffer management

DMA and caching, 375
FILE_FLAG_NO_BUFFERING flag,

377
invalid, 410
I/O manager, 4
IRPs, 32–33
look-aside lists, 219
mapping and pinning interfaces,

375
marshalling log records, 417
pool-tracking structures, 570
scatter/gather I/O, 28
sparse files, 432–433
stores, 350
thread-agnostic I/O, 48

buffer underruns, 226, 569, 575–577
bugcheck callbacks, 548
bugchecks. See stop codes

(bugchecks)
Bugcodes.h file, 549
BUGCODE_USB_DRIVER stop code,

550
bugs, 204–209

bumps (I/O priority), 62–64
burnmemory boot option, 516
bus drivers

defined, 2, 6
KMDF IRP processing, 74
PnP manager, 81, 82
power states, 101
role in I/O, 7

bus filter drivers, 27, 89
bus filters, 6
busparams element, 505
busy thresholds (processors), 114,

115, 120
byte offsets, 148, 253, 259, 264

C
C language, 14
C++ language, 14, 207–208
C processor state, 108–109, 120
C runtime (CRT), 221
!ca command, 289, 290, 291
cables, 578, 582
cache. See also cache manager

address space, 360
bypassing, 412
cached address translations,

259–260
CLFS operations, 418
coherency, 401
core parking and, 109
decompressing files, 460
dynamic address space, 232
file caching, 27–28
flushes, 387–388, 478
forcing write-through, 387
leases, 404–407
opened files, 410
oplocks, 401
optimizing boot process, 527–528
physical size, 363–364
prefetch operations, 272
ReadyBoost, 347
reduction routines, 189
remote FSDs, 401
spatial locality, 412
system space, 229
temporal locality, 412
tunneling, 452
virtual memory management, 360
virtual size, 360
VSS writers, 178
working set size, 360–361
write-through, 478

cache buffers, 373
cache bytes, 191
cached I/O, 19
cache directory, 540
Cache disabled bit (PTEs), 257
cached read operations, 373, 381

 CNG

 607

cache manager
cache coherency, 356–358
cache size, 361–364
centralized system caching, 356
client-side remote FSDs, 400
data structures, 364–373
defined, 355
fast dispatch routines, 13
fast I/O, 373–377
file system drivers, 398, 399
file system interfaces, 373–375
initializing, 520
intelligent read-ahead, 378–379
I/O prioritization strategies, 59
lazy writing, 379–380, 386, 412
look-aside lists, 219
mapped file I/O, 27–28
memory manager operations, 356
NTFS file system driver, 440
opening files, 409
read-ahead and write-behind,

377–390
read-ahead thread, 412–413
recoverable file system support,

359
section objects, 286
sector size, 128
stream-based caching, 358
Superfetch, 412–413
system threads, 390
viewing operations, 380–386
virtual block caching, 358
virtual memory management,

359–360
write-back caching, 379–380
write throttling, 388–389

cache misses, 440, 460
callbacks

container notifications, 65
fast dispatch routines, 13
KMDF drivers, 69, 74
KMDF queues, 75
synchronization scope object

attributes, 76
call stacks, 553
cameras, 78
CancelIo function, 49
cancel I/O routines, 13, 51, 52
CancelSynchronousIo function, 49
canonical addresses, 240
case-sensitive file names, 436
catalog files, 96, 97
CAT files, 3, 97
\Catroot directory, 97
CcAdjustThrottle function, 389
CCBs (context control blocks), 418
CcCanIWrite function, 388
CcCopyRead interface, 373–374, 381,

410–411, 413
CcCopyWrite interface, 373–374, 411,

413

CcDeferWrite function, 388
CcFastCopyRead interface, 373–374,

411–412
CcFastCopyWrite interface, 411–412
CcInitializeCacheMap function, 373,

410
CcNumberOfFreeVacbs variable, 367
CcReadAheadIos variable, 378
CcSetDirtyPageThreshold function,

389
CcTotalDirtyPages function, 389
CcVacArrays variable, 365, 367
CcWriteBehind variable, 390
CDFS (CD-ROM file system), 2, 392,

398, 451, 503
CD-ROM drives, 125, 153
CD-R/RW format, 393
cell phones, 78
Certificate Manager (Certmgr.msc),

492
certificates, 174
certificate stores, 492
CfgMgr32.dll, 95
change journal files, 433, 446, 461–464
change logging, 433
change records, 433
channel element, 505
characters in file names, 449, 451
“Check boot path and disk hardware”

error, 538
Check Disk. See Chkdsk.exe (Check

Disk)
check phases (processor power), 116,

117–118
checkpoint records, 481, 482–483
checkpoints (virtual machines), 162
checksums (encryption keys), 172
child devices, 87
child list objects (KMDF), 71
child objects (KMDF), 72
child processes, 193
chips (TPM), 164, 168
chipsets, 321, 323
chkdsk command, 540
Chkdsk.exe (Check Disk)

bad clusters, 489
bad sectors, 487
boot-time version, 158
large-address-space awareness,

231
NTFS usage vs. FAT, 489–490
repairing after failures, 477
system file corruption, 538

CIFS (Common Internet File System),
400

cipher block chaining, 496
cipher command, 494
Cipher.exe, 492
circular buffer logging, 432
class drivers, 7, 89, 131, 132–136
ClassGUID value, 91, 93

class keys, 94, 96
cleanup requests, 76
clear keys, 171
CLFS (Common Log File System)

ClfsMgmtPolicy policies, 424
log blocks, 421
log file layout, 420
log layout, 420
log sequence numbers, 420–421
log types, 418–419
management policies, 423–424
marshalling, 417
overview, 416–417
owner pages, 421–422
resource managers, 474
transactions, 469, 476
translating virtual LSNs to physical,

422–423
TxF component, 470

ClfsMgmtPolicy policies, 424
client applications, 205
client-side remote FSDs, 400–407
client systems, 557
client Windows editions, 321
clock algorithm (LRU), 328
clock generator crystals, 109
clock sources, 510
clone shadow copies, 177
cloning processes, 351–353
C-LOOK algorithm, 132
CloseEncryptedFileRaw function, 497
CloseHandle API, 473
close requests (KMDF), 76
CLRs (compensating log records), 476
clustered page faults, 272–273, 383
cluster factor, 442–443
clustermodeaddressing element, 506
clusters

bad-cluster recovery, 487–490
cluster factor, 442–443
compressed files, 458, 459
defined, 391–392
defragmentation, 436
demand paging, 324
disk attributes, 138
disk storage, 128
exFAT file system, 396–397
FAT formats, 393, 394–396
free and in-use, 437
noncompressed files, 457
NTFS on-disk structure, 442
offsets, translating from bytes, 148
remapping bad, 429
runs, 454
sectors and, 391–392
size, 391–397, 442–443
unused, 394

CMOS settings, 511
CMPXCHG8B instruction, 241
CNG (Cryptography Next Generation),

492, 493

code integrity

608

code integrity, 167, 505
code overwrites (crash dumps),

573–574
coherent caching schemes, 356–358
collection objects (KMDF), 71
collided page faults, 271, 272
color (PFN entries), 317
COM1 device name, 523
COM+ applications, 231
COM class IDs, 160
COM components, 78
Command Prompt, 508, 530, 534
Command Server Thread, 522
commit charge

defined, 196, 199
memory notification events,

335–337
overview, 275–277
page fault handling, 275–277,

278–279
page file size, 278–279
viewing totals, 279
virtual address space, 282

commit limits, 191, 199, 275–277
commitment, 199
commit phase (VSS), 178
commit records, 477
committed bytes, 191
committed memory

commit charge. See commit charge
core heap and, 222
section objects, 201

committed pages
copy-on-write process, 210
defined, 195
memory manager, 195–198
page faults, 267, 269
stack’s pages, 280
viewing, 197–198
working set index field, 318

committed transactions, 473, 481, 484
Common Criteria profiles, 300
Common Internet File System (CIFS),

400
Common Log File System. See CLFS

(Common Log File System)
common logs (CLFS), 418–419
CompactFlash cards, 347
Compare and Exchange 8 Bytes

(CMPXCHG8B), 241
Compatibility Administrator tool, 205
compatible IDs (drivers), 95
compensating log records (CLRs), 476
complete memory dumps, 553–554,

555, 579
Complete PC Restore (System Image

Recover), 534
completing IRPs, 33–34
CompletionContext field, 56
CompletionKey parameter, 56
completion packets, 54, 55, 56

completion ports. See also I/O
completion

completion packets, 55
creating and operating, 56–58
IoCompletion executive object, 54
port notifications, 57–58
processes, 54–55
thread-agnostic I/O, 55

completion routines, 13
compliance logging (CLFS), 417
component entries (LDM), 142–143
COM ports. See serial ports
compressed files, 462
compression, 347, 432–433, 457–461
compression units, 459
computers, lost or stolen, 164
COM quota interfaces, 434
COM TxF components, 470
concurrency (KMDF), 75, 76
concurrency values, 54, 55, 56
configaccesspolicy element, 505
configflags element, 506
configuration changes, PnP, 81
configuration manager

CfgMgr32.dll, 95
core registry hives, 522
initializing, 520
loading registry hives, 523
memory allocations, 216
PnP hardware installation, 95
shutting down, 545
SMP system processors, 521

connections
breaking into hung systems, 578
container notifications, 65

conserving energy, 105
console applications, 544
consolidated security, 465, 467–469
container IDs, 91–92
container indexes, 421
container notifications, 65
containers, 417, 420, 424, 494
content indexing, 58
contention, resources under, 581
context agent (scenario manager), 339
context control blocks (CCBs), 418
CONTEXT structure, 510
context switching, 53, 255
control areas (section objects), 288,

289–292
control backoff, 59
control block data structures, 56–57
controller objects, 519
control sets, 530, 541
control vectors, 517
converting leases, 405
cookies, 12, 209, 576
copy APIs, 472
copying files, 374, 380–386, 497–498
copy method, 373

copy-on-write
cloned processes, 352
commit charge, 276
differential copies, 179–181
dynamic partitioning, 438–439
files not copied, 180
memory manager, 187
overview, 209–210
page faults, 268
Previous Versions feature, 184
Shadow Copy Provider, 179–181
volume copies, 177, 180, 184

Copy-on-write bit (PTEs), 257
copy protection mechanisms, 206
core heap, 222, 224
core parking

defined, 108–109
generic utility measurement, 113
increase/decrease actions, 113–114
overriding, 109, 113, 115
policies, 109–110, 115
PPM parking and unparking, 119
thresholds and policy settings,

114–116
viewing, 121–122
viewing processor history, 112

CORE_PARKING_POLICY_CHANGE_
IDEAL value, 113

CORE_PARKING_POLICY_CHANGE_
ROCKET value, 114

CORE_PARKING_POLICY_CHANGE_
STEP value, 114

Core Root of Trust of Measurement
(CRTM), 170

corruption
bad clusters, 489
BCD elements, 505
boot problems, 537–542
cache management, 359
crash dump tools, 569–572
driver synchronization, 39
fault tolerant disk systems, 489
fault tolerant heap, 227
heap manager, 224
kernel code, 195
large physical addresses, 321
Myfault.sys driver, 564
Notmyfault.exe, 564
pageheap, 226
pool, 569–572, 590–592
protecting memory, 203–204
self-healing volumes, 490–491
size of, 570
VSS shadow copies, 178

costs, computing for nodes, 285
“Could not read from selected boot

disk” error, 538
cover files (BitLocker To Go), 176
!cpuinfo command, 574
CPUs. See processors
CR3 register, 255

 debugging mode

 609

crash buttons, 578
.crash command, 579
CrashControl registry key, 551
Crashdmp.sys driver, 559
crash dump drivers, 559
crash dumps

advanced analysis, 574–581
basic analysis, 564–567
blue screen crashes, 548–551
breaking into hung systems, 579
buffer overruns, 569–572
capturing data in dump files,

553–561
code overwrites, 573–574
complete memory dumps,

553–554
dedicated dump files, 551
defined, 547
displaying VACBs, 367
drivers, 559
generating files, 559–561
hardware malfunctions, 593
high IRQL faults, 565–567
hung/unresponsive systems,

577–581
kernel memory dumps, 554
listing drivers, 11
memory corruption, 569–572
memory information, 192
no dump file available, 581–584
Notmyfault.exe, 564–565
not on VHDs, 163
online analysis, 563–564
overview, 547
reasons for crashes, 547–548
sending to Microsoft, 561–562
special pool, 569–572
stack trashes, 575–577
stop code analysis, 585–590. See

also stop codes (bugchecks)
system code write protection,

573–574
in system space, 229
temporary dump file names, 550
top 20 stop codes, 549–551
troubleshooting crashes, 551–553
troubleshooting tools, 569–574
troubleshooting without files,

581–584
verbose analysis, 567–568
viewing, 558–559
Windows Error Reporting, 561–562

crashes
BCD elements, 505
blue screen crashes, 548–551
boot problems, 537–542
capturing data in dump files,

553–561
crash dumps. See crash dumps
hardware malfunctions, 593
manual system crashes, 556

Notmyfault manual crashes,
564–565

online analysis, 563–564
reasons for, 547–548
recovery and, 478
top 20 stop codes, 549–551
troubleshooting, 551–553
Windows Error Reporting, 561–562

CRC (cyclic redundancy checksums),
140

create APIs, 472
CreatedFileMapping function, 193
CreateFile function

active files, 360
asynchronous I/O, 25
handles, 15, 20, 409
opening disks, 137
opening file objects, 21, 408
sequential file access, 378
temporary files, 386
write-through, 387

CreateFileMapping function, 27, 201,
473

CreateFileMappingNuma function,
193, 201

CreateHardLink function, 429
CreateIoCompletionPort function,

54, 56
CreateMemoryResourceNotification

function, 335
create operations, 49, 76
CreateRemoteThread function, 197,

280
CreateThread function, 197, 280
credential providers, 525
Critical I/O priority, 58, 59, 60
critical object crashes, 550–551
CRITICAL_OBJECT_TERMINATION stop

code, 550–551
critical processes, 522, 525
critical threads, 522
cross-process memory access, 196, 228
CR-R format, 393
CRT (C runtime), 221
CRTM (Core Root of Trust of

Measurement), 170
Cryptography Next Generation (CNG),

492, 493
Csrss.exe (Windows subsystem

process)
boot process, 501, 522–526
initialization tasks, 524
paged pool area, 228
shutdown functions, 542–543

CTRL_LOGOFF_EVENT event, 544
CTRL_SHUTDOWN_EVENT event, 544
current byte offsets, 19, 23
current threads, 574
customactions element, 504
cyclic redundancy checksums (CRC),

140

D
D0 (fully on) power state, 100, 101
D1 device power state, 100, 101
D2 device power state, 100, 101
D3 (fully off) power state, 100, 101
$DATA attribute, 448, 449
database records (LDM), 142
databases. See specific databases (BCD,

CLFS, etc.)
data caching. See cache; cache

manager
data compression. See compression
data decryption field (DDF), 494, 495,

496
data execution prevention. See no-

execute page protection (DEP)
data execution protection. See no-

execute page protection (DEP)
“data read” errors, 488
data recovery. See recovery
Data Recovery Agent (DRA), 174
data recovery field (DRF), 494–495,

496
data redundancy, 147, 425
data streams. See streams
data structures

caching, 364–373
NTFS. See NTFS file system
physical memory support, 320
protecting memory, 203

data transfers, 12
dates, 511, 548
DbgLoadImageSymbols function, 517
dbgtransport element, 506
DC2WMIparser tool, 68
dc command, 591
!dc command, 307, 310
dd command, 64
!dd command, 264
DDF (data decryption field), 494, 495,

496
deadlock detection, 577
deadlocks

!analyze command, 580
defined, 577
detection, 577
modified page writer, 314
preventing, 272
process reflection, 351

death, blue screen of. See “blue screen
of death”

debugaddress element, 505
debug BCD option, 578
debug command, 173
debug element, 506
debug environments, 587
debugger, 505, 554, 559, 574–575
Debugger Extension APIs, 559
debugging. See troubleshooting
debugging mode, 578–581

Debugging Tools for Windows

610

Debugging Tools for Windows,
574–575

debugport element, 505
debugstart element, 505
debugtype element, 505
DecodeSystemPointer API, 209
decommitting memory, 222
decommitting pages, 196
decompressing files, 460
decreasing thresholds (processors),

114, 115
DecryptFile function, 436
decryption, 496
dedicated dump files, 551
dedicated logs, 418–419, 422
Default BCD element, 504
default core parking, 109
default process heaps, 221
default resource manager

($RmMetadata), 446, 473,
474–475

deferred procedure calls. See DPCs
(deferred procedure calls)

DefineDosDevice function, 23
Defrag.exe, 437
defragmentation

NTFS design goals, 436–437
page files, 274
prefetch operations, 328
priorities, 58
shadow copies, 180
SSDs, 130

defragmentation APIs, 436
!defwrites command, 389
delayed file deleting, 523
delayed file renaming, 523
delete APIs, 472
deleted files, 130–131, 473
deleted partitions, 141
delete operations, 408, 525
demand paging, 282, 324
demand-start (3) value, 85
demand-zero pages

in commit charge, 276
page faults, 269
page faults and, 268
page list dynamics, 300–302
private committed pages, 195
shared pages, 270

demotion (performance states), 114
DEP (data execution prevention). See

no-execute page protection
(DEP)

DependOnGroup value, 84
DependOnService value, 84
deprioritization (robust performance),

344
desktops

initializing objects, 525
post-splash-screen hangs or

crashes, 540–542

DESX encryption, 495
detecthal element, 507
detection component (FTH), 227
\Device directory, 15, 16–17, 409
device drivers

access violations, 550
associated IRPs, 46–47
blue screen information, 548. See

also “blue screen of death”
boot process, 499, 500
breakpoints in, 587
corruption and startup issues,

538–540
deadlock detection, 577
deciphering names, 552
defined, 2
disabling, 541–542
disk drivers, 131–138. See also disk

drivers
driver and device objects, 14–19
Driver Verifier. See Driver Verifier
high IRQL faults, 565–567, 580,

585, 590–592
IRP processing, 28–29, 33–39
kernel-mode, 6, 10–11, 80,

335–337, 547–548
large page sizes, 194
layered drivers. See layered drivers
listing, 510
locking pages in memory, 199
look-aside lists, 219
new, crashing, 551–552
opening devices, 19–24
physical memory support and, 320
pool tags, 216–217
post-splash-screen crashes,

541–542
problematic updates, 542
routines, 11–14
safe mode booting, 530–534
section objects and, 201
servicing interrupts, 34–36
stressing and testing, 67
in system space, 228
system-start, 550
troubleshooting, 292–296,

530–534
types of, 5–11
“unknown driver” solutions, 564
updating, 568
user mode, 6, 78–81
version information, 568
viewing loaded drivers list, 10–11
virtual address and, 252

device IDs, 90, 91, 504
device instance IDs (DIIDs), 91, 94
device interrupt request level (DIRQL),

13, 35
DeviceIoControl function, 32, 431, 432,

433, 456, 564
device IRQL (DIRQL), 13, 35

Device Manager (Devmgmt.msc)
devnode information, 93
disabling drivers, 541–542
driver power mappings, 102
listing devices, 86–87
updating drivers, 568
viewing memory regions, 322–323

device objects
add-device routines, 12
defined, 14
deleting, 67
device stacks, 89–90
drive letters, 153–158
hints, 20
initializing, 519, 521
in I/O process, 14–19
listing, 16–17
pointers, 19
sessions, 65
storage management, 136–137
viewing for IRPs, 43
volume’s, 399, 409

DEVICE_OBJECT structure, 71
devices

driver power control, 105
I/O cancellation, 48
KMDF objects, 71
listing for crash analysis, 563
name mappings, 24
names, 23
PnP manager, 81
power management, 98–123
power states, 100
protocol device classes, 78
synchronizing access, 23
virtual, 78

device-specific modules (DSMs), 134
device stacks, 41, 79, 80, 89–90
device stacks (DevStack), 163
device trees, 86, 88–89
!devnode command, 88–89
devnodes, 86, 87, 91–92
!devobj command, 18, 43, 181
!devstack command, 41
difference data, 180
differences area, 177
differencing (virtual hard disks), 162
differential copies. See copy-on-write
diffuser (encryption), 165, 167, 174
digital signatures, 3, 95–96
DIIDs (device instance IDs), 91, 94
dir command, 428, 450, 471
direct I/O, 32
direct memory access. See DMA (direct

memory access)
directories

change logging, 433
compression, 432–433, 456–461
encrypting, 435–436, 491–498, 492
file-allocation chains, 394–395
indexing, 464–465

 DRIVER_POWER_STATE_FAILURE stop code

 611

missing, 415
new, 461
nonresident attributes, 455
resident attributes, 454
symbolic links, 430
synchronizing access, 23
transaction resource managers,

473–474
as virtual files, 4
Windows Resource Protection, 538

directory junctions, 20, 430–432
Directory Services Restore, 530, 531
DirectX drivers, 7
DIRQL (device interrupt request level),

13, 35
dirty bits, 257, 258, 268, 377
dirty pages

Free PFN state, 297
lazy writer, 379, 386, 412
modified page writer, 188
multiple process mapped files, 387
standby and modified lists, 363

dirty page table recovery, 483, 484
dirty page threshold, 388–389
disconnections (containers), 65
discovery mechanisms, 133–134
discovery volumes, 175–176
Disk2VHD utility, 162
disk allocations, 460
Disk Defragment utility (Dfrgul.exe),

437
disk device objects, 136–137, 138
disk devices, 126–131, 138
disk drivers

disk class, 132–136
disk device objects, 136–137
disk I/O operations, 159
file system drivers, 47
miniport, 132–136
overview, 131
partition manager, 138
port, 132–136
storage stacks, 131
WINLOAD, 132

disk entries (LDM), 142–143
“disk full” error, 434
disk groups, 142
Disk Management MMC snap-in

cluster size, 442–443
creating mirrored volumes, 151
creating volumes, 442
formatting FAT volumes, 393
mount points, 155
“partition,” 140
VDS APIs, 160
virtual hard disk operations, 163
volume manager, 146–147

disk miniport drivers, 132–136, 559
Diskmon utility, 136
disk offsets, 147, 153
diskpart command, 442

DiskPart utility, 155, 163
disk port drivers, 132–133
disks, 125, 126–131, 160. See also hard

disks; SSDs (solid state disks)
disk scheduling algorithms, 132
disk sector formats, 126–128
disk signatures, 153, 510
Disk.sys driver, 134
dismount operations, 399
dispatch entry points, 30
dispatcher data structures, 519
dispatch functions, 68
DISPATCH_LEVEL IRQL, 37, 39
dispatch levels, 37, 39, 549
dispatch methods (KMDF queues), 76
dispatch routines, 12, 29, 30, 74, 82
Dispdiag.exe (display diagnostic dump

utility), 231
“display as quadwords,” 263
displaybootmenu element, 504
display diagnostic dump utility

(Dispdiag.exe), 231
display drivers, 550
displayorder element, 504
displays

auxiliary, 78
drivers, 550
power requests, 106

distributed link-tracking, 435
Distributed Transaction Coordinator,

473
distribute lists, 456
dl command, 106
Dllhost (Dllhost.exe), 325
Dllhst3g.exe, 231
DLLs (dynamic link libraries)

address space, 246, 247
corruption and startup issues,

538–540
initializing, 524
load offset numbers, 249
sharing, 200
UMDF drivers, 78
VDS hardware providers, 160

DMA (direct memory access)
caching processes, 375
common buffer objects, 71
defined, 32
DMA-aware devices, 32
enabler objects, 71
IRP processing, 44
KMDF objects, 71
pool corruption, 570
transaction objects, 71
UMDF, 78
verifying functions and buffers, 67

DMA-aware devices, 32
DMA Checking option, 67
DMA common buffer objects, 71
DMA enabler objects, 71
DMA transaction objects, 71

DMDiskManager, 146–147
domains, 109, 120, 174
DO_PRIORITY_CALLBACK_ENABLED

flag, 61
double errors, 489
double faults, 588, 589
double-freeing memory, 66
DPC/dispatch levels, 295, 549,

565–567, 580. See also IRQLs
(interrupt request levels)

DPC routines, 13
DPCs (deferred procedure calls)

hung systems, 577
interrupt processing, 35–36
in I/O process, 13
KMDF objects, 71
layered drivers and, 44
pool quotas and, 294
power domain masters, 120
routines, 13
stacks, 279, 282, 518
thread context, 37

DPC stacks, 279, 282, 518
dps command, 577, 589
!dq command, 263
DRA (Data Recovery Agent), 174
DRF (data recovery field), 494–495,

496
drive letters

dynamic disks, 142
hints, 154
registry information, 153
restoring, 526
symbolic links, 409
volume manager, 141
volume namespaces, 153–158

driver callbacks, 581
DRIVER_CORRUPTED_EXPOOL stop

code, 550, 590–592
driver entry points, 17
DriverEntry routine, 12, 14, 68
driver groups, 531, 569
driver host processes, 78
driver images, 243
driver installation files. See INF files
DRIVER_IRQL_NOT_LESS_OR_EQUAL

stop code, 549, 585–586
driverloadfailurepolicy element, 507
driver manager, 79–80
driver objects

defined, 14
device stacks, 89–90
dumping, 156
functional diagram, 18
initializing, 519
in I/O process, 14–19
IRP processing, 28–29

DRIVER_OVERRAN_STACK_BUFFER
stop code, 576

DRIVER_POWER_STATE_FAILURE stop
code, 549

drivers

612

drivers. See also specific types of drivers
(bus drivers, device drivers,
miniport drivers, etc.)

buffer management, 32–33
callbacks, 581
calling other drivers, 4
corruption and startup issues,

538–540
deadlock detection, 577
deciphering names, 552
disabling, 541–542
disk drivers, 131–138. See also disk

drivers
dispatch routines, 30
entry points, 17
finding, 95
groups, 531, 569
host processes, 78
images, 243
installation files. See INF files.
I/O system and, 1
IRPs, 4
KMDF objects, 71
layered, 40–47, 439–440. See also

layered drivers
listing for crash analysis, 563
loading, 81
loading in safe mode, 529–532
lower order, 575
major function codes, 29
matching for minidumps, 556
memory manager, 189
new, crashing, 551–552
non–Plug and Play, 82
physical memory support and, 320
PnP initialization, 84–94
PnP installation, 84–98
PnP loading, 84–94
PnP support, 82–84
pool tags, 216–217
power management control, 105
power mappings, 101–102
problematic updates, 542
protected driver lists, 98
registry keys, 84–85
signed and unsigned, 96, 97, 98
synchronizing data and hardware

access, 38–39
“unknown driver” solutions, 564
unsigned, 569
updating, 568
version information, 568

driver-signing policies, 96, 97, 98
Driver Verifier

disabling large pages, 195
driver errors, 569
enabling special pool, 571–572
initializing, 519
IRQL checking, 295
low resources simulation, 295
memory manager, 292–296

miscellaneous checks, 296
No Reboot option, 572
overview, 65–68, 292–293
phase 0 initialization, 517
pool tracking, 217, 294
special pool verification, 293–294,

571, 590–592
Driver Verifier Manager, 65, 294,

571–572
Drvinst.exe process, 95
!drvobj command, 18, 27, 30, 156
DSM (device-specific modules), 134
dt command, 115, 121, 234, 289, 290,

515
dual-boot environments, 155
dummy pages, 272–273
Dumpanalysis.org website, 594
Dumpbin utility, 231
.dump command, 556, 579, 582
dump counts (BLF), 420
.dumpdebug command, 558
DUMP files, 559
Dumpfve.sys driver, 559
dump pointer with symbols command,

577
dumps. See crash dumps
duplicate data in memory, 288–289
DuplicateHandle function, 23, 201
DVD drives, 125
DVD formats, 393
Dxgport/Videoprt driver, 7
dynamic address space, 232–233,

242–245
dynamic bad-cluster remapping, 429,

487
dynamic disks

configuring, 146–147
defined, 138, 141
multipartition disk support, 138
overview, 141–145
partitioning, 145–146
registry information, 153
storage management, 141–147
volume manager, 146–147

dynamic interrupt redirection, 132
dynamic loading and unloading, 1
dynamic page sizes, 194
dynamic partitioning, 437–439
dynamic physical NVRAM cache, 350
dynamic system virtual address space

management, 242–245
dynamic virtual hard disks, 162

E
$EA attribute, 448
$EA_INFORMATION attribute, 448
ECC (error correcting code), 126, 129,

317
echo command, 428, 471

ECP (extended create parameters), 20
EFI (Extensible Firmware Interface)

APIs, 513
BCD in, 132
boot process, 499
file extensions, 513
partitioning and, 139–140
Unified EFI (EFI 2.0), 499

EFI Boot Manager, 513
EFI system partition, 513
EFS (Encrypting File System), 163,

435–436, 449, 491–499
EFSDump utility, 497
EISA devices, 511
eject events, 69
EKU (enhanced key usage), 496
Elephant diffuser, 167, 174
El Torito CDFS, 503
email attachments, 427
embedded links (OLE), 434
embedded spaces (file names), 450
emd (External Memory Device), 347
emergency hibernation files, 99
Emergency Management Services

(EMS), 504, 507, 517
EMET (Enhanced Mitigation

Experience Toolkit), 250
empty pages, 201
EMS (Emergency Management

Services), 504, 507, 517
emsbaudrate element, 505
ems element, 507
emsport element, 505
emulation (advanced format disks),

127
EncodeSystemPointer API, 209
Encrypted Data Recovery Agents

policy, 495
EncryptFile function, 436, 492, 494
Encrypting File System (EFS), 163,

435–436, 449, 491–499
encryption

backing up files, 497
BitLocker Drive Encryption,

163–176
BitLocker To Go, 175–176
change journal and, 462
copying files, 497–498
decryption, 496
EFS, 163, 435–436, 449, 491–499
file attributes, 449
file system filter drivers and, 413
keys, 165–168
NTFS design goals, 435–436
ReadyBoost, 347–348

encryption keys, 165–168
energy conservation, 105
enhanced key usage (EKU), 496
Enhanced Mitigation Experience

Toolkit (EMET), 250
enlistment objects, 519

 experiments

 613

enumeration
device interfaces, 15
device keys, 94, 96
DIIDs, 91
enumeration-based loading, 84
heap entries and regions, 221, 223
indexing interactions, 465
initializing, 521
nonenumerable devices, 88
PnP loading and initialization

process, 87–88
PnP manager, 81, 82, 85–89
power management capabilities,

100
registry keys, 89, 91
reparse points, 469
shadow copy writers, 178
volume manager, 141

enumeration-based loading, 84
enumeration keys, device, 94, 96
.enumtag command, 559
environment subsystems, 4
environment variables, 523, 526
EPROCESS structure, 554
ERESOURCE structure, 61, 295, 296
errata manager, 520
error correcting code (ECC), 126, 129,

317
“Error loading operating system” error,

537
error-logging routines, 14
error messages (boot problems),

537–542
error-reporting servers, 561–562
Esentutl.exe (Active Directory

Database Utility tool), 231
Ethernet, 514
ETHREAD structure, 61, 554
ETW (Event Tracing for Windows),

136, 521
event dispatcher objects, 301
events

CLFS, 417
in-paging I/O, 271
KDMF runtime states, 69
KDMF drivers, 69
listing for crash analysis, 563
logging, 417
memory notification events,

335–337
object types, 519
synchronization objects, 296

Event Tracing for Windows (ETW),
136, 521

Event Viewer, 227
evstore element, 507
EvtDeviceFileCreate event, 76
EvtDriverDeviceAdd callback, 69
EvtDriverDeviceAdd event, 69
EvtFileCleanup callback, 76
EvtFileClose callback, 76

EvtIoDefault callback, 76
EvtIo routines, 69
ExAdjustLookasideDepth function, 219
ExAllocatePool functions, 295
ExAllocatePoolWithTag function, 294
exception codes, 208, 549–550. See

also stop codes (bugchecks)
EXCEPTION_DOUBLE_FAULT

exception, 588
exception handlers, 208
exceptions, 188, 208, 547, 584,

586–588
exclusive access locks, 401–402
exclusive leases, 405
ExDelete functions, 296
ExDeleteResource function, 296
Executable Dispatch Mitigation, 208
executables

address space, 246, 247
corruption and startup issues,

538–540
duplicate data in memory,

288–289
execute-only, 200
execution protection, 205
image randomization, 248–249
PAGE attributes and, 203–204

execution protection, 205
executive components, 219, 286, 517,

520, 545
executive objects, 519
executive resource locks, 581
executive subsystems, 188, 500,

514–522, 545
executive worker threads, 390
exFAT file system, 396–397
Exfat.sys, 398
ExFreePool function, 296
Ex functions, 193
ExInitializeNPagedLookasideList

function, 219
ExInitializePagedLookasideList

function, 219
ExitWindowsEx function, 542, 544
expanding

partitions, 437–439
working sets, 333–334

experiments
ASLR protection, 251
Autoruns tool, 529
cache flushing, 387–388
cache manager operations,

380–386
cache working set, 362
catalog files, 97
change journal, 462–463
core parking policies, 115–116
DEP protection, 207
device handles, 22–23
device name mappings, 24
device objects, 16–17, 18

device stacks, 41
device trees, 88–89
devnode information, 93
driver dispatch routines, 30
driver objects, 18
driver power mappings, 102
dump file analysis, 558–559
EFS encryption, 497
fast I/O routines, 27
free and zero page lists, 302–303
hard links, 430
history, processor utility and

frequency, 112
hung program timeouts, 544
idle system activity, 415
INF files, 96
I/O priorities, 62–64
IRPs, 42–44
kernel debugging, 582–584
kernel stack usage, 282
KMDF drivers, 69–70
large address aware applications,

231
LDM database, 143–145
loaded driver lists, 10–11
loader parameter blocks, 515–516
mapping volume shadow device

objects, 185–186
maximum number of threads, 280
maximum pool sizes, 214–215
memory mapped files, 202
memory notification events, 337
mirrored volume I/O, 150–151
NTFS volume information, 446
PAE and addresses, 262–264
page directories and PDEs, 256
page files, 274
PFN database, 300
PFN entries, 319
physical disk I/O, 136
pool leaks, 218–219
power availability requests,

106–107, 108
PPM check information, 121–122
prefetch files, 326, 327
prioritized standby lists, 311–313
priority boosting/bumping, 64
Process Monitor’s filter driver, 414
processor utility and frequency,

111–112
process reflection, 352–353
process working sets, 331
reserved and committed pages,

197–198
resource manager information,

474–475
restore points and previous

versions, 183
sessions, 233–235
session space utilization, 235
shadow copy device objects, 181

explicit device driver loading

614

experiments, continued
shadow volume device objects,

182
shared and private cache maps,

371–373
special pool, 571–572
streams, 428
symbolic links, 432
system look-aside lists, 220
system memory information,

190–192
system power and policies,

103–104
system PTEs, 235–236
system virtual address usage, 244
thread IRPs, 31
transactions, 471–472
tunneling, 452
unkillable processes, 51–53
user virtual address space, 247–248
VACBs, 367
viewing registered file systems,

403–404
virtual address descriptors, 284
virtual address limits, 245
VPBs, 156–157
working set lists, 332–333
working sets vs. virtual size,

331–332
write throttling, 389

explicit device driver loading, 84
explicit file I/O, 408–412
explicit memory allocation, 294
exportascd element, 507
exporting control sets, 541
express queues (cache), 390
extended attributes, 448, 461
extended console input, 505
extended create parameters (ECP), 20
Extended File Allocation Table file

system (exFat), 396–397
extendedinput element, 505
extended partitions, 139, 500, 501
extending data, 461
extensibility, 1
Extensible Firmware Interface. See EFI

(Extensible Firmware Interface)
extents (runs), 444–458, 459
external disk storage management,

125
External Memory Device (emd), 347

F
F8 key, 530, 551, 578
F10 key, 578
failed control sets, 541
fail fast policy, 548
faked crash screen saver, 594

fake symbolic records, 208
fast dispatch routines, 13
Fastfat.sys driver, 393, 398
fast I/O

bypassing file system, 358
caching methods, 355
defined, 26–27
entry points, 26–27
file system drivers, 411–412
operations, 375–377
port notification, 58
routines, 3

fast lookups, 17
fast mutexes, 295, 577
FAST_MUTEX structure, 295
fast references, 240
fast teardown queues, 390
fast user switching, 339, 342
FAT12, FAT16, FAT32 file systems

bad sectors, 487
BitLocker To Go, 164, 175–176
Bootmgr support, 503
EFI system partitions, 513
extending volumes, 148
FAT directory entries, 394–395
I/O system and, 2
overview, 393–396
root directories, 395
short file names, 451
volumes, 395, 442

FAT64 file system (exFAT), 396–397
FAT volumes, 395, 442
fault handler (pager), 255
fault injection, 295
fault tolerance, 152, 425, 489, 490
fault tolerant heap (FTH), 227
FCBs (file control blocks), 405, 418,

422, 441, 475
FDOs (functional device objects),

89–90
feedback handler, 110, 111
FEK (File Encryption Key), 492–493,

495, 496
fiber-local storage, 351
Fibre Channel devices, 60, 132
FiDOs (filter device objects), 89–90,

141
FIFO (first in, first out), 328
file-allocation chains, 394–395
file-allocation tables, 394
FILE_ATTRIBUTE_COMPRESSED flag,

432
FILE_ATTRIBUTE_ENCRYPTED flag, 436
FILE_ATTRIBUTE_REPARSE_POINT

flag, 431
FILE_ATTRIBUTE_TEMPORARY flag,

386
!filecache command, 362, 371
file caching, 27. See also cache
File classes, 473

FileCompletionInformation class, 56
file control blocks (FCBs), 405, 418,

422, 441, 475
file drivers, 28–29
File Encryption Key (FEK), 492–493,

495
FileEncryptionStatus function, 436
FILE_FLAG_NO_BUFFERING flag, 377,

410
FILE_FLAG_OVERLAPPED flag, 25
FILE_FLAG_RANDOM_ACCESS flag,

360, 377, 378
FILE_FLAG_SEQUENTIAL_SCAN flag,

360, 378
FILE_FLAG_WRITE_THROUGH flag, 387
FileInfo driver (Fileinfo.sys), 338, 341
file I/O, 373–374, 407
file mapping objects. See section

objects (control areas)
$FILE_NAME attribute, 448, 449
file name indexes, 465
file names

associated with streams, 341
as attributes, 447
cache processes, 358
case-sensitive, 436
device objects in, 23
FAT volumes, 395, 449
file object attributes, 19
hard links, 429–430
indexing, 464–465
kernel image, 508
long, 395, 449, 451, 453
mapped files, 248
multiple, 451
NTFS on-disk structure, 449–453
pending file rename operations,

525
prefetched data, 325
short, 448, 450, 451, 453
tunneling, 452
UDF format, 393

file namespaces, 449–450
file-name-to-file-key mapping, 341
!fileobj command, 371
file object extensions, 19
file object pointers, 371, 409
file objects

attributes, 19
completion ports and, 56
creating, 409
defined, 19
extension fields, 20
extensions, 19
handles, 23, 368, 409, 440–441
initializing, 519
I/O functions, 19–24
IRP stack locations, 29
pointers, 371, 409
section object pointers, 288
security descriptors, 425

 format command

 615

thread-agnostic I/O, 48
viewing handles, 22–23

file record numbers, 429, 447, 466,
473, 475

file records, 443–444, 447–449,
453–456

files
attributes, 426
attributes list, 448–449
change logging, 433
change notifications, 415
compression, 432–433, 456–461
copying encrypted, 497–498
decrypting, 496
defragmentation. See

defragmentation
deleted, 130–131
distributed link-tracking, 435
encrypting. See encryption
file-allocation chains, 394–395
file objects. See file objects
handles, 201, 440–441
hard links, 429–430
indexing, 429, 464–465
KMDF objects, 71
large file sizes, 370
locking, 401–407
mapped file I/O, 27
missing, 415
multiple names, 451
names. See file names
new, 461
NTFS security, 425
open instances of, 20, 409
paging. See paging files
prefetching, 412–413
previous versions, 182
quotas, 466–467
read-ahead and write-behind,

377–390
resident and nonresident

attributes, 453–456
security descriptors, 21
setting up for cache access,

373–375
sparse files, 393, 432–433, 456–458
streams, 358
synchronizing access, 23
temporary, 386
usage patterns, 412–413
viewing device handles, 22–23
virtual, 4
virtual block caching, 358

file sizes, 391, 393, 465
FILE_SUPPORTS_TRANSACTIONS

value, 473
file system cache, 232, 373–375. See

also cache
file system control interface codes. See

FSCTL control codes

file system drivers. See FSDs (file
system drivers)

file system filter drivers, 154, 413–414
file system formats, 157, 158, 391
file system metadata, 356, 359, 366,

374–375
file system minifilters, 412
FILE_SYSTEM_RECOGNITION_

STRUCTURE type, 398
File System Recognizer, 158
file systems

cache manager and, 355
CDFS, 392
CLFS, 416–424
corruption, 178. See also

corruption
deleting files, 130–131
dismounts, 399
EFS, 491–498
exFAT, 396–397
explicit file I/O, 408–412
FAT12, FAT16, FAT32, 393–396
file system driver architecture,

398–414
filter drivers, 413–414
instances, mounting, 155
I/O system and, 2
lazy writer. See lazy writer
local FSDs, 398–399
nested, 163
NTFS, 397–398
NTFS advanced features, 428–439
NTFS file system driver, 439–441
NTFS high-end file system

requirements, 424–425
NTFS on-disk structure, 442–477
NTFS recovery support, 477–490
operations, 407–413
overview, 391–392
page fault handler. See page faults

and fault handling
page writers. See page writers
read-ahead operations. See read-

ahead operations
recoverable, 478–479
registered, viewing, 403–404
registering, 155
remote FSDs, 400–407
troubleshooting, 415–416
UDF, 393
VSS shadow copies, 178
Windows file systems, 392–398

file-to-offset pairs, 341
filter device objects (FiDOs), 89–90,

141
filter drivers

BitLocker, 164
defined, 6–7
file associations, 20
file system drivers and, 47
file system filter drivers, 413–414

FVE drivers, 173–174
KMDF IRP processing, 74
PnP manager, 82–83
Process Monitor, 413–414
setting, 20
UMDF reflectors, 79

Filter Manager (Fltmc.exe), 42, 413, 414
filter miniport drivers, 413
filters, IRPs and, 42
find APIs, 472
FindFirstChangeNotification function,

415, 433
FindNextChangeNotification function,

415
FindNextFile API, 473
FireWire. See IEEE 1394 buses

(FireWire)
FireWire cables, 578
first in, first out (FIFO), 328
firstmegabytepolicy element, 505
fixed disks, 139, 162
flash disks. See also SSDs (solid state

disks); USB flash devices
BitLocker encryption, 164, 166
BitLocker To Go, 175–176
exFAT file system, 396–397
FAT formats, 393
I/O prioritization strategy, 60
ReadyBoost, 347–348
storage management, 125

flash drivers, 80
flash memory, 128–130, 348
floppy disk drive letters, 153
floppy disks, 125
Fltmc.exe (Filter Manager), 42, 413, 414
FlushFileBuffers function, 387
flushing caches

lazy write systems, 478
LFS operations, 480
in recovery passes, 484, 485
shutdown process, 545
threads explicitly flushing, 387
VSS writers, 178
write-behind operations, 385, 386
write operations, 379

flushing mapped files, 387–388
flushing modified pages, 314, 315
flush queues (CLFS), 418–419
FlushViewOfFile function, 196, 286
folders. See directories
fontpath element, 505
fonts, 505, 511
fopen function, 20, 21
FO_RANDOM_ACCESS flag, 377
forced affinitization, 113, 119
Force Pending I/O Requests option, 68
forcing IRQL checks, 295
!for_each_module command, 592
foreground processes, 339
foreign volume recovery keys, 173
format command, 393, 442, 443, 445

format, disk

616

format, disk, 126–128
Format utility, 487
fragmentation, 222, 223–224, 394,

436–437, 443, 460
free blocks, 221, 225, 226, 227
freed buffers, 219
freed memory, 243, 294, 296, 336
freed object referencing, 66
freed pool, 565–567, 570
free function, 221
free lists, 189, 191, 285, 305, 333
free page lists

page list dynamics, 300–302
page writer, 315
PFNs, 316
RAM optimization software, 346
reference counts, 316
viewing processes, 302–303

free pages, 195, 314, 316
Free PFN state, 297, 299
free pool tag, 216
free space, 424
freezes, VSS writers and, 177, 178
frequency (processors), 110, 111–112,

114, 120
front-end heap, 222, 224
frozen systems. See crashes; hung or

unresponsive systems
FSCTL control codes

cluster usage, 437
compression, 432, 456, 459
link tracking, 435
partitioning, 437–439
repairing volumes, 491
reparse points, 431
sparse files, 433
transactions, 469
TxF recovery process, 477
TxF resource managers, 473

FSCTL_QUERY_FILE_SYSTEM_
RECOGNITION code, 399

Fsdepends.sys driver, 163
FSDs (file system drivers)

associated IRPs, 46–47
cached files, 373
cache manager, 398
client and server-side remote FSDs,

400–407
defined, 6
disk devices, 126
disk I/O operations, 159–160
fast I/O, 27, 411–412
file I/O operations, 373–374
file system filter drivers, 413–414
file system operations, 407–413
functions, 29
lazy writer, 380
loading, 512
local FSDs, 398–399
locking, 401–407

mapping and pinning interfaces,
374–375

memory manager, 398
mounting volumes, 157
named pipe file system drivers,

523
NTFS file system driver, 439–441
overview, 398–414
registering, 155, 398
remote FSDs, 400–407
reparse points, 154
shrinking partitions, 438
storage stacks, 131
volume manager and disk drivers,

47
Fs_rec.sys driver, 158
FsRtlXxx functions, 401
fsutil command, 430, 491
Fsutil.exe utility, 446, 462, 472,

474–475
FTH (fault tolerant heap), 227
Fthsvc.dll, 227
full-volume encryption (FVE), 173–174
full-volume encryption key (FVEK),

165–168
fully provisioned virtual hard disks,

162
fully reentrant functionality, 189
functional device objects (FDOs),

89–90
function codes (IRP stack locations), 29
function drivers

class/port drivers, 89
defined, 6
enumeration and class keys, 96
FDOs, 89
KMDF IRP processing, 74
miniport drivers, 89
order of loading, 93
PnP driver installation, 94
PnP manager, 82–83
PnP state transitions, 83–84
role in I/O, 7

function filters, 6
functions (user-mode applications),

4–5
FVE (full-volume encryption), 173–174
FVEK (full-volume encryption keys),

165–168
Fvevol.sys driver, 164, 173–174

G
gaming system memory limits, 323
gate objects, 301, 315
GDI (Graphics Device Interface), 221
generic extensions (file objects), 20
generic KMDF objects, 71
generic utility measurement

(processors), 113, 119, 120

Get API, 70
GetCompressedFileSize function, 456
GetFileAttributes function, 431, 432
GetFileSizes API, 473
GetInformationByHandle API, 473
GetNativeSystem function, 199
GetProcessDEPPolicy function, 208
GetProcessHeap function, 221
GetQueuedCompletionStatus(Ex)

functions, 26, 54
GetSystemDEPPolicy function, 208
GetSystemInfo function, 199
GetSystemMetrics function, 532
GetTickCount function, 555
GetVolumeInformation function, 456,

473
Gflags tool, 226
Gigabit Ethernet, 133
Global bit (PTEs), 257
\Global?? directory, 15, 23, 24, 137,

409, 519
GlobalDosDevicesDirectory field, 409
global file system driver data

structures, 520
global I/O queue, 59
global look-aside lists, 28, 390
global memory manager, 361–362
global replacement policies, 329
Globalxxx functions, 193
GPT (GUID Partition Table)

headers, 140
LDM partitioning, 145–146
partitioning, 139–140
sector-level disk I/O, 138
UEFI systems, 513

graphical interface, 500, 506
graphical shell, 509
Graphics Device Interface (GDI), 221
graphics mode (BCD), 505
graphicsmodedisabled element, 505
graphicsresolution element, 505
graphics systems, 281, 284
groupaware element, 507
Group Policy

BitLocker, 174, 175
BitLocker To Go, 175
encryption, 163–164
logon tasks, 526
Platform Validation Profile (TPM),

170
groups (drivers), 531, 569
group seeds (BCD), 507
groupsize element, 507
Group value (driver loading), 84
GsDriverEntry routine, 12
/GS flag, 576
guard pages, 197, 204, 268, 280, 281
guard PTEs, 281
guests, running, 579–580
GUID Partition Table. See GPT (GUID

Partition Table)

 hierarchy chains

 617

GUID_PROCESSOR... policies, 114, 115
GUIDs (globally unique identifiers)

defined, 15
device interfaces, 15
dynamic disks, 142
Mount Manager assigned, 154
resource managers, 474
UEFI partitioning, 139–140

H
HAL (hardware abstraction layer)

BCD elements, 504
BIOS emulation code, 517
boot process tasks, 500
crashes, 550
defined, 3
detecting, 507
Driver Verifier, 65
initializing, 516
I/O processing, 4–5
large page sizes, 194
loading, 511
Root driver, 85
system code write protection, 574
system memory reserved for, 229
in system space, 228
virtual addresses, 243

HalAllProcessorsStarted function, 519
halbreakpoint element, 507
hal element, 507
HalInitializeBIOS function, 517
HalInitializeProcessor function, 516
HalInitSystem function, 516, 519
HalQueryRealTimeClock function, 519
handle caching, 401
!handle command, 289
handles

APCs, 37
change journal, 462
child and parent processes, 23
closing, 473
completion ports, 56
duplication, 201
file objects, 19, 23, 368, 440–441
files, 201
inheritance, 201
I/O cancellation, 49
I/O process, 20, 21
KMDF objects, 70
leases, 405, 407
multiple, 406, 407
network endpoints, 54
object handle tracing, 519
obtaining for devices, 15
opening files, 409
oplocks, 406
page files, 274
per-handle caching information,

19

port notification, 58
removing devices, 83
supplied to memory manager, 193
synchronization objects, 25
transacted operations, 472–473
viewing for devices, 22–23

hanging machines. See hung or
unresponsive systems

hard disks
ACPI BIOS information, 511
failures, 550
quotas, 433–434, 466–467
ReadyBoost and, 346–348
rotating magnetic, 126–128
sector size, 391
solid state, 128–130
storage management, 125
virtual, 162–163

hard faults, 325, 339, 342
hard links, 429–430, 436, 448, 451, 462
hard partitions, 146
hardware

bound traps or double faults, 588
crash stop codes, 550
detection, 513
device drivers, 2
diagnostic tools, 593
feedback, 111
latency, 98
malfunctions, 593
memory protection, 203
mirroring, 177
new, crashing, 551–552
physical memory support, 320
ports, 507
resource allocation, 81
virtualization, 516

hardware abstraction layer. See HAL
(hardware abstraction layer)

hardware attacks, 166
hardware DEP, 205
hardware-detected memory

exceptions, 188
HARDWARE hive, 515, 520
hardware IDs, 95
Hardware Installation Wizard, 95
hardware keys, 94. See also

enumeration
hardware providers, 160
hardware PTE accessed bit, 330
hardware PTEs, 257, 259–260, 265–266
hardware tree, 514
hardware Write bits, 258
hard working set limits, 329
hash entries (working sets), 318
hashes, 96, 97, 467–468
HasOverlappedIoCompleted macro,

26
HBAs (Host Bus Adapters), 133, 134,

514
headers, 453–456

HeadlessInit function, 517
heads (hard disks), 126
head seeks, 378
heap and heap manager

address space, 246, 247
APIs, 221
blocks, 221
core, 222
debugging features, 225–226
fault tolerant, 227
functions (Heapxxx), 193, 221
heap storage, 39
IDs, 248
kernel-mode, 212–220
Low Fragmentation Heap, 223–224
overview, 220–221
pageheap, 226
pointers for processes, 222
randomization, 250
scalability, 224
security features, 224–225
structure, 222
synchronization, 223
types of, 221–222
user-mode, 222

heap blocks, 221
!heap command, 225, 226
HeapCompatibilityInformation class,

224
HeapCreate function, 221
HeapDestroy function, 221
HeapEnableTerminationOnCorruption

class, 224
HeapFree function, 227
Heap functions, 193, 221
heap IDs, 248
Heap interfaces, 221
HEAP linker flag, 221
HEAP_NO_SERIALIZE flag, 223
HeapSetInformation API, 224
heap storage, 39
HeapWalk function, 223
help files (stop codes), 549
H-HDDs (hybrid hard disk drives), 348
Hiberfil.sys (hibernation files), 99, 163,

180, 348, 500
hibernation

BCD information, 504
boot status file information, 537
configuring, 103–104
files, 99
MPIO, 135
non–Plug and Play drivers, 82
resuming from, 503, 509
S4 power state, 98, 99
Superfetch scenario plan, 339
volume encryption, 164

hibernation files (Hiberfil.sys), 99, 163,
180, 348, 500

hibernation scenario (Superfetch), 342
hierarchy chains (KMDF), 72

hierarchy prioritization strategy

618

hierarchy prioritization strategy, 59, 60
high bits (address spaces), 230
HighCommitCondition event, 336
High I/O priority, 58, 59
high IRQL faults, 565–567, 580,

590–592
high-level drivers, 1
highly utilized processor cores, 119
high memory allocation addresses,

231
HighMemoryCondition event, 336
high memory conditions, 335–337
HighNonPagedPoolCondition event,

336
HighPagedPoolCondition event, 336
high priority mapping VACBs, 366
hints, 60, 62, 154, 355
history tracking, 112, 114, 115, 338
hive files, 507, 540. See also

HARDWARE hive; SYSTEM hive
host bus adapters (HBAs), 133, 134,

514
host computers (debugging), 582–584
host processes, 79–80
hotfixes, 525, 538
hot memory, 317
hotpatching technology, 525
hung or unresponsive systems

boot problems, 537–542
breaking into, 578–581
crash dump analysis, 577–581
defined, 577
Notmyfault manual crashes,

564–565
hung program screens, 543
HvInitSystem function, 517
hybrid hard disk drives, 348, 350
hybrid sleep states, 99
hyperspace, 229
Hyper-Threading feature, 109
Hyper-V

booting from VHDs, 162
disk attributes used by, 138
dumping memory, 556, 579–580
kernel debugger, 582–584
loading hypervisor, 507
phase 0 initialization, 517

hypervisor, 517
hypervisorbaudrate element, 507
hypervisor binaries, 507
hypervisorchannel element, 507
hypervisordebug element, 507
hypervisordebugport element, 507
hypervisordebugtype element, 507
hypervisordisableslat element, 507
hypervisorlaunchtype element, 507,

516
hypervisorpath element, 507
hypervisoruselargevtlb element, 507

I
i8042 port driver, 577–578
IA64 systems

address space layouts, 237, 238
address translation, 266–267
AWE functions, 212
page sizes, 194
process virtual address space, 187
system code write protection, 574
working set limits, 329

iBFT (iSCSI Boot Firmware Table), 514
ideal model (PPM), 113, 120
ideal node (NUMA), 285
IDE devices, 60, 64, 132, 503
idempotent operations, 482
idle devices, 105
idle I/Os, 60
idle prioritization strategy, 59, 60, 63
Idle process, 518
idle processor states (C processor

states), 108–109, 120
idle scaling (processors), 120
idle state management policies, 114
idle systems, 339
IEEE 1394 buses (FireWire)

basic disks, 139
debugging channels, 504
debugging devices, 504
drivers, 6
hypervisor debugging, 507
KMDF support, 68
UMDF support, 78

IEEE 1394 (FireWire) cables, 578
IHVs (independent hardware vendors),

79, 177
illegal instruction faults, 573
illegal operations, 66
image activation, 27
image autoruns, 528–529
image base randomization. See

ASLR (Address Space Layout
Randomization)

image bias, 249
Image Dispatch Mitigation, 208
IMAGE_DLL_CHARACTERISTICS_

DYNAMIC_BASE flag, 248, 250
IMAGE_DLLCHARACTERISTICS_NX_

COMPAT flag, 207–208
IMAGE_FILE_LARGE_ADDRESS_AWARE

flag, 230
image loader, 202
image randomization, 248–249
images, 539, 556
ImageX, 162
implicit memory allocation, 294
InbvDriverInitialize function, 517
InbvEnableBootDriver function, 517
increaseuserva configuration, 229,

280, 329, 557
increaseuserva element, 508

increasing thresholds (processors),
114, 115

$INDEX_ALLOCATION attribute, 448
index allocations, 448, 455, 465
index buffers, 465
indexing, 429, 462, 464–465
$INDEX_ROOT attribute, 448
index root attributes, 454, 455, 465
Inetinfo.exe (Internet Information

Server), 231
INF database, 521
\Inf directory, 96
INF files

defined, 2–3
device keys, 91
digital signatures, 95–96
driver groups, 531
function driver files, 96
PnP hardware installation, 95
viewing, 96

infinite loops, 580
InitBootProcessor function, 516, 517,

518
initialconsoleinput element, 505
initialization

KMDF routines, 68, 69
order of, 87–88
routines, 12

Initiator service, 133
InitSafeBoot function, 531
InitSafeBootMode function, 532
injected threads, 351
in-page error PFN flag, 317
in-paging I/O, 271–272
In POSIX function, 429
input buffers, 32–33
input device drivers, 6
installation

driver installation files. See INF files
hotfixes, 538
patches and service packs, 538
PnP manager’s handling, 81, 94–98
repairing, 535–537, 539
well-known installers, 538
Windows boot preparations,

499–500
Windows Update, 538

installation files or scripts. See INF files
instance IDs, 90, 91
instances

DIIDs (device instance IDs), 91, 94
file systems, 155
open files, 20, 409
pool tags, 216
WMI, 72

instruction pointer register, 585
inswapping stacks, 188
INT 3 instruction, 587
integrity check mechanisms, 224, 508,

581
integrityservices element, 505

 IopSafeBootDriverLoad function

 619

intelligent read-ahead (caching), 358,
368, 378–379

Intel Macintosh machines, 513
Interactive Services Detection service

(UIODetect.exe), 525
internal error reporting servers,

561–562
internal synchronization, 189
Internet attachments, 427
Internet Information Server

(Inetinfo.exe), 231
Internet SCSI (iSCSI), 60, 125, 126,

133–134, 514
Internet Storage Name Service (iSNS),

133, 134
interrupt controller, 516
interrupt dispatch table, 35
interrupt-driven devices, 13
interrupt request levels. See IRQLs

(interrupt request levels)
interrupts

diagrammed, 36
initializing, 519
in IRP processing, 33–34
KMDF objects, 71
layered drivers, 44–45
legacy BIOS interrupts, 514
phase 0 initialization, 516
servicing, 34–36
UMDF, 78

interrupt service routines. See ISRs
(interrupt service routines)

interrupt-servicing DPC routines, 13
interval clock timer interrupts, 516
invalid addresses, 585, 590–592
INVALID_HANDLE_VALUE value, 201
invalid IRQL, 66
invalid pages, 293, 571. See also high

IRQL faults
“Invalid partition table” errors, 537
invalid PFN states, 297
invalid PTEs, 268–271, 302. See also

page faults and fault handling
IoAdjustStackStizeForRedirection

API, 42
IoAllocate functions, 294, 295
IoAsynchronousPageWrite function,

412
IoBoostCount function, 61
IoBoostThreadPriority function, 61
IoCallDriver function, 33–34, 68, 409,

410
I/O cancellation, 75
IoCompleteRequest function, 33–34, 36
I/O completion. See also I/O

completion ports
associated IRPs, 47
completion context, 19
completion ports, 53–58
file attributes, 19
layered drivers, 45, 46

port notifications, 57–58
port operation, 56–58
process, 36–38
in processing, 33–34
shortcuts in, 38

IoCompletion executive object, 54, 56
I/O completion ports

completion packets, 55
completion process, 37, 53–58
creating and operating, 56–58
file object attributes, 19
I/O cancellation, 49
IoCompletion executive object, 54
processes, 54–55
testing asynchronous I/O, 26
thread-agnostic I/O, 48, 55

I/O concurrency, 75
I/O control codes, 32
IoCreateDevice function, 14
IoCreateDeviceSecure function, 14
IoCreateFileEx function, 20
IoCreateFile function, 20, 21
IoCreateFileSpecifyDeviceObjectHint

function, 20
IOCTL requests

freezing volumes, 178
KMDF, 76, 77
querying sector size, 128
thawing volumes, 178
trim command and, 130

I/O errors, 317, 318
IofCallDriver function, 576
IoGetTransactionParameterBlock

function, 20
I/O manager and operations. See also

I/O prioritization
atomic transactions, 424–425
buffer management, 32–33
cache manager, 356
canceling IRPs, 50–53
completion, 36–38, 55
completion ports, 53–58
components, 1–3, 439
container notifications, 65
copy engine, 381
defined, 2
device drivers, 19–24
driver and device objects, 14–19
driver initialization, 85
Driver Verifier, 65–68
explicit file I/O, 408–412
fast I/O, 26–27, 375–377
half-completed I/O, 359
initializing, 521
in-paging I/O, 271–272
I/O targets, 71
IRPs, 28–29, 33–34. See also IRPs

(I/O request packets)
Kernel-Mode Driver Framework

(KMDF), 68–77
KMDF model, 74–77

KMDF queues, 75
layered driver processing, 40, 41,

439–440
loading drivers, 531
local file system drivers, 398–399
look-aside lists, 219
mapped file I/O and caching,

27–28
mounted volumes, 157–158
mounting process, 155
not shown in Process Monitor, 415
opening file objects, 21
overview, 1, 3–4
PFNs, 316, 318
phase 1 initialization, 519
PnP loading and initialization

process, 87
PnP manager, 81–98
power manager, 98–123
prioritization, 58–64
queues, 71
reparse points, 154
request processing, 4–5
request types, 25–33. See also I/O

requests
robust performance, 344
scatter/gather I/O, 28
servicing interrupts, 34–36
shutting down, 545
storage stacks, 131
Superfetch rebalancer, 343
synchronization, 75
thread-agnostic I/O, 48
UMDF interaction, 79
User-Mode Driver Framework

(UMDF), 78–81
volume operations, 159–160
writing crash dumps, 559

IoPageRead function, 411, 413
IopBootLog function, 533
IopCancelAlertedRequest function, 53
IopCopyBootLogRegistryToFile

function, 533
IopInvalidDeviceRequest function, 30
IopLoadDriver function, 531
I/O port drivers, 7
IopParseDevice function, 409
I/O prioritization

boosts and bumps, 62–64
file object attributes, 19
inheritance, 61
inversion avoidance, 61
levels of, 58
overview, 58–59
scheduled file I/O, 64
strategies, 59–61

IoPriority.exe, 62–64
I/O priority inheritance, 61
I/O priority inversion avoidance, 61
IopSafeBootDriverLoad function,

531–532

IopSynchronousServiceTail function

620

IopSynchronousServiceTail function,
53

I/O queues, 71
IoReadPartitionTableEx function, 138
IoRegisterContainerNotification

function, 65
IoRegisterDeviceInterface function, 15
IoRegisterFileSystem function, 155
IoRegisterPriorityCallback function, 61
IoRemoveIoCompletion function, 56
I/O request packets. See IRPs (I/O

request packets)
I/O requests. See also IRPs (I/O request

packets)
asynchronous, 25–26
cancellation, 48–53
completing, 36–38
control flow, 26
fast I/O, 26–27
interrupts, 34–36
I/O manager, 3–4
KMDF objects, 71
large pages, 194
layered drivers, 40–47
multiple, 25–26
processing, 25
scatter/gather I/O, 28
synchronization, 38–39
synchronous, 25–26
thread-agnostic I/O, 48
types of, 25–33

IoSessionStateNotification class, 65
IoSetCompletionRoutineEx function,

294, 295
IoSetDeviceInterfaceState function, 15
IoSetIoPriorityHint function, 60
I/O status block ranges, 20
I/O status blocks, 36
IoSynchronousPageWriter function,

412
I/O targets, 71
I/O Verification option, 67
IP networks, 133
!Irp command, 42, 53, 575, 576, 581
IRP credits, 334
IRP dispatches, 576
!Irpfind command, 42
IRP Logging option, 68
IRP look-aside lists, 28, 41
IRP_MJ_CREATE IRPs, 409
IRP_MJ_PNP IRPs, 15
IRP_MJ_READ IRPs, 411
IRP_MJ_WRITE IRPs, 411, 412
IRP_MN_START_DEVICE IRPs, 15
IRP_MU_CREATE command, 413
IRPs (I/O request packets)

adjusting credits, 334
associated groups, 44, 46
body, 29
buffer management, 32–33
cache interactions, 356

cancellation, 48–53
completion, 36–38
creating, 4
debugging, 576
defined, 3–4, 28–29
device tree flow, 88
disk I/O operations, 159
enumerating, 61
errors in dispatches, 576
examining, 42–44
file object interaction, 409
file system drivers, 399, 411
KMDF handling, 74–77
layered driver processing, 40–47
lists, 19, 30–31
look-aside lists, 28, 41
pointers to, 53
priority strategies, 59, 60
processing, 4–5, 28–29
Process Manager and, 414
recording usage, 68
reuse, 28, 41
serializing, 12
single-layered drivers, 33–39
stack locations, 29–31, 41
thread-agnostic I/O, 48
UMDF reflectors, 79
verification, 67

IRP stack locations, 33–39, 41
IRQL_NOT_LESS_OR_EQUAL stop

code, 549, 590
IRQLs (interrupt request levels)

APCs and, 37–38
crashes, 549
drivers executing at elevated, 295
driver synchronization, 39
high IRQL faults, 565–567, 585
in I/O process, 13
KMDF drivers, 74
port drivers, 132
preempting driver execution, 38
special pool allocations and, 294

ISA buses, 68, 511
iSCSI Boot Firmware Table (iBFT), 514
Iscsicli.exe utility, 133, 134
iSCSI Control Panel applet, 134
iSCSI devices, 60, 125, 126, 133–134,

514
iSCSI Host Bus Adapter (HBA), 514
iSCSI Initiator, 133–134, 514
iSNS (Internet Storage Name Service),

133
ISO-9660 format, 392
ISO-13346 format, 393
ISO images, 507
isolating transaction operations,

470–472
ISRs (interrupt service routines)

defined, 13
hung systems, 577
interrupt processing, 35

layered drivers, 44
monitoring keystrokes, 577–578

ISVs (independent software vendors),
177

Itanium firmware, 145, 194, 513

J
$J data stream, 461
Joliet disk format, 392
journaled file systems, 416, 478. See

also change journal files
jumping stacks, 281
junctions, directory, 20, 430–432

K
k command, 574
Kd debugger (Kd.exe), 504, 564,

578–581
KdDebuggerInitialize1 routine, 520
KeAcquireInterruptSpinLock routine,

39
KeBalanceSetManager routine, 188,

333
KeBugCheck2 function, 590
KeBugCheckEx function, 548, 576, 578
KeExpandKernelStackAndCallout

function, 281
Kei386EoiHelper function, 576
KeInitializeQueue function, 56
KeInsertByKeyDeviceQueue function,

133
KeInsertQueue function, 56, 57
KeLoaderBlock variable, 515
KeRegisterBugCheckCallback function,

548
KeRegisterBugCheckReasonCallback

function, 548, 554
KeRemoveByKeyDeviceQueue

function, 133
KeRemoveQueueEx function, 56
kernel (Ntoskrnl.exe, Ntkrnlpa.exe)

boot process, 132, 514
boot process tasks, 500
bumps, 62–64
DLLs, 7
file objects, 20
heap manager, 221
illegal instruction faults, 573
initializing, 514–522
large page sizes, 194
listing modules, 568
loading, 511
matching for minidumps, 556
memory manager components,

188–189
non-PAE kernel, 205
Ntkrnlpa.exe, 260

 lazy writer

 621

phase 0 initialization, 516–518
phase 1 initialization, 518–522
process block (KPROCESS), 255
queues, 56
safe mode switch scanning, 531
servicing interrupts, 34–36
stack. See kernel stack
stack trace database, 518
subsystem crashes, 547
synchronization routines, 39
system code write protection, 574
thread exceptions, 586–588
trap handler, 267
UMDF interaction, 78, 79
updating, 568

kernel address space, 240, 250, 266
kernel bumps, 62–64
kernel code, 195, 266
KERNEL_DATA_INPAGE_ERROR stop

code, 550
kernel debugger

attaching, 582–584
BCD elements, 505, 506
breaking into systems, 577
initializing, 519
listing drivers, 11
transports, 506
troubleshooting without crash

dumps, 581–582
viewing file objects, 22–23

kernel driver stack, 78
kernel element, 508
kernel extensions, 6
kernel image file name, 508
kernel memory

displaying information, 191
low resources simulation, 295
memory manager, 189
paged pool execution protection,

205
pool functions, 66
session pool execution protection,

205
kernel memory dumps, 554, 556–557
kernel mode

access violations, 550
call stacks, 553
DLLs, 7
drivers, 6, 10–11, 80, 335–337,

547–548
heaps, 212–220
memory manager services in, 193
page faults and, 267
paging, 521
protecting memory, 203–204
virtual addresses, 252

Kernel Mode Code Signing (KMCS), 98,
505, 512

Kernel-Mode Driver Framework. See
KMDF (Kernel-Mode Driver
Framework)

kernel-mode drivers, 6, 10–11, 80,
335–337, 547–548

KERNEL_MODE_EXCEPTION_NOT_
HANDLED stop code, 575,
586–588

KERNEL_MODE_EXCEPTION_NOT_
HANDLED with P1... stop code,
550

kernel-mode heaps (system memory
pools), 212–220

kernel-mode pages, 554, 555
kernel-mode thread exceptions,

586–588
kernel process block (KPROCESS), 255
kernel queues, 56
kernel stack

in commit charge, 276
defined, 279
memory dumps, 554
memory management, 281–282
overflows, 588–589
PFNs and, 316, 317, 318
stack trace database, 518
usage, 282

Kernel Transaction Manager (KTM),
446, 469, 474, 476, 477

KeStartAllProcessors routine, 519
KeSwapProcessOrStack routine, 188
KeSynchronizeExecution routine, 39
KEVENT structure, 295
keyboard buffers, 505
keyboard drivers, 577–578
keyboard ISRs, 580
keyboard sequences, 504
key entries (encryption), 494
key escrow services, 174
key number generation, 168
key recovery mode (TPM), 168
keyringaddress element, 504
key rings, 494, 504
KiActivateWaiterQueue function, 57
KiDispatchException function, 584
KiInitializeKernel function, 516, 518
KiPreBugcheckStackSaveArea

function, 576
KiSwapperThead function, 334
KiSystemStartup function, 516
KiUnwaitThread function, 57
KMCS (Kernel Mode Code Signing), 98,

505, 512
KMDF (Kernel-Mode Driver

Framework)
data model, 70–74
driver structure and operation,

68–70
I/O model and processes, 74–77
KMDF objects, 70–74
object attributes, 73–74
object context, 72–73
object hierarchy, 73

object types, 71–72
viewing drivers, 69–70

KMODE_EXCEPTION_NOT_HANDLED
stop code, 549, 575

KMUTEX structure, 295
Knowledge Base, 549
KPRCB structure, 111–112, 120
KPROCESS block, 255
KSEG0 mapping, 506
Kseg3 and 4 addresses, 266
KSEMAPHORE structure, 295
KSPIN_LOCK structure, 295
KTHREAD structure, 56
KTIMER structure, 295
KTM (Kernel Transaction Manager),

446, 469, 474, 476, 477
KtmLog stream, 474, 477
Ktmutil.exe utility, 472
KUSER_SHARED_DATA structure, 209

L
LANMan Redirector, 400
LANMan Server, 400
laptop encryption, 435
large-address-space-aware

applications, 187, 230–231,
237, 243, 280

large-address-space-aware images,
187

large file sizes, 370
large-IRP look-aside lists, 28
Large page bit (PTEs), 257
large pages, 193–195, 574
large scale corruption causes, 570
last known good (LKG)

booting LKG configuration, 508
configuration, troubleshooting

with, 551
post-splash-screen crashes, 541
set, updating, 525–526
troubleshooting, 530

lastknowngood element, 508
latency, 35, 149
layered drivers

data redundancy, 425
device stacks, 90
functionality diagrams, 8, 9
I/O completion, 45, 46
I/O request processing, 40–47,

439–440
I/O system, 1, 7–11
layered device objects, 18

lazy closes, 390
lazy commit algorithm, 486
lazy evaluation algorithms, 210, 282
lazy writer

batching log records, 478
cache interaction, 359
cache manager work requests, 390

LBAs

622

lazy writer, continued
decompressing files, 460
disabling, 386
fast I/O, 377
file system drivers, 408
file system operation, 412
flushing cache contents, 440
overview, 379–380
recovery passes, 485
ticks, 390
write throttling, 388

LBAs (logical block addresses), 132
LCNs (logical cluster numbers)

compressed files, 459
index mapping, 465
noncompressed files, 457
physical locations, 443
in runs, 445
VCN-to-LCN mapping, 444–445,

455–456, 488
LDM (Logical Disk Manager), 141–146
LDMDump utility, 143
leaking memory

debugging, 575
forcing leaks with Myfault.sys, 564
Memory Leak Diagnoser, 351
paged pool, 278
pool, 218–219
prioritized standby lists, 313
processes, 278
system PTEs, 235
TestLimit.exe, 232

leaks, pool, 218–219
lease keys, 405
leases, 401, 404–407
least recently used (LRU)

clock algorithm, 328
replacement policies, 328
VACBs, 366

legacy APIs, 221
legacy applications, 540
legacy BIOS interrupts, 514
legacy devices, 511
legacy disk management utilities, 146
legacy drivers, 82, 132
legacy file formats, 392
legacy mode, 260
legacy naming conventions, 136
legacy operating systems, 127
legacy port drivers, 60, 132
legacy reparse points (junctions),

431–432
levels, oplocks, 401–402
LFH (Low Fragmentation Heap), 222,

223–224
LFS (log file service), 440, 479–480,

483
library calls, KMDF and, 68
licensing, 320, 413, 520, 522
linked lists, 240, 242, 299, 300–302
links, OLE, 434–435

link tracking, 434–435, 448
listing

device objects, 16–17
loaded drivers, 10–11

list modules command option, 568
list shadows command, 185
LiveKd, 556, 579–580
LKG. See last known good (LKG)
lm command, 568, 574, 587
load-balancing policies, 134
loaded drivers

memory dumps, 554
memory manager and, 189
minidumps, 554
viewing list, 10–11

loaded image address space, 246
!loadermemorylist command, 515–516
loader parameter blocks, 514,

515–516, 522
loading drivers, 1, 81, 84–94
loadoptions element, 508
locale element, 505
local FSDs, 398–399
Local Group Policy Editor, 174–175
local pool tag files, 216
local replacement policies, 329
Local Security Authority Subsystem.

See LSASS (Local Security
Authority Subsystem)

Local Security Policy MMC snap-in,
495

local session manager (LSM), 501, 525
Localtag.txt file, 216
local-to-local or -remote links, 431
Localxxx functions, 193
lock contention, 224
locked bytes, 376
locked memory page tracking, 294
LockFile function, 23
locking

address space, 189
byte ranges, 427
client-side remote FSDs, 400–407
file system drivers, 401–407
heap, 223
I/O priority inheritance, 61
memory, 199
pages in memory, 199
portions of files, 23
pushlocks, 189
user-mode buffers, 20
working set locks, 189

LOCK prefix, 241
!locks command, 581
log blocks, 421
log block signature arrays, 421
log container files, 446
log-end LSNs, 422
“log file full” errors, 483, 487
log files

CLFS, 418–419, 420

defragmentation and, 437
NTFS $LogFile, 445
recoverable file systems, 359
recovery, 478, 479–483
recovery passes, 484–487
safe mode, 533–534
size, 482–483
Superfetch service, 338
TxF, 474

log file service (LFS), 440, 479–480,
483

$LOGGED_UTILITY_STREAM attribute,
449, 469, 475–476

logged utility streams, 449
logging

boot process, 506
change logging, 433
CLFS. See CLFS (Common Log File

System)
log tails, 424
metadata, 479–483
NTFS transaction support, 476–477
overhead, 478
proactive memory management,

341
recovery, 478
safe mode booting, 533–534
sequence numbers, 420–421
Superfetch service, 341
transactions, 476–477
update records, 482

logging areas (LFS), 479–480
logical block addresses (LBAs), 132
logical block numbers, 127
logical block offsets, 355
logical blocks, 127
logical cluster numbers. See LCNs

(logical cluster numbers)
logical container identifiers, 420
logical descriptors (TxF), 481
logical disk manager (LDM), 141–146
logical drives, 139
logical ports, 7
logical prefetcher, 285, 324–328,

527–528
logical processors, 507
logical sequence numbers. See LSNs

(logical sequence numbers)
logo animation, 506
logoff notifications, 65
logon manager (Winlogon.exe), 228,

524, 526–527, 542–543
logons, 65, 228, 501, 526–527
log records

CLFS, 416
marshalling, 417
metadata logging, 481–483
recovery mechanisms, 481–483
size, 424
types, 481–483

 memory

 623

log sequence numbers. See LSNs
(logical sequence numbers)

log start LSNs, 421
log tails, 424
long file names, 451, 453
look-aside lists

adjusting, 334
defined, 219
heap allocation, 224
kernel stack PFNs, 318
KMDF objects, 71
NUMA nodes, 285
per-processor cache, 390
verifying, 296

LowCommitCondition event, 336
lowercase characters, 446
lower-level filter drivers, 89, 93
Low Fragmentation Heap (LFH), 222,

223–224
Low I/O priority, 58, 59
LowMemoryCondition event, 336
low memory conditions, 335–337
LowNonPagedPoolCondition event,

336
LowPagedPoolCondition event, 336
low priority mapping VACBs, 366
low-priority page lists, 310
LPT1 device name, 523
LRU. See least recently used (LRU)
LRU VACBs, 366
Lsasrv.exe. See LSASS (Local Security

Authority Subsystem)
LSASS (Local Security Authority

Subsystem)
boot process, 501
Command Server Thread, 522
EFS, 435
encryption services, 494
initializing, 525
large address space aware, 231
shutdowns and, 545

LSM (local session manager), 501, 525
LSNs (logical sequence numbers)

caching, 359
CLFS operations, 420–421
log start LSNs, 421
resource managers and, 474
transactions, 476
translating virtual to physical,

422–423
LZNT1 compression, 456

M
machine checks, 550
MachineCrash key, 550
magneto-optical storage media, 393
mailslots, 4, 523
major function codes (IRP stack

locations), 29

malloc function, 221
malware, 204–209
Manage-bde.exe, 174
manual crash dumps, 577, 578, 593
manual I/Os, 76
manually configured targets (iSCSI),

134
manually crashing systems, 556, 577
MANUALLY_INITIATED_CRASH stop

code, 578
manual restore points, 184
mapped file functions, 193, 399, 413
mapped files

address space, 247
cache coherency, 356–358
copy-on-write mapped memory,

276
I/O, 27–28, 202, 286
memory manager, 200–202
modified page writer, 314–315
objects, 221
page faults, 267
pages, 196, 314
read-ahead and write-behind, 377
section objects, 287
sections, 407
shared pages, 270
viewing, 202
virtual address space, 356

mapped pages, 211, 350. See also
address translation

mapped page writer
cache operations, 375
defined, 188
file system drivers, 407, 412
file system operations, 412
recovery process, 359
write-behind operations, 385, 386

mapped views
cache manager, 360
dynamic address space, 232, 233
in system space, 229
TxF transactions, 473
VACBs, 368
valid and invalid pages, 271

mapped writer threads, 379
mapping

virtual memory into physical, 187
volume shadow device objects,

185–186
mapping interface, 374–375
mapping methods, 373
MapUserPhysicalPages functions, 211
MapViewOfFileEx function, 193, 200,

201
MapViewOfFileExNuma function, 201
MapViewOfFile function

cache coherency issues, 356
committed storage, 277
creating virtual address space, 275
mapped file I/O, 27

memory mapped file functions,
193

page-file-backed mapped
memory, 276

section views, 201
TxF transactions, 473

MapViewOfFileNuma function, 193
Markov chain models, 344
marshalling, 417
marshalling areas, 417
mass storage devices, 6, 60, 64
master boot records. See MBRs (master

boot records)
master file table backup ($MftMirr),

438
master file tables. See MFTs (master

file tables)
$Max data stream, 461
maxgroup element, 508
MaximumCommitCondition event, 336
maximum pool sizes, 213–215
maximum section size, 287
maximum utility (processors), 110
maxproc element, 508
MBRs (master boot records)

boot process, 500, 502
corruption and startup issues, 537
defined, 501
disk signatures, 510
encryption, 166
LDM partitioning, 145–146
multipartition volumes, 150
partitioning style, 139
protective MBR, 140
sector-level disk I/O, 138

MCA (Micro Channel Architecture),
511

MD5 hashes, 495
MDLs (memory descriptor lists), 32,

272–273, 296, 375
media player applications, 105–108
MEM_DOS_LIM flag, 200
Meminfo tool, 300, 311–313, 319, 322
MemLimit utility, 245
memory. See also memory manager

access violations, 195
BCD elements, 504
boot process, 500, 514
core parking, 109
corruption, 569–572
counter objects, 190–192, 215–219
crash dumps, 569–572
crash stop codes, 550
diagnostic tools, 534
double-freeing, 66
dumping with dd, 64
KMDF objects, 71, 72
leaks. See leaking memory
look-aside lists, 219–220
low resources simulation, 295

memory cards

624

memory, continued
memory management faults. See

page faults and fault handling
memory manager. See memory

manager
NAND-type, 128–130
notification events, 335–337
not owned by drivers, 573
physical, maximums, 187
power states, 98
priority, 311
protecting, 203–204
RAM vs. flash, 128
removing from use, 509
third-party optimization software,

345–346
usage, 190–192
working sets, 335–337
zeroing, 189

memory cards, 393
memory description lists (MDLs), 32,

272–273, 296, 375
Memory.dmp file, 557
MemoryErrors event, 336
Memory Leak Diagnoser, 351
memory leaks. See leaking memory
memory management faults. See page

faults and fault handling
MEMORY_MANAGEMENT stop code,

550
memory management unit (MMU),

254, 257, 260
memory manager

64-bit virtual layouts, 237–239
address translation, 251–267
Address Windowing Extensions,

210–212
allocation granularity, 199–200
AS64 translation, 266–267
balance set manager and swapper,

333–334
cache manager, 355
cache misses, 440
caching, 27–28
clustered page faults, 272–273
collided page faults, 272
commit charge, 275–277, 278–279
commit limits, 199, 275–277
components, 188–189
copy-on-write, 209–210
demand paging, 324
Driver Verifier, 65, 292–296
dynamic system virtual address

space, 242–245
fast teardown queues, 390
file I/O operations, 373–374
file system drivers, 398, 399
heap manager, 220–227
in-paging I/O, 271–272
internal synchronization, 189
invalid PTEs, 268–269

I/O priorities, 58
kernel-mode heaps, 212–220
large and small pages, 193–195
locking memory, 199
logical prefetcher, 324–328
management, 187–188, 329–333
mapped files, 27–28, 200–202
mapped file views, 413
mapped page writer, 412
modified page writer, 314–315,

412
no execute page protection,

204–209
notification events, 335–337
NUMA, 285
PAE translation, 260–264
page fault handling, 267–279
page files, 273–274
page file size, 278–279
page list dynamics, 300–310
page priority, 310–313
PFN database, 297–319
phase 0 initialization, 517
physical memory limits, 320–323
placement policies, 328–329
proactive memory management

(Superfetch), 338–350
protecting memory, 203–204
prototype PTEs, 269–271
reserving and committing pages,

195–198
section objects, 286–292
session space, 232–235
shared memory, 200–202
shutting down, 545
stacks, 279–282
standby and modified lists,

363–364
system memory pools, 212–220
system PTEs, 235–236
systemwide resources, 189
system working sets, 334–335
translation look-aside buffer,

259–260
usage, 190–192
user space virtual layouts, 246–251
virtual address descriptors,

282–284
virtual address randomization,

248–250
virtual address space layouts,

228–251
working sets, 324–337
x64 translation, 265–266
x64 virtual limitations, 240–242
x86 translation, 252–259
x86 virtual layouts, 229–232,

232–235
memory-mapped files, 187, 193, 525,

549
memory-mapped I/O, 504

memory mirroring APIs, 556
Memory Test (Memtest.exe), 500
MEM_TOP_DOWN flag, 231
!memusage command, 291
message queues, 417
message signaled interrupts, 508
metadata

CLFS logs, 418, 420
disk availability, 130
dynamic address space, 233
file system metadata, 359, 392
file system structure, 443–444
LFH blocks, 225
logging, 479–483
not in Process Monitor, 415
NTFS extensions directory, 446
transaction resource managers,

473–474
metadata transaction log ($LogFile),

438
$MftMirr (master file table backup),

438, 444
MFT records, 443–444, 447–449, 456,

465
MFTs (master file tables)

compressed files, 458
contiguous disk space, 436
directories, 454
duplicated, 490
file entries, 448
file names, 450
file record numbers, 447
file records, 443–444, 447–449,

465
indexing and, 464–465
multiple records for files, 456
noncompressed files, 457
NTFS on-disk structure, 443–446
resident attributes, 453–456
stream-based caching, 358
traces, 325, 327
$TXF_DATA attribute, 475

mice, legacy, 511
MiComputeNumaCosts function, 285
Micro Channel Architecture (MCA),

511
Microsoft, sending crash dumps to,

561–562
Microsoft Management Console, 325.

See also Disk Management
MMC snap-in

Microsoft Platforms Global Escalation
Service, 594

Microsoft symbol server, 556
Microsoft Windows Hardware Quality

Labs (WHQL), 65, 96
MiCurrentMappedPageBucket routine,

314
MiDereferenceSegmentThread

routine, 189
MiDispatchFault routine, 411

 multiple data streams

 625

MiImageBias routine, 249
MiImageBitmap routine, 249
MiInitializeRelocations routine, 249
MiInsertPage routines, 314, 315
MiIssueHardFault routine, 384
MiMappedPageListHeadEvent event,

314
MiMappedPageWriter routine, 188,

314–315
MiMaximumWorkingSet variable, 329
MiModifiedPageWriter routine, 188,

314–315
miniclass drivers, 7
minidumps, 351, 554–556, 562, 579
minifilter drivers, 413
minifilters, 412
Minimal subkey, 530–531, 532
MiniNT/WinPE registry keys, 521
miniport drivers, 7, 89, 131, 132–136,

159
minor function codes (IRP stack

locations), 29
MiObtain functions, 242, 244, 314
MIPS support, 506
MiReclaimSystemVA function, 243
MiRescanPageFilesEvent event, 315
MiReturn functions, 242
mirrored partitions, 141, 143, 425, 489
mirrored volumes (RAID-1)

bad sector handling, 490
creating, 151
data redundancy, 425
defined, 149–151
I/O operations, 150–151, 159

mirroring
memory mirroring APIs, 556
Volume Shadow Copy Service, 177

“Missing operating system” error, 537
MiSystemPteInfo variable, 235–236
MiSystemVaType arrays, 243
MiSystemVaTypeCount arrays, 244, 245
mitigation component (FTH), 227
MiTrimAllSystemPagableMemory

function, 295
MiVa regions, 243
MiWriteGapCounter variable, 314
MiZeroInParallel function, 189, 302
Mklink.exe utility, 185
MLC (multilevel cell memory), 128–129
mlink utility, 430
MmAccessFault handler, 267, 384,

411, 413
MmAllocate functions, 285, 302
MmAvailablePages variable, 315, 318
MMC snap-in. See Disk Management

MMC snap-in
MmFlushAllFilesystemPages function,

314
MmFlushAllPages function, 314
MmFlushSection function, 412
Mm functions, 193, 295

MmInitializeProcessAddressSpace
function, 352

MmLock functions, 199
MmMapIoSpace function, 194
MmMapLockedPages function, 296
MmMappedPageWriterEvent event,

314
MmMapViewInSystemCache function,

411
MmMaximumNonPagedPoolInBytes

variable, 214
MmModifiedPageWriterGate object,

315
MmNumberOfPhysicalPages variable,

318
MmPagedPoolWs variables, 214, 334,

335
MmPagingFileHeader event, 315
MmPrefetchPages function, 327
MmProbeAndLockPages function,

199, 296
MmProbeAndLockProcessPages

function, 296
MmResidentAvailablePages variable,

318
MM_SESSION_SPACE structure, 233,

234
MmSizeOfNonPagedPoolInBytes

variable, 214
MmSizeOfPagedPoolInBytes variable,

214
MmSystemCacheWs variables, 334,

335
MmSystemDriverPage variable, 335
MmSystemPtesWs variable, 334
MMU (memory management unit),

254, 257, 260
MmUnlockPages function, 296
MmUnmapLockedPages function, 296
MmWorkingSetManager function,

188, 314, 333
MmZeroPageThread routine, 189
model-specific registers (MSRs), 282
modified lists

cache manager write operations,
379

cache physical size, 363
displaying information, 191
mapped page writer, 188
page faults, 267, 269
page writer, 314
PFNs, 316, 318
redistributing memory, 341
shared pages, 270
system cache, 361, 363–364
viewing page allocations, 304–310

modified-no-write lists, 269, 270
modified-no-write pages, 316
Modified no-write PFN state, 297, 299
modified page lists, 196
modified pages, 316, 412

modified page writer
defined, 188, 196
file system drivers, 407, 412
file system operation, 412
PFN database, 314–315

Modified PFN state, 297, 299
modified PFN state flag, 317
monitors, auxiliary, 78
more command, 428
motherboard devices, 85, 578
motherboard driver, 500
mounting volumes, 153–158, 162,

399, 444
Mount Manager, 155
Mount Manager driver, 153–154
mount operations, 141
mount points, 20, 154–155, 469
mount requests, 155
Mountvol.exe tool, 155
mouse devices, legacy, 511
move APIs, 472
MoveFileEx API, 525
moving files, 525
Mpclaim.exe, 135
Mpdev.sys driver, 134
MPIO (Multipath I/O), 134–136, 138
Mpio.sys driver, 134
Msconfig utility, 528
MS-DOS

file names, 449
generating file names, 451
tunneling cache, 452

MS-DOS applications, 200, 503
Msdsm.sys module, 134
msi element, 508
MsInfo32.exe utility, 10–11, 321, 403
Msiscsi.sys driver, 133
MSRs (model-specific registers), 282
MUI files, 175
multiboot systems, 393
multifunction device container IDs,

91–92
multilevel cell memory (MLC), 128–129
multilevel VACB arrays, 370
multipartition volumes

basic disks, 139
defined, 126
dynamic disks, 138, 141
I/O operations, 159
management, 147–152
mirrored, 149–151
RAID-5, 152
spanned, 148
storage management, 147–152
striped, 148–149

Multipath Bus Driver (Mpio.sys), 134
multipathing solutions, 134
multipath I/O (MPIO) drivers, 134–136,

138
multiple data streams, 426–428

Multiple Provider Router

626

Multiple Provider Router, 526
Multiple Universal Naming Convention

(UNC) Provider (MUP) driver,
85

multiplexed logs, 418–419, 422
multiprocessor systems

driver synchronizing, 39
initializing, 519
look-aside lists, 219
memory manager, 189
numbers of CPUs, 508
port drivers, 132

multithreaded applications, 223
MUP (Multiple Universal Naming

Convention Provider), 85
mutexes, 296, 519, 577
mutual exclusion (heap blocks), 221
Myfault.sys driver, 51–53, 564–565,

571

N
named data attributes, 448
Named Pipe File System (Npfs) driver,

31
named pipe file system drivers, 31, 523
named pipes, 54, 582–583
named streams, 393, 426, 441
name logging traces, 341
name resolution, 409
namespaces

session-private object manager,
228

shell, 434–435
volumes, 153–158

namespace subdirectories, 137
naming

devices, 15
disk class drivers, 136
I/O system, 1
section objects, 201

NAND-type flash memory, 128–130
NAS (network-attached storage), 514
National Language System (NLS) files,

511, 516, 517–518, 520
native applications, 501, 522
NDIS (Network Driver Interface

Specification), 7
neither I/O, 32, 33
nested file systems, 163
nested partitions, 140
nesting VHDs, 162
.NET Framework, 473
network adapters, 6, 85, 321
network API drivers, 6
network-attached storage (NAS), 514
network devices, 6, 81, 375
Network Driver Interface Specification

(NDIS), 7
network endpoints, 54

network file system drivers, 49, 440
network interface controller ROM, 514
network protocol drivers, 27
network providers, 526
network redirectors, 358, 389
network storage management, 125
Network subkey, 530–531, 532
new operator, 221
New Simple Volume wizard, 151
NIC ROM, 514
NLS files, 511, 516, 517–518, 520
NLS object directory, 521
NMI (nonmaskable interrupt), 550,

578, 593
NMICrashDump file, 593
“no cache” flag, 373
nocrashautoreboot element, 508
nodes (NUMA), 285
noerrordisplay element, 504
no-execute memory, 508
no execute page protection (DEP)

address space allocation, 246
ASLR, 250
disabling and enabling, 205, 206
memory manager, 204–209
PAE, 205, 260
processors, 204
software data execution

prevention, 208–209
stack cookies and pointer

encoding, 209
viewing, 207

nointegritychecks element, 508
nolowmem element, 508
nolowmen BCD option, 260, 321
nonbased sections, 287
noncached I/O

file object attributes, 19
file objects, 411
IRPs, 412
memory manager and, 374
page writers, 412
scatter/gather I/O and, 28

noncached memory mapping, 204
noncached read operations, 373, 381
noncommitted transactions, 484, 486
nonencoded pointers, 209
non-fault-tolerant volumes, 490
nonmaskable interrupt (NMI), 550,

578, 593
non-PAE kernel, 205
non-PAE systems, 253–254, 255,

256–258
nonpageable memory, 195
nonpaged look-aside lists, 219
nonpaged pool

address space, 237
buffer overruns, 569
commit charge, 276
debugging information, 574–575
defined, 212–213

displaying information, 191
dynamic address space, 232
expanding, 243
large page sizes, 194
leaks, 564
memory notification events,

335–337
memory quotas, 245–246
NUMA nodes, 285
performance counters, 215–219
reclaiming virtual addresses, 244
sizes, 213–214
system space, 228
VADs, 283

nonpaged pool buffers, 32, 78
nonpaged pool session memory, 66,

296
nonpaged system memory, 41
non–Plug and Play drivers

creating device objects, 14
defined, 6
KMDF initialization routines, 68
PnP levels of support, 82
Root driver, 85
Start values, 85

nonpower-managed queues, 75
nonprototype PFNs, 297–298
nonresident attributes (NTFS),

453–456
nonsparse data, 458–461
nontransacted writers and readers,

470–471, 473
Non Uniform Memory Architecture

(NUMA), 132, 213, 285, 317,
506, 518

nonvolatile data, 379
nonvolatile memory, 128
nonvolatile RAM (NVRAM), 348, 350,

512–513
No Reboot (Driver Verifier), 572
Normal I/O priority, 58, 59, 62–64
NOR-type flash memory, 128
Notmyfault.exe, 51–53, 218–219, 556,

564–567, 570, 580
noumex element, 505
novesa element, 505
“no write” log records, 359, 375
Npfs (Named Pipe File System) driver,

31
Nt5.cat file, 97
Nt5ph.cat file, 97
Ntbtlog.txt file, 533
NtCreateFile function, 20, 21, 408–409
NtCreateIoCompletion system service,

56
NtCreatePagingFile service, 274
NtDeviceIoControlFile function, 32
Ntdll.dll, 20, 221, 520
NtfsCopyReadA routine, 27
NTFS file system

alternate data streams, 397

 owner pages

 627

bad-cluster recovery, 487–490
BitLocker encryption, 166
change journal file, 461–464
change logging, 433
clusters, 397, 442
compression, 397, 432–433,

456–461
consolidated security, 467–469
crash codes, 551
data redundancy, 425
data structures, 441
defragmentation, 436–437
dynamic bad-cluster remapping,

429
dynamic partitioning, 437–439
encryption, 397, 435–436. See also

EFS (Encrypting File System)
fault tolerance, 425
file names, 449–453
file record numbers, 447
file records, 447–449
file system driver, 398, 439–441
flash memory, 130–131
hard links, 397, 429–430
high-end requirements, 424–425
indexing, 429, 464–465
I/O system, 2
isolation, 470–472
link tracking, 434–435
master file tables, 443–446
metadata logging, 479–483
mount points, 154–155
multiple data streams, 426–429
object attributes, 426
object IDs, 466
overview, 397–398
per-user volume quotas, 397,

433–434
POSIX support, 436
quota tracking, 466–467
recoverability, 397, 424–425,

477–491
reparse points, 469
resident and nonresident

attributes, 453–456
resource managers, 473–475
security, 397, 425
self-healing, 398, 490–491
spanned volumes, 148
sparse files, 456–461
symbolic links and junctions, 397,

430–432
transactional APIs, 472–473
transaction logging, 476–477
transaction semantics, 397
transaction support, 469–477
Unicode-based names, 428–429
volumes, 442

NTFS file system driver (Ntfs.sys), 398,
439–441

NTFS_FILE_SYSTEM stop code, 551

NtInitializeRegistry function, 523, 533
Ntkrnlpa.exe kernel, 260
Ntoskrnl.exe. See kernel (Ntoskrnl.exe,

Ntkrnlpa.exe)
NtQuerySystemInformation API, 64,

325, 342
NtReadFile function, 25, 32, 409, 410,

411, 573
NtRemoverIoCompletion system

service, 56
NtSetInformationFile system service,

56
NtSetIoCompletion system service, 57
NtSetSystemInformation API, 342
NtShutdownSystem function, 545
_NT_SYMBOL_PATH variable, 582
NtWriteFile function, 32, 33–34, 411
null modem cables, 578, 582
NUMA (Non Uniform Memory

Architecture), 213, 285, 518.
See also NUMA nodes

NUMA I/O, 132
NUMA nodes, 132, 317, 506
numproc element, 508
NVRAM (nonvolatile RAM), 348, 350,

512–513
nx element, 508

O
O index, 466
!object command, 16–17, 106
object context areas, 73, 74
object contexts, 72–73
object handle tracing, 519
object headers, 286
$OBJECT_ID attribute, 448, 466
object identifier files ($ObjId), 446
object IDs

attributes, 448, 466
change journal and, 462
distributed link-tracking, 435
indexing and, 465
NTFS on-disk structure, 466

object linking and embedding (OLE),
434

object manager
directory, 287
initialization, 518
look-aside lists and, 219
name resolution, 409
namespace directories, 519
namespaces, 15
power request objects, 106
reparse points, 154
section objects, 286

object manager directory, 287
Object Viewer (Winobj.exe)

device names, 16

memory resource notifications,
337

power request objects, 106
registered file systems, 403
section objects, 287
shadow volumes, 182
symbolic links, 24

ObjId metadata file, 466
ObOpenObjectByName function, 409
OCA (Online Crash Analysis), 563–564,

585
OEM fonts, 505
OEMs (original equipment

manufacturers), 529, 568
offline storage, 427
offsets

disk I/O operations, 159
file-to-offset pairs, 341

OLE (object linking and embedding),
434

onecpu element, 508
online crash analysis (OCA), 563–564,

585
opaque objects (KMDF), 72
open devices, 19–24
OpenEncryptedFileRaw function, 497
OpenFileMapping function, 201
open files, 201, 409
open mode flags, 19
open operations, 49
operating system errors, 537
operating system files, 509
operating system images, 228
operating system versions, 563
oplock (opportunistic locking),

401–404
optical media, 125, 393
Optical Storage Technology

Association (OSTA), 393
optimization software, 345–346
Optin and Optout modes, 206, 208
optionsedit element, 509
original equipment manufacturers

(OEMs), 505, 529, 568
original volumes, 177
OS/2 applications, 448
osdevice element, 509
OSTA (Optical Storage Technology

Association), 393
output buffers, 32–33
outswapping stacks, 188
overcommitted resources, 275
overlapped flags, 25
overlocking, 199
overrun detection, 293–294
overutilized cores, 113, 115, 119
overwriting data, 461
overwriting flash memory, 128
Owner bit (PTEs), 257
owner pages, 418, 421–423

P processor state

628

P
P processor state, 108–109, 120
package states. See P processor state
packets, 3. See also IRPs (I/O request

packets)
padding files, 176
PAE (Physical Address Extension)

address translation, 260–264
loading kernel, 509
no execute page protection, 205
overview, 260–264
page file size, 274
physical memory support, 321
requiring, 508
viewing components, 262–264

pae element, 509
page access traces, 341
page-aligned buffers, 28
PAGE attributes, 203–204
Pagedefrag tool, 274
page directories, 255–256, 262–264,

265
page directory entries (PDEs), 254,

255, 261
page directory indexes, 253, 254
page directory pointer indexes, 262
page directory pointer structures, 266
page directory pointer tables (PDPTs),

260, 262, 263
paged look-aside lists, 219
paged pool

address space, 237
buffer overruns, 569
commit charge, 276
debugging information, 574–575
defined, 213
dynamic address space, 232, 233
expanding, 243
high IRQL faults, 565–567
leaks, 278, 564
memory notification events,

335–337
memory quotas, 245–246
performance counters, 215–219
pool leaks, 218–219
segment structures, 288
session-specific, 228
sizes, 213–214
in system space, 229

paged pool working sets, 229, 334
PAGEDU64 signature, 550
PAGEDUMP signature, 550
PAGE_EXECUTE flags, 205, 210
PAGE_FAULT_IN_NONPAGED_AREA

stop code, 550
page faults and fault handling

adjusting working sets, 333
buffer overruns, 571
clustered faults, 272–273
collided faults, 271, 272

commit charge and limits, 275–279
copy operations, 411
crashes, 549
defined, 267–268
demand paging, 324
file system drivers, 408
file system operation, 413
hard and soft faults, 325
high IRQL faults, 590–592
in-paging I/O, 271–272
invalid PTEs, 268–269
I/O optimization, 30
manual crashes, 565
modified page writer, 314
nonpaged pools, 212–213
number per seconds, 331
overview, 267–268
page files, 273–274
page file size, 278–279
prefetching pages, 324
prototype PTEs, 269–271
read operations, 373
recursive faults, 584
redistributing memory, 341
standby or modified lists, 318
triple faults, 584
VADs, 411
valid virtual addresses, 255

page-file-backed mapped memory,
276, 350

page-file-backed sections, 194, 201,
269–271, 302

page file headers, 315
page file offsets, 268, 269
page files. See paging files
page frame number database (PFN).

See PFN database
page frame numbers (PFNs), 253, 255,

261, 315–319
page frame transitions, 300–302
page health, 129
pageheap, 226
page lists, 300–302, 314, 315
page map level 4 table, 265
page mappings, 259
page parent directories, 265
page priority, 310–313, 342–344
page protection, 209–210, 287
pager, 255, 269, 271, 272
pages

aging, 341
buffer management, 32
committed, 195–198
demand paging, 282
dummy, 272–273
dynamic page sizes, 194
free, 195
guard, 197, 204, 280
large and small, 193–195
locking in memory, 199

mapping address space to. See
address translation

memory quotas, 246
modified by multiple processes,

387
modified page writer, 196,

314–315
NAND-type flash memory, 129
owner, 418, 421–422
page fault handling. See page

faults and fault handling
PFNs, 253, 255, 261, 315–319
prefetching, 272, 324–328
prioritizing, 310–313, 342–344
private page tables, 387
protection, 195
removing from working sets, 330
reserved, 195–198
reusing, 360
robusted, 344–345
shareable, 195, 269–271
shared memory, 200
store, 349
Superfetch agents, 339
types, 316
updating sectors, 130
usage information, 412–413
views of opened files, 360
zeroing out, 189, 285
zero-initialized, 195

page table entries. See PTEs (page
table entries)

page table indexes, 253, 254, 256
page tables

commit charge, 276
creating, 503
defined, 252
demand paging, 282
entries. See PTEs (page table

entries)
IA64 systems, 266–267
in-paging I/O, 271–272
overview, 256–258
page directories, 255–256
PFN database, 297–298, 317
process address space, 196
processes, 228, 256
session space, 256
size, 261
TLB entries, 194
viewing, 262–264, 319
x64 address translation, 265

page writers
balance set manager/swapper

events, 314
cache operations, 375
deadlocks, 314
dirty pages, 188
file system drivers, 407, 412
file system operations, 412
free page lists, 315

 permissions

 629

mapped files, 314–315
mapped page writer, 188. See also

mapped page writer
memory manager, 314–315, 412
modified lists, 188, 314
modified page writer, 188, 196. See

also modified page writer
noncached I/O, 412
page faults and fault handling, 314
pages, 196, 314–315
paging files, 314–315
PFN database, 314–315
PTEs (page table entries), 315
recovery process, 359
working sets, 315
write-behind operations, 385, 386

paging boosts, 61
paging bumps, 62
paging files

commit charge, 278–279
commit limit, 199
complete memory dumps,

553–554, 555
containing crash dumps, 559
Control Panel applet, 188
copy-on-write avoidance, 180
crashes, 549
creating, 274, 523
defragmentation, 274, 437
file system driver operations, 412
headers, 315
I/O not in Process Monitor, 415
kernel memory dumps, 556–557
lists of, 273–274
memory manager, 189
memory quotas, 245–246
modified page writer, 314–315
not on VHDs, 163
offsets, 268, 269
page faults, 267, 268, 273–274,

278–279
paging bumps, 62
routines, 189
section objects, 287
shadow copies, 179
shared pages, 270
shutdown process, 545
size, 189, 278–279
troubleshooting without, 581
viewing, 274
viewing usage, 278–279
Windows use of, 275

paging I/O IRPs, 30, 411, 412
paging lists, 300–302, 343
paging memory to disk, 187
paging system (memory manager),

27–28
parallel I/Os, 76, 132
parallel ports, 137, 511
parameters

heap checking, 225

minidumps, 554
verbose analysis, 567–568
viewing dump files, 558–559

parent objects (KMDF), 71, 74
parent virtual hard disks, 162
parity bytes, 152
parity errors, 297, 317
parity information, 425
parked cores

check phases, 116, 117–118
defined, 109
frequency settings, 120
increase/decrease actions, 113–114
overriding, 113, 115
parking policies, 115
PPM parking and unparking, 119
viewing, 121–122

parse functions, 409
partial MDLs, 296
partition device objects, 136
partition entries (LDM), 142–143
partition manager, 131, 138, 141
partitions

basic disks, 138
bootable, 502
boot processes, 500, 501
defined, 125
extended, 139
file object pointers, 19
GUID Partition Table style, 139–140
LDM database, 141–145
LDM partitioning, 145–146
MBR style, 139
multipartition volumes, 147–152
nested, 140
NTFS dynamic, 437–439
partition manager, 131, 138, 141
physical sectors, 128
primary, 139
recovery, 535
registry information, 153
software provider interface, 160

partition tables, 125, 139, 501–502
Partmgr.sys (partition manager), 131,

138, 141
passive filter drivers, 413–414
passive IRQL (0), 39
PASSIVE_LEVEL IRQL, 39
passwords, 170, 172–173, 175, 425
patches, installing, 538
Patchguard DPC, 240
path names, 154, 408, 431
paths

hard links, 429–430
multipath drivers, 134–136
operating systems, 510
symbolic links, 20

PC/AT keyboard buffer, 505
PCI buses

ACPI BIOS information, 511
debugging devices, 504

device memory, 323
drivers, 6
dynamic IRQ resources, 510
KMDF support, 68
workarounds, 521

PCI Express buses, 509
pciexpress element, 509
Pciide.sys driver, 133
Pciidex.sys driver, 133
PCMCIA buses, 6, 68
PCRs (platform configuration

registers), 168–169, 170, 174
PDAs (personal digital assistants), 78
PDEs (page directory entries), 254,

255, 261
PDOs (physical device objects), 89–90,

163
PDPT (page directory pointer table),

260, 262, 263
PDRIVE_LAYOUT_INFORMATION_EX

structure, 138
peak commit charge, 278, 279
peak paging file usage, 277
peak working set size, 331
PEBs (process environment blocks),

246, 351
PE headers, 248–249
pending file rename operations, 525
Pendmoves utility, 525
per-file cache data structures, 368–373
perfmem element, 509
performance. See also Performance

Monitor
page files, 278
pageheap, 226
physical memory limits, 320
standby lists, 338

performance check intervals
(processors), 114, 115

performance checks, 116–120,
121–122

performance counters
cache faults, 335
clock sources, 510
pool sizes, 213, 214

performance data logging buffers, 509
Performance Monitor, 150–151, 277,

331, 387–388
performance states, 113–114, 114–116,

120
PERFSTATE_POLICY_CHANGE_IDEAL

state, 113
PERFSTATE_POLICY_CHANGE_ROCKET

state, 114
PERFSTATE_POLICY_CHANGE_STEP

state, 114
per-handle caching information, 19
periods (.), 449
permissions

access-denied errors, 416
file, 435

per-processor look-aside lists

630

permissions, continued
no execute page protection, 204
NTFS security, 425
traversal, 436

per-processor look-aside lists, 390
per-process private code and data,

228
per-user quotas, 246, 433–434
PFAST_IO_DISPATCH pointers, 26–27
PF files, 325
!pfn command, 310, 319
PFN database

memory manager, 189
modified page writer, 314–315
overview, 297–319
page list dynamics, 300–310
page priority, 310–313
PFN data structures, 315–319
Superfetch rebalancer, 339
viewing, 300
viewing entries, 319

PFN data structures
collided page faults and, 272
creating, 243
PFN database, 315–319
viewing, 263
x64 address translation, 265

PFN image verified flag, 317
PFN_LIST_CORRUPT stop code, 550
PFN of PTE numbers, 317
PFNs (page frame numbers), 253, 255,

261, 315–319
Pf routines, 344
phase 0 initialization, 516–518
phase 1 initialization, 518–522
Phase1Initialization routine, 518
physical addresses

BCD elements, 504
DMA interface, 375
physical memory support, 321
reading/writing data to buffers,

373
size, 261
sorting pages, 309

Physical Address Extension. See PAE
(Physical Address Extension)

physical byte offsets, 443
physical client CLFS logs, 418
physical container identifiers, 420
physical descriptions, 481
physical device objects (PDOs), 89–90,

163
physical disk objects, 136
physical LSNs, 422–423
physical memory

Address Windowing Extensions,
210–212

cache flushing operations, 379
cache manager, 355, 356
cache physical size, 363–364
client memory limits, 321–323

complete memory dumps,
553–554

displaying information, 190–192,
510

dumping information about, 362
global memory manager, 361–362
limits, 320–323
lists, 189
locking pages, 199
maximums, 187
notification events, 335–337
system variables, 318
truncating, 506

physical memory access method, 373
physical memory limits, 320–323
physical NVRAM stores, 350
physical page allocations, 305–306,

574
physical page numbers (PFNs), 253,

255, 261, 315–319
physical pages, 318, 504
physical storage devices, 125
PIDs (product IDs), 90
PIN_HIGH_PRIORITY flag, 366
pinning, 366, 373, 374–375
PIN numbers, 166
PipCallDriverAddDevice function, 531
pipes, 4
PKI (public key infrastructure), 496
placement policies, 328–329
plaintext attacks, 173
platform configuration registers

(PCRs), 168–169, 170, 174
Platform Validation Profile (TPM),

168–170
Plug and Play (PnP)

add-device routines, 12
commands, 29
container notifications, 65
drivers, 6, 14, 69
exposing interfaces, 15
I/O system and, 1
Plug and Play manager. See Plug

and Play manager
UMDF reflectors, 79
WDM drivers, 6–7

Plug and Play BIOS, 520
Plug and Play drivers, 6, 14, 69
Plug and Play manager

defined, 2
device enumeration, 85–89
device stack driver loading, 90–94
device stacks, 89–90
device trees, 86
driver installation, 84–98
driver loading, 84–94, 531–532
initialization, 84–94, 518
levels of support, 82
overview, 81
PnP drivers, 6
processing routines, 82–84

replacing CMOS, 511
resource arbitration, 81
shutting down, 545
Start values, 84–85
volume manager, 141

PnP drivers, 6, 14, 69
PnP manager. See Plug and Play

manager
Poavltst.exe utility, 106
!pocaps command, 103
PoClearPowerRequest API, 106
PoCreatePowerRequest API, 106
PoDeletePowerRequestI API, 106
PoEndDeviceBusy API, 105
pointer encoding, 209
pointers

device objects, 19
section object, 19
VPBs, 19

pointer values, 573
polling behavior, 415
pool

allocation, 219, 592
compared to look-aside lists, 219
corruption, 203, 569–572, 590–592
crash stop codes, 550
execution protection, 205
expanding, 243
freelists, 285
leaks, 218–219
look-aside pointers, 516
monitoring usage, 215–219
nonpaged pools, 212–213
NUMA nodes, 285
paged pool, 213
pool manager, 550
Poolmon tags, 216
pool tags, 569
quotas, 294
session space, 213
sizes, 213–214
special, 213
system memory (kernel-mode

heaps), 212–220
tracking, 217, 294
types, 216
verification, 519
verifying allocations, 592

!pool command, 569, 592
pool freelists, 285
pool manager, 550
Poolmon utility, 215–219
pool nonpaged bytes, 191
pool paged bytes, 191
pool quotas, 294
pool tags, 569
Pooltag.txt file, 569–570
pool tracking, 217, 294
!poolused command, 217
!popolicy command, 104, 115
pop operations, 241

 processes

 631

PoRegisterDeviceForIdleDetection
function, 105

PoRequestPowerIrp function, 101
portable music players, 78
port drivers

bandwidth reservation, 64
defined, 7
function drivers, 89
operating system specific, 132
prioritization strategy, 60
storage management, 132–136
storage stacks, 131

porting drivers, 1
port notifications, 57–58
PoSetDeviceBusyEx function, 105
PoSetDeviceBusy function, 105
PoSetPowerRequest function, 106
PoSetSystemPower function, 545
POSIX subsystems, 4–5, 436, 449–450
POST (power-on self test), 537
PoStartDeviceBusy API, 105
PostQueuedCompletionStatus

function, 55, 57
post tick queue, 390
potential page file usage, 279
power and power manager

ACPI power states, 98–100
commands, 29
crashes, 549
defined, 2
driver and application control, 105
driver power management,

101–102
functionality, 100–101
initializing, 519, 521
I/O system, 2
KMDF queues, 75
MPIO, 134
overview, 98–100
PnP dispatch routines, 82
PnP drivers, 6
policies, 100, 103–104, 114–116
power availability requests,

105–108
power domains, 109, 120
powering on, 499
power-managed queues, 75
power request objects, 106–108
processor power management.

See PPM (processor power
management)

shutting down, 545
states, 102–104, 108–109, 120, 549
stress tests, 67
UMDF reflectors, 79
WDM drivers, 6–7

power availability requests, 105–108
Powercfg utility, 108
PowerClearRequest API, 106
PowerCreateRequest API, 106
power dispatch routines, 101

power domains, 109, 120
powering on, 499
power-managed queues, 75
power-on self test (POST), 537
power policies, 100, 103–104, 114–116
power request objects, 106–108
PowerSetRequest API, 106
power states, 102–104, 108–109, 120,

549
PPM (processor power management)

algorithm overrides, 113
core parking policies, 109–110
increase/decrease actions, 113–114
performance checks, 116–120
thresholds and policy settings,

114–116
utility function, 110–113
viewing check information,

121–122
!ppmcheck command, 121–122
PpmCheckPhase... processes, 116,

117–118
PpmCheckPhaseInitiate phase, 116,

117
PpmCheckRecordAllUtility process, 118
PpmCheckRun process, 116, 117
PpmCheckStart callbacks, 116, 117
!ppm command, 111
PpmPerfApplyDomainState function,

120
PpmPerfApplyProcessorState routine,

120
PpmPerfChooseCoresToUnpark

function, 119
!ppmperfpolicy extension, 116
PpmPerfRecordUtility function, 118
PpmPerfSelectDomainState function,

120
PpmPerfSelectDomainStates function,

120
PpmPerfSelectProcessorState function,

120
PpmPerfSelectProcessorStates

function, 120
PpmScaleIdleStateValues function, 120
!ppmstate command, 112
PRCBs (processor control blocks), 121
preboot process, 171, 499–502
prefetched shared pages, 196
prefetcher, 324–328, 520
prefetch operations

clustered page faults, 272–273
defragmentation, 328
disabling, 325
files, 412–413
ideal NUMA node, 285
logical prefetcher, 324–328, 520
Superfetch rebalancer, 339
viewing, 326, 327

Preflect utility, 352–353
prepare records, 477

prereading blocks of data, 378, 383
pretransaction data, 470
Previous Versions data, 182–184
primary buses, 86
primary partitions, 138, 139
primitives in memory manager,

200–202
printer drivers, 6
printer mappings, 526
Print Spooler, 106
priorities

I/O. See I/O prioritization
memory, 311
page, 310–313, 342–344
PFN entries, 316
priority boosts, 301
zero page thread, 301

prioritized standby lists, 339
Priority 1–7 pages, 343
private address space, 228, 247
private byte offsets, 23
PrivateCacheMap field, 410
private cache maps

cache data structures, 364
file object attributes, 19
file object pointers, 368
file objects, 410
read requests, 378
viewing, 371–373

private data (physical memory), 260
Private Header (LDM), 142
private heaps, 221
private keys, 97, 436, 491–493, 496
private memory, 194, 275, 276, 277,

303
private pages. See committed pages
private page tables, 387
proactive memory management. See

Superfetch service (proactive
memory management)

ProbeForRead function, 33
ProbeForWrite function, 33
problems. See troubleshooting
Procdump utility, 352
process buffers, 373, 377
!process command

DirBase field, 262
listing processes, 575
minidump data, 554–555
Notmyfault.exe, 52
outstanding IRPs, 31
processor information, 580
viewing processes, 43

Process counter objects, 190–192
process environment blocks (PEBs),

246, 351
processes

address space, 237, 248
attaching to, 196
cache coherency, 356–358

Process Explorer

632

processes, continued
child, 193
copy-on-write, 209–210
cross-process memory access, 196
current, 554
DEP protection, 207
emptying working sets, 307–308
execution protection, 205
heap types, 221–222
hung, 351
increasing address space, 229–231
IRP cancellation, 50–51
lists of running, 554, 575
mapped private code and data,

228
memory limits, 320–323
memory quotas, 245–246
minidumps, 351
page directories, 256
pages modified by, 387
page tables, 256
priorities, 311, 342
private address spaces, 203, 228
process objects, 203
process reflection, 351–353
process/stack swapper, 188
process VADs, 283–284
protecting memory, 203–204
prototype PTEs, 269–271
reparse points, 431
section objects, 286
sessions, 233–235
shared memory, 200–202
shutdown levels, 543
switching address space, 555
termination, 48
troubleshooting, 351–353,

415–416
unkillable, 48–49, 52
viewing for IRPs, 43
virtual size, 187
working sets, 324–329

Process Explorer
ASLR protection, 251
cache size, 364
DEP protection, 207
device handles, 22–23
displaying memory information,

191
listing kernel-mode drivers, 10–11
mapped files, 202, 287
maximum pool sizes, 214–215
power request objects, 106–107
prioritized standby lists, 312
reserved and committed pages,

197–198
threads, 44
UMDF interactions, 80
unkillable processes, 52

process heaps, 221, 246, 247
process manager, 50, 414, 517, 518,

521
Process Monitor (Procmon.exe),

62–64, 327, 380–386, 413–416
process objects, 203
processor control blocks (PRCBs), 121
processor cores

check phases, 116, 117–118
domains, 109
increase/decrease actions, 113–114
PPM parking and unparking, 119
thresholds and policy settings,

114–116
utility, 110–113

processor power management.
See PPM (processor power
management)

processors
APIC clusters, 506
check phases, 116, 117–118
concurrency value, 55
configuration flags, 506
cores. See processor cores
deadlocks, 577
displaying information, 510
DPC stacks, 279, 282
environment variables, 523
groups, 508
initializing, 516
listing compatible, 574
maximum number, 508
no execute page protection, 204
page sizes, 199
performance checking, 121–122
preparing registers, 512
processor power management

(PPM), 108–122
server threading models, 53
single bit corruption, 570
stack traces, 574
states, 120
switching CPU contexts, 580
thresholds and policy settings,

114–116
TPM, 168
utility and frequency, 111–112
x64 system virtual address

limitations, 240–242
processor states, 120
process page file quotas, 275, 277, 282
process reflection, 351–353
process/stack swapper, 188
process VADs, 283–284
PROCESS_VM_READ or WRITE rights,

196
process working set list, 318
process working sets, 324, 329
Procmon.exe (Process Monitor),

62–64, 327, 380–386, 413–416

product IDs (PIDs), 90
programs. See applications
progress bars, 506
promotion (performance states), 114
protected boot mode, 503
protected driver list, 98
protected mode with paging

(processors), 500, 503
protected prefixes, 523
protected processes, 521
protecting memory, 203–204
protection

copy-on-write, 209–210
pages, 193, 195, 272, 287

protective MBR, 140
protocol device classes, 78
protocol drivers, 6
Prototype bit (PTEs), 257
prototype PFNs, 297–298
prototype PTEs, 269–271, 272, 288,

302, 317
PS/2 keyboards, 578
PsBoostThreadIo API, 61
Psexec tool, 594
PspAllocateProcess function, 352
!pte command, 256, 263, 586
PTEs (page table entries)

access bits, 341
addresses, 316
defined, 252
dynamic address space, 232
expanding, 243
hardware or software Write bits,

258
IA64 address translation, 266–267
in-paging I/O, 271–272
invalid, 267–269
nonexecutable pages, 205
original, 317
overview, 256–258
page fault handling, 268–271
page files, 268
page writer, 315
PFN database, 297–298
prototype, 269–271
system, 235–236
system, viewing, 235–236
system space, 229
VADs, 283
valid fields, 256–257
viewing, 235–236, 262–264, 586
virtual addresses, 254

public key cryptography, 97, 164, 436,
491–493

public key infrastructure (PKI), 496
pushlocks, 189, 240, 258
push operations, 241
PXE, 514

 recovery agents

 633

Q
quadwords, 263
quantum expiration, 38
query APIs, 472
QueryDosDevice function, 23
QueryMemoryResourceNotification

function, 335
query remove notification, 83–84
query-stop command, 83–84
QueryUsersOnEncryptedFile function,

497
queue objects, 56
queue pointers, 56
queues, 75, 76
quietboot element, 509
quietboot option, 519
quota control entries, 466–467
Quota Entries tool, 434
quota files ($Quota), 446, 466–467
QUOTA_LIMITS_HARDWS_MIN_

ENABLE flag, 329
quotas

control entries, 466–467
initializing, 526
NTFS per-user, 433–434
processes, 517
quota files, 446, 466–467
virtual address space, 245–246

quota tracking, 465, 466–467

R
R handles, 405
$R index, 469
race conditions, 258, 570
RADAR (Windows Resource Exhaustion

Detection and Resolution),
351, 352

RAID-0 volumes. See striped volumes
RAID-1 volumes. See mirrored volumes

(RAID-1)
RAID-5 volumes, 141, 151, 425, 490
RAID volumes

creating, 442
port drivers, 132

RAM
Address Windowing Extensions,

211, 212
commit charge, 275–277
commit limits, 199, 275–277
corruption, 548
crashes, 548
diagnostic tools, 534
DMA errors, 570
I/O priorities, 58
optimization software, 345–346
optimizing boot process, 527–528
page files, 274, 278–279
physical memory limits, 320–323

pool sizes, 213
single bit corruption, 570
translating address space. See

address translation
usage, 190
viewing working sets, 332
vs. flash memory, 128

ramdiskimagelength element, 509
ramdiskimageoffset element, 509
ramdisks, 507, 509
ramdisksdipath element, 509
ramdisktftpblocksize element, 509
ramdisktftpclientport element, 509
ramdisktftpwindowsize element, 509
RAMMap utility, 192, 304–310
random I/O, 19, 347
randomization (block metadata), 225
random number generation, 168, 510
RAW disks, 510
RAW file system driver, 157, 398
raw traces and logs, 341
RDBSS (Redirected Drive Buffering

Subsystem), 400
Rdyboost.sys (ReadyBoost), 346–350,

397, 527–528
read-ahead operations

asynchronous with history, 378
cache manager work requests,

390, 412–413
compressed files, 460
disabling, 378–379
fast I/O, 377
file system drivers, 408
file system operations, 412–413
intelligent read-ahead, 378–379
oplocks, 401–402
overview, 377
system threads, 390
viewing, 380–386

read-commited isolation, 470–471
ReadDirectoryChanges API, 473
ReadDirectoryChangesW function,

415, 433
ReadEncryptedFileRaw function, 497
ReadFileEx function, 38
ReadFile function, 25, 32, 408, 409, 473
ReadFileScatter function, 28
read-in-progress bits, 272
read-in-progress PFN flag, 317
read-isolation rules, 473
read-modify-write operations, 127
read-only file attributes, 448
read-only memory, 297, 547, 573
read-only status, 195, 211, 258, 264,

267
read operations

active views, 360
buffered I/O, 32
cached and noncached versions,

373, 381
copies of files in memory, 288

crashes, 547
diagrammed, 25, 26
explicit file I/O, 408
fast I/O, 376–377
file attributes, 447
file handles, 473
in-paging I/O, 271–272
KMDF, 76, 77
leases, 405
LFS log files, 480
logical blocks, 127
mirrored volumes, 150–151
PAGE attributes, 203–204
paging files, 62
prefetched pages, 272–273
ReadyBoost, 348
scatter/gather I/O, 28
shadow copies, 179
transacted writers and readers, 470

ReadProcessMemory function, 196,
203

read/write access, 195, 211
ReadyBoost, 346–350, 397, 527–528
ReadyBoot, 527–528
ReadyDrive, 348–350
real boot mode, 502–503
reason callbacks, 548
rebalancer, 339, 341, 342–344
rebooting

automatic, 508
breaking into hung systems, 579
Windows RE, 536

reciprocals, 517
recognizing volumes, 398
recording utility values, 118
record offsets (LSNs), 421
records, NTFS file, 447–449
recoverable file systems, 355, 359,

478–479
recovery

analysis pass, 484–485
bad-cluster recovery, 487–490
disk recovery, 483–487
dynamic bad-cluster remapping,

429
fault tolerance, 425
implementation, 477
log file passes, 484–487
log files ($LogFile), 359, 445
NTFS recoverability, 424–425,

477–491
RAID-5 recoverability, 152
recoverable file systems, 355, 359,

478–479
recovery partitions, 535
redo pass, 485
self-healing, 490–491
striped volumes, 149
TxF process, 477
undo pass, 485–487

recovery agents, 494–495, 496

recoveryenabled element

634

recoveryenabled element, 506
recovery keys, 170, 172–173, 175
recovery partitions, 535
recovery sequence (BCD), 506
recoverysequence element, 506
recursive callouts, 281, 589
recursive faults, 584
Redirected Drive Buffering Subsystem

(RDBSS), 400
redirectors, 400, 401, 440
redo entries, 481, 482
redo pass, 477, 480, 485
redo records, 476
redundant volumes, 488
reference counts, 315, 316, 318
referenced directory traces, 325
referenced file traces, 325
reflectors, 79
Regedit utility, 541
regions

CLFS, 421
FAT, 394

registered device driver bugcheck
callbacks, 581

registered drivers, 10–11, 155, 398,
403–404

registers, 39
registry

boot process, 132
cache virtual size, 361
complete crash dump enabling,

554
crash parameters, 550
deciphering driver names, 552
dedicated dump files, 551
device driver identification and

loading, 90–94, 530–532
Driver Verifier values, 293
dump file names, 550
enumeration keys, 89, 91
errata manager, 520
file rename operations, 525
forcing high memory addresses,

231
high and low memory values, 336
hive files. See registry hive files.
initializing, 522, 523
I/O system, 2
KMDF object keys, 71
large page size key, 194
last known good settings, 530
lists of page files, 273–274
loading drivers and services,

84–85
Memory.dmp file options, 557
mounted device letters, 153
overrun detection, 294
partitions, 138
per-user quotas, 246
prefetch settings, 325

processor thresholds and policy
settings, 114–116

self-healing entries, 491
service configuration keys, 531
subkeys, 89, 91
system code write protection, 574
tracking PTEs, 236
troubleshooting issues, 415
VDS information, 160

registry hive files
encryption, 163
HARDWARE hive, 515, 520
loading, 510, 523
loading user set, 526
SYSTEM hive, 520, 540

regular queues (cache management),
390

rekeying volumes, 165
relative paths, 430
releasing address space, 196
relocatephysical element, 506
remapping bad sectors, 487
remote boot debugging, 504
remote disks, booting from, 514
remote file replication services, 413
remote FSDs, 400–407
removable devices, 153, 158
removal requested PFN flag, 317
remove command, 83–84
remove/eject device utility, 83
removememory element, 509
RemoveUsersFromEncryptedFile

function, 497
rename APIs, 472
renaming files, 461, 525
$Repair (transaction repair directory),

446
repairing

installation, 535–537
self-healing volumes, 490–491

repair installations, 539
reparse data, 431
$REPARSE_POINT attribute, 448
reparse point files ($Reparse), 446, 469
reparse points, 154, 431, 448, 462, 469
reparse tags, 431, 469
replacement policies, 328–329
replication agents, 417
reporting errors, 561–562
repurpose counts, 312
reserve cache, 191
reserved pages, 195, 197–198,

199–200, 226
reserving and committing pages,

195–198
resident attributes (NTFS), 453–456
resident pages, faults, 267
resident shared pages, 196
resident size of paged pool, 214
resolution (BCD elements), 505
resolution settings (video), 524

resource allocation (PnP), 81
resource arbitration (PnP), 81, 83
resource lists (KMDF), 71
resource manager objects, 519
resource managers, 473–475, 477
resource range lists (KMDF), 72
resource requirements lists (KMDF), 72
restart area (LFS), 479–480
restart LSNs, 421, 476, 477
restart records, 476
restore points, 183, 534, 539, 540, 542
restoring previous versions, 182–184
restrictapiccluster element, 509
resumeobject element, 504, 509
Retrieve API, 70
RH (Read-Handle) handles, 405
Rivest-Shamir-Adleman (RSA), 492, 496
RMs (resource managers), 473–475,

477
robusted pages, 344–345
robust performance, 344–346
rocket model (PPM), 114, 120
rollback operations, 425, 481, 485, 542
Rom PFN flag, 317
Rom PFN state, 297, 299
Root bus driver, 85
root directories, 395, 435, 445
rotate VADs, 284
rotating magnetic disks, 126–128
rotational latency, 347
RSA (Rivest-Shamir-Adleman), 492, 496
RtlCloneUserProcess function, 351
RtlCreateProcessReflection function,

351, 352
RtlGenerate8dot3Name function, 451
Rtl interfaces, 221, 250, 294, 295
Rtlp functions, 351, 352
Run DLL Component (Rundll32.exe),

95, 325
runs, 444–458, 459
run-time environments, 78, 80
RW (Read-Write) handles, 405
RWH handles, 405

S
S0 (fully on) power state, 98–99, 101
S1 (sleeping) power state, 98–99, 101
S2 (sleeping) power state, 98–99, 101
S3 (sleeping) power state, 98–99, 101,

106
S4 (hibernating) power state, 98–99,

101
S5 (fully off) power state, 99, 101
safebootalternateshell element, 509
safeboot element, 509
SAFEBOOT variable, 523
safe mode

boot logging, 533–534
boot options, 509

 servers

 635

driver errors, 569
driver loading, 529–532
Driver Verifier settings, 293
registry entries, 521
safe-mode-aware programs, 532
troubleshooting startup, 529
Windows RE alternative, 534–537

safemode BCD option, 531
Safe Mode With Command Prompt,

509, 530
Safe Mode With Networking, 530
safe save programming, 452
safe structured exception handling,

208
salt (encryption keys), 172
SANs (storage area networks), 125,

133, 155
SAS (Serial Attached SCSI), 126, 132
SATA devices, 60, 64, 126, 132
saved system states, 99
scalability

heap functions, 224
I/O system, 1

scaling (performance states), 114, 120
scanning (Startup Repair tool), 536
scatter/gather I/O, 28
SCB (stream control block), 441, 473
scenario manager, 339
scenarios, 342
scheduled file I/O, 64
scheduled file I/O extension, 20
scheduled tasks, 58
scheduler, 113, 519
SCM (service control manager)

boot process, 501
initializing, 525
loading auto-start drivers, 88
safe mode boots, 532
SCM process, 31

screen savers, blue screen, 594
scripting (BitLocker), 164
scripts, user, 526
scrubbing pages, 317
SCSI devices, 60, 126
Scsiport.sys driver, 132, 133
SD cards, 347
SD Client buses, 68
$SDH (Security Descriptor Hash), 467,

468
SDI ramdisks, 509
SD/MMC support, 126
$SDS (Security Descriptor Stream), 425,

467, 468
sealing VMKs, 168, 170
search indexing priorities, 58
secondary dump data, 554
secondary resource managers, 473,

474–475
Second Layer Address Translation

(SLAT), 507
SeCreateSymbolicLink privilege, 431

section object pointers, 19, 288, 289,
368

section objects (control areas)
control areas, 288, 289–292
creating, 520, 524
defined, 286
file mapping objects, 356
increasing virtual memory, 210
memory manager, 200–202,

286–292
memory mapped files, 187, 193,

525, 549
prototype PTEs, 269–270
section objects, 200–202
viewing, 287

sections, 196, 269
sector-level disk I/O, 138
sectors

bad-sector remapping, 487
blocks, 126
defined, 125, 391, 501
disk sector formats, 126–128
encrypting, 173–174
GPT bits, 140
larger sizes, 443
LDM database, 142
NAND-type flash memory, 129
remapping bad clusters, 429
sector to client mapping, 423
signatures, 421
size, 349
trim command, 130
updating, 130

sector signatures, 421
sector size, 349
sector to client mapping, 423
Secure Digital cards, 347
$Secure metafiles, 425, 445, 467, 468,

469
security

AWE memory, 211
BitLocker, 163–176
boot process, 501
consolidated NTFS security,

467–469
encryption recovery agents, 495
heap manager, 224–225
I/O system, 1
NTFS design goals, 425
page files, 274
troubleshooting issues, 415
zero-initialized pages, 300
zones, 427

security contexts, 409
security cookies, 576
$SECURITY_DESCRIPTOR attribute, 448
security descriptor database, 445
Security Descriptor Hash ($SDH), 467,

468
security descriptors

change journal, 461

cross-process memory access, 196
database, 445
file attributes, 448
files, 21
indexing features, 429
section objects, 201
$Secure metadata files, 425, 445,

467, 468, 469
sharing descriptors, 469

Security Descriptor Stream ($SDS), 425,
467, 468

\Security directory, 519
security files ($Secure), 425, 445, 467,

468, 469
Security ID Index ($SII), 467, 468
security IDs (SIDs), 434, 466–467, 468,

494
security mitigations, 250
security reference monitor, 518, 519,

522
SeDebugPrivilege rights, 196, 203
seek times, 324, 347
segment dereference thread, 189
segments, 222, 270
segment structures, 288
SEH handler, 208
SEHOP (Structured Exception Handler

Overwrite Protection), 208
self-healing, 398, 490–491
SE_LOCK_MEMORY privilege, 48
semaphore object, 519
SendTarget portals, 134
sequential I/O, 19, 76, 344
sequentially reading files, 360
sequential read-ahead, 378
Serial Advanced Technology

Attachment (SATA), 60, 64,
126, 132

Serial Attached SCSI (SAS), 126, 132
serial devices, debugging, 504
serial hypervisor debugging, 507
serializing IRPs, 12
serial ports

BCD elements, 504, 505
breaking into hung systems, 578
device objects, 137
hypervisor debugging, 507
kernel debugger, 582

server applications
cache manager, 440
dynamic bad-cluster remapping,

429
execution protection, 205
threading models, 53

server farms (crash analysis), 563
Server Message Block (SMB) protocol,

400–401, 404
servers

crash buttons, 578
internal error reporting servers,

561–562

server-side remote FSDs

636

servers, continued
last known good (LKG) set, 526
Memory.dmp files, 557
physical memory support, 321
shadow copies, 179

server-side remote FSDs, 400–407
service control manager. See SCM

(service control manager)
Service Hosting Process (Svchost.exe),

94, 325
service loading, 84–85
service packs, 525, 538
services, shutting down, 545
Services.exe, 31
Services for Unix Applications, 352
Services registry key, 552
Session 0 window hook, 525
SESSION5_INITIALIZATION_FAILED

code, 522
!session command, 233
Session Manager (Smss.exe)

boot logging in safe mode, 533
boot logs, 542
boot process, 500, 501, 522–526
checking for crash dumps, 550
DLL order, 249
initialization tasks, 522–525
initializing, 522
large address space aware, 231
page file setup, 273–274
process, 228
running Chkdsk, 158
shutdowns and, 545

session manager process, 228
session namespaces, 409
session-private object manager

namespace, 228
sessions

container notifications, 65
defined, 228
dynamic address space, 243
initializing, 524
namespaces, 228, 409
session space utilization, 235
sessionwide code and data, 228
working sets, 324
x86 session space, 233–235

\Sessions directory, 523
session space

64-bit layouts, 237
defined, 228
dynamic address space, 233
IA64 address translation, 266
page tables, 256
pool, 213
utilization, 235
x86 systems, 233–235

Set APIs, 70, 472
SetEndOfFile API, 473
SetFileBandwidthReservation API,

20, 64

SetFileCompletionNotificationModes
API, 57

SetFileInformationByHandle function,
59, 473

SetFileIoOverlappedRange API, 20
SetFileShortName API, 473
SetFileTime API, 473
SetFileToOverlappedRanges API, 48
SetPriorityClass function, 59
SetProcessDEPPolicy function, 208
SetProcessShutdownParameters

function, 543
SetProcessWorkingSetSizeEx function,

199, 329, 330
SetProcessWorkingSetSize function,

329
SET_REPAIR flags, 491
SetThreadExecutionState API, 105
SetThreadPriority function, 59
Setupapi.dll, 95
Setupcl.exe, 524
SetupDiEnumDeviceInterfaces

function, 15
SetupDiGetDeviceInterfaceDetail

function, 15
Sfc.exe utility, 538
SfclsFileProtected API, 538
SfclsKeyProtected API, 538
shadow copies

backup operations, 181–182
operations, 178–181
set IDs, 185
shadow copy volumes, 185
transportable, on servers, 179
Volume Shadow Copy Service,

177–186
Shadow Copies for Shared Folders, 182
shadow copy device objects, 185
Shadow Copy Provider, 179–181
shadow copy volumes, 185
shareable address space, 247
shareable pages, 195, 196
share-access checks, 19
share counts, 315, 316, 317, 318
shared access leases, 405
shared access locks, 401
shared cache maps, 368, 371–373, 411
shared encrypted files, 493
shared heaps, read-only, 222
shared memory, 200–202, 203, 228
shared pages, 211, 269–271, 310
share modes (file objects), 19
shell, 434–435, 526, 563
shell namespace, 434–435
shim mechanisms, 227
short names, 448, 450, 451, 453
ShrinkAbort request, 438
ShrinkCommit request, 438
shrinking engine (partitions), 438
ShrinkPrepare request, 438
shutdown, 66, 537, 542–545

SideShow-compatible devices, 78
SIDs (security IDs), 434, 466–467, 468,

494
signatures

driver signing, 95–96, 97, 98
heap tail checking, 225
verification, 97

$SII (Security ID Index), 467, 468
simple volumes, 126, 151
single bit corruption, 570
single-layered drivers, 33–39
single-level cell (SLC) memory, 128
single-page granularity, 200
singly linked lists, 240, 242
SLAT (Second Layer Address

Translation), 507
SLC (single-level cell) memory, 128
sleep states, 82, 98–100, 101, 105–108
SLIST_HEADER data structure, 240, 241
slots in cache structures, 364
small-IRP look-aside lists, 28
small memory dumps (minidumps),

351, 554–556, 562, 579
small pages, 193–195
smartcards, 174, 175
SMB Server Message Block (SMB)

protocol, 400–401, 404
SmpCheckForCrashDump function,

550
SmpConfigureSharedSession Data

function, 524
SmpCreateDynamicEnvironment-

Variables function, 523
SmpCreateInitialSession function, 524
SmpCreatePagingFiles function, 523
SmpExecuteCommand function, 523
SmpInit function, 523, 524
SmpInitializeDosDevices function, 523
SmpInitializeKnownDlls function, 524
SmpLoadDataFromRegistry function,

523
SmpProcessFileRenames function, 523
SmpStartCsr function, 524
SMP system processors, 521
SmpTranslateSystemPartition-

Information function, 524
Smss.exe. See Session Manager

(Smss.exe)
SMT cores, 109, 110
snapshot devices, 179
snapshots, 162, 177–186
soft faults, 325
soft links, 430–432
soft page faults, 285
soft partitions, 142, 143, 146
software attacks, 166
software data execution prevention,

208–209
software DEP, 208–209
software keys, 94. See also

enumeration

 stop code analysis

 637

software mirroring, 177
software providers, 160
software PTEs, 268–269
software resumption from power

states, 98
software Write bits, 258
solid state disks. See SSDs (solid state

disks)
sos element, 510
space quotas, 245–246
spaces (file names), 449
spanned volumes, 148
spare bits, 129
sparse files, 393, 432–433, 456–458
sparse matrix, 457
sparse multilevel VACB arrays, 370
spatial locality (cache), 412
special agents (prefetch), 344
special pool

crash dumps, 569–572
defined, 213
Driver Verifier option, 571,

590–592
dynamic address space, 232
enabling, 571–572
expanding, 243
registry settings, 294
verification, 293–294
wild-pointer bugs, 573

speed, cluster size and, 443
spinlocks

accessing directly, 39
context areas, 73
detecting, 577
eliminating need for, 241
KMDF objects, 72
pools and, 219

splash screens, hangs and, 540–542
split log blocks, 422
split mirrors (clone shadow copies),

177
Spoolsvc.exe, 106
SRTM (Static Root of Trust

Measurement), 168
SSDs (solid state disks)

file deletion and trim, 130–131
ReadyBoost, 346–348
slowing down, 129
storage management, 125
wearing out, 129
wear-leveling, 129–130

stack bases, 589
stack cookies, 209
stack limits, 589
stack locations

allocating to drivers, 42
I/O request packets (IRPs), 29–31
IRP reuse and, 41
large-IRP look-aside list, 28
managing, 67
request completion, 36–38

stack overflow errors, 12
stack overruns (stack trashes), 575–577
stack pointer register, 576–577, 589
stack randomization, 249–250
StackRandomizationDisabled, 249–250
stacks

address space, 246, 247
analyzing, 576–577
in commit charge, 276
cookies, 209
crash dump analysis, 575–577
defined, 279
DEP stack cookies, 209
DPC, 279, 282
inswapping and outswapping, 188
jumping, 281
kernel, 279, 281–282
memory manager, 279–282
pointer register, 576–577, 589, 599
randomization, 249–250
stack bases, 589
stack trashes, 575–577
swapper, 188
traces. See stack traces
user-mode, 196–197, 279
verifying limits, 589

!stacks command, 581
stack swapper, 188
stack traces

displaying device driver, 585
heap debugging, 226
kernel-mode thread exceptions,

587–588
pool corruption, 590–591
processors, 574
read-ahead operations, 382
verbose analysis, 567–568
write-behind operations, 385, 386

stack trashes, 575–577
stampdisks element, 510
standard BitLocker operation, 164
$STANDARD_INFORMATION attribute,

448, 467, 468
standby cache, 191
standby lists

cache physical size, 363
page faults, 269
page list dynamics, 300–302
page priority, 310
PFNs, 316, 318
prefetched pages, 272
prioritized, 311–313
rebalancer, 339
redistributing memory, 341
shared pages, 270
Superfetch service, 338, 339
system cache, 361, 363–364
viewing page allocations, 304–310

standby mode, 103–104, 339
standby page lists, 191, 267
standby pages, 316

Standby PFN state, 297, 299
standby scenario, 342
start-device command, 83
start-device IRPs, 15
start I/O routines, 12
Startup.com, 502
startup process. See boot process
Startup Repair tool, 534, 536
Start values, 84–85, 88
state-transition table, 83–84
static physical NVRAM cache, 350
Static Root of Trust Measurement

(SRTM), 168
STATUS_ACCESS_ VIOLATION

exception, 204, 586–588
STATUS_BREAKPOINT exception,

586–588
STATUS_INVALID_DEVICE_REQUEST

exception, 74
STATUS_REPARSE code, 431
step model (PPM), 113–114, 120
stolen USB keys, 166
“STOP: 0xC000136” error, 538
stop code analysis

BAD_POOL_CALLER, 550
BAD_POOL_HEADER, 550, 570
BUGCODE_USB_DRIVER, 550
CRITICAL_OBJECT_TERMINATION,

550–551
DRIVER_CORRUPTED_EXPOOL,

550, 590–592
DRIVER_IRQL_NOT_LESS_OR_

EQUAL, 549, 585–586
DRIVER_OVERRAN_STACK_

BUFFER, 576
DRIVER_POWER_STATE_FAILURE,

549
IRQL_NOT_LESS_OR_EQUAL, 549
KERNEL_DATA_INPAGE_ERROR,

550
KERNEL_MODE_EXCEPTION_NOT_

HANDLED, 575, 586–588
KERNEL_MODE_EXCEPTION_NOT_

HANDLED with P1..., 550
KMODE_EXCEPTION_NOT_

HANDLED, 549, 575
MANUALLY_INITIATED_CRASH,

578
MEMORY_MANAGEMENT, 550
NTFS_FILE_SYSTEM, 551
overview, 585
PAGE_FAULT_IN_NONPAGED_

AREA, 550
PFN_LIST_CORRUPT, 550
SYSTEM_SERVICE_EXCEPTION, 549
SYSTEM_THREAD_EXCEPTION_

NOT_HANDLED, 549
UNEXPECTED_KERNEL_MODE_

TRAP, 549, 588–590
verbose analysis, 567–568

stop codes

638

stop code analysis, continued
VIDEO_TDR_FAILURE, 550
WHEA_UNCORRECTABLE_ERROR,

550
stop codes (bugchecks)

blue screen crashes, 549–551
bugcheck parameters, 566, 586
bugcheck screens, 517
Bugcodes.h file, 549
defined, 548
help files, 549
high IRQL faults, 586
illegal instruction fault crashes,

573–574
manual crashes, 566
minidumps, 554
numeric identifiers, 548
viewing, 558–559

stop command, 83–84
storage area networks (SANs), 125,

133, 155
storage devices, 348–350, 514
storage device states, 81
storage drivers

class drivers, 132–136
device drivers, 125, 398–399
disk I/O operations, 159–160
management, 132–136
opening files, 409
port drivers, 60

storage management
basic disks, 139–141
BitLocker, 163–176
BitLocker To Go, 175–176
disk devices, 126–131
disk drivers, 131–138
dynamic disks, 141–147
full-volume encryption driver,

173–174
multipartition volume

management, 147–152
overview, 125
terminology, 125–126
Trusted Platform Module, 168–170
virtual disk service, 160–162
virtual hard disk support, 162–163
volume I/O operations, 159–160
volume management, 138–162
volume namespaces, 153–158
Volume Shadow Copy Service,

177–186
storage stacks, 60–61, 131, 134–136
store keys, 350
Store Manager (unified caching),

348–350, 520
store pages, 349
stores, 349
Storport minidriver, 163
Storport.sys driver, 132, 133
stream-based caching, 358

stream-controlled block (SCB), 155,
441, 473

streaming playback, 58, 64, 105–108
stream names, 358
streams

associated with file names, 341
attributes, 426–427
cache working set, 362
caching, 358
change journal, 461–464
CLFS, 417
defined, 358
multiple, NTFS design goals,

426–428
TxF, 474
viewing, 428

strided data access, 378
strings, 72, 73, 570, 592
Strings utility, 217, 326, 570
striped arrays, 141
striped volumes

data redundancy, 425
defined, 148–149
I/O operations, 159
LDM partition entries, 143
RAID-5 volumes, 141, 151, 425, 490
rotated parity (RAID-5), 141, 151,

425, 490
Structured Exception Handler

Overwrite Protection (SEHOP),
208

subkeys, 89, 91
subst command, 24
Subst.exe utility, 186
subsystem DLLs, 33–34, 524
success codes, 58, 76
successful boots, 551
Superfetch service (proactive memory

management)
components, 338–340
ideal NUMA node, 285
idle I/O, 62
initializing, 520
I/O priorities, 58
logical prefetcher, 325
organizing files, 327
overview, 338
page priority, 342–344
pretraining, 343
process reflection, 351–353
ReadyBoost, 346–348
ReadyDrive, 348
rebalancing, 342–344
robust performance, 344–346
scenarios, 342
tracing and logging, 341
unified caching, 348–350

surprise-remove command, 83–84
suspending

BitLocker, 171

boot status file information, 537
operations, 98–99

Svchost.exe (Service Hosting Process),
94, 325

swapper thread, 334
switching CPU contexts, 580
Swprov.dll (shadow copy provider),

179–181
symbol-file paths, 566, 582
symbol files, 517, 566, 591
symbolic exception registration

records, 208
symbolic links

change journal, 462
device names, 23
device objects, 15
file object extensions, 20
initializing, 519, 520
MS-DOS devices, 523
naming conventions, 136
NTFS design goals, 430–432
reparse points, 154
shadow copies, 185
viewing, 24
volumes, 154, 409

symbols, kernel, 214
symbol server, 556
SymLinkEvaluation option, 431
symmetric encryption, 491
synchronization

heap manager, 223
internal memory, 189
I/O requests, 38–39
KMDF callbacks, 74
KMDF queues, 75
not supported by heap functions,

222
synchronization objects, 25, 271, 295,

296
synchronization primitives, 577. See

also fast mutexes; mutexes;
spinlocks

synchronization scope object
attribute, 76

synchronous I/O
cancellation, 49
completion, 37
defined, 25–26
fast I/O, 376, 377
file object attributes, 19
single-layered drivers, 33–39
Synchronous Paging I/O, 383

Synchronous Paging I/O, 383
SYSCALL instruction, 282
SYSENTER instruction, 282
Sysmain.dll. See Superfetch

service (proactive memory
management)

sysptes command, 235–236
system address space, 228–229, 237,

281

 threads

 639

system cache
address space, 237
copying files, 374
expanding, 243
prefetching pages, 272
reclaiming virtual addresses, 244
in system space, 229

system cache working sets, 229, 334,
361–362

system code, in system space, 228–229
system code write protection, 573–574
system commit limit, 199, 275–277,

279. See also commit limits
system crash dumps, 135. See also

crash dumps
System Deployment Image (SDI), 507
system environment variables, 523
system failures, 359, 379. See also

crashes; hung or unresponsive
systems; recovery

System File Checker (Sfc.exe), 540
system files

backup copies, 538
repairing corruption, 538–540

SYSTEM hive, 510, 511, 515, 520, 540
system identifiers (TPM), 168
System Image Recover (Windows RE),

534
System Image Recovery images, 539
system images, 230–231, 534, 539
“system in a VHD,” 162
System Information tool, 552
system integrity checks (TPM), 168
SystemLowPriorityIoInformation class,

64
system-managed paging files, 274
system-managed shared resources,

275
system mapped views, 229, 232, 233
system memory pools (kernel-mode

heaps), 212–220
system partitions, 502, 524
system paths, 514
system pool size, 214. See also pool
system power policies, 100, 103–104
system power requests, 106
System process, 188–189, 415
system process shutdowns, 544–545
System Properties tool, 553
system PTEs, 229, 232, 235–237, 243
system PTE working sets, 229, 334
System Recovery Options dialog box,

535
system resources, releasing, 13–14
System Restore, 178, 182–184, 534,

540, 542
System Restore Wizard, 542
systemroot element, 510
system root paths, 517
“system running low on virtual

memory” error, 278

system service dispatch tables, 519
SYSTEM_SERVICE_EXCEPTION stop

code, 549
system shutdown notification routines,

14
system start device drivers, 550
system start (1) value, 84, 85
system-start values, 88
system storage class device drivers, 60
SystemSuperFetchInformation class,

342
SYSTEM_THREAD_EXCEPTION_NOT_

HANDLED stop code, 549
system threads, 314–315, 390. See also

threads
system time, 519, 574
system variables, 318
system virtual address spaces, 189,

245–246, 356
system virtual memory limits, 320–323
System Volume Information directory,

180
system volumes, 145, 150, 445, 502,

524
systemwide code and data, 228
systemwide environment variables,

582
system worker threads, 390, 520
system working set lists, 318
system working sets

cache physical size, 363–364
defined, 324, 362
forcing code out of, 295
overview, 334–335
in system space, 229
working sets, 334–335

T
T states (processors), 114, 120
$T stream, 474
T10 SPC4 specification, 134
table of contents area (LDM), 142
tags

heap debugging, 226
pool allocation, 216
precedence, 85

Tag value, 84, 85
tail checking, 225, 226
tamper-resistant processors, 168
target computers, 582–584
targetname element, 506, 510
target portals (iSCSI), 134
task gates, 588
Task Manager

cache values, 364
memory information, 190–192
page file usage, 278–279
pool leaks, 218

reserved and committed pages,
198

unkillable processes, 52
Task Scheduler, 58
TBS (TPM Base Services), 164, 168–170,

174
Tbssvc.dll, 164
TCG (Trusted Computing Group), 168
TCP/IP, 78, 133
TEB allocations, 200, 246
temporal locality (cache), 412
temporary dump file names, 550
temporary files, 386, 525
temporary page states, 297
Terminal Services notifications, 65
termination

processes, 50–51
threads, 50–53

TestLimit64.exe utility, 280
TestLimit utility

creating handles, 245
leaking memory, 232, 313
private pages, 302–303, 304
reserved or committed pages,

197–198
reserving address space, 237
thread creation, 280
working sets vs. virtual size,

331–332
testsigning element, 506
test-signing mode, 506
TFAT (Transaction-Safe FAT), 397
TFTP (Trivial FTP), 509
thaws, VSS writers and, 177, 178
thinly provisioned virtual hard disks,

162
third-party drivers, 216, 556
third-party RAM optimization

software, 345–346
thread-agnostic I/O, 19, 30, 48, 55
!thread command, 31, 43, 574, 576,

580, 581, 589
threaded boosts, 61
thread environment block (TEB)

allocations, 200, 246
threads

activating, 54
asynchronous and synchronous

I/O, 25–26
completion ports, 54, 56
concurrency value, 55
creating, 520
current, 554, 574
deadlocks, 577
file system drivers, 407
heap synchronization, 223
higher-priority, 38
IDs, 248
inactive, 57
injected in cloned processes, 351
I/O completion, 37

thread-scheduling core

640

threads, continued
I/O requests, 4
kernel-mode, 586–588
maximum number, 280
outstanding IRPs, 31
page priority, 311
preempting windowing system

driver, 577
priorities, 62–64, 342
private address space, 228
read-ahead, 412–413
server threading models, 53
shutdown process, 543, 544
stacks, 205, 246, 248, 249–250,

279–282
stack trace analysis, 567–568
synchronizing access to shareable

resources, 23
system, 390
termination, 48, 50–53
thread-scheduling core, 188
thread thrashing, 53
user-initiated I/O cancellation, 49
viewing for IRPs, 43
virtual files, 4–5

thread-scheduling core, 188
thread stacks, 205, 246, 248, 249–250
thread thrashing, 53
thresholds, 114–116
throttle states (processors), 114, 120
throttling (write throttling), 388–389
throughput, 62–64
ticks (lazy writer), 390
time (BIOS information), 511
time-check intervals (processors), 114
time command, 574
Timeout element, 504
timeouts

I/O manager, 4
power options, 104
shutdown process, 543

timers
expiration, 517
idle prioritization strategy, 59
KMDF objects, 72
object types, 519
prefetch operations, 413

time segments (Superfetch), 344
time-slice expiration, 38
time stamps

as attributes, 447
change journal, 462
debugging information, 574
file attributes, 448
indexing, 465
load offset number, 248–249
POSIX standard, 436

timing requirements (UMDF), 78
TLB (translation look-aside buffer),

194, 258, 259–260, 507
toolsdisplayorder element, 504

top dirty page threshold, 389
$TOPS files, 474, 476
torn writes, 421
total memory, displaying, 190
total process working sets, 331
total virtual address space, 275
TPM (Trusted Platform Module)

BitLocker, 164
Boot Entropy policy, 510
boot entropy values, 522
chips, 168, 169, 174
encrypting volume master keys,

166
MMC snap-in, 164, 168, 169
storage management, 168–170
Tpm.sys driver, 164
Windows support, 168

TPM Base Services (TBS), 164, 168–170,
174

tpmbootentropy element, 510
TPM chips, 168, 169, 174
TPM MMC snap-in, 164, 168, 169
Tpm.sys driver, 164
trace collector and processor, 338
trace file names, 325, 326
trace information (ReadyBoot), 527
tracer mechanism (Superfetch), 338
traces

name logging traces, 341
page access traces, 341
prebuilt traces, 343
Process Monitor, 416
Superfetch service, 341
trace file names, 316, 325

traditionalksegmappings element, 506
training Superfetch, 343
Transactdemo.exe tool, 471–472
transacted APIs, 469
transacted writers and readers, 470
transactional APIs, 472–473
transactional NTFS. See TxF

(transactional NTFS)
transactional NTFS library, 470
transaction isolation directory ($Txf),

446
transaction log ($TxfLog), 446, 474
transaction log (CLFS), 417
transaction log (LDM), 142, 143, 144
transaction log records, 359, 480
transaction manager, 519, 521
transaction parameter blocks, 20
transaction parameters, 20
transaction repair directory ($Repair),

446
transactions

after system failures, 477
APIs, 472–473
atomic, 424–425
committed, 481
isolation, 470–472
listing, 471–472

logged information, 482
logging implementation, 476–477
on-disk implementation, 475–476
overview, 469–470
recovery implementation, 477
recovery process, 477
resource managers, 473–475
VSS writers, 178

Transaction-Safe FAT (TFAT), 397
transaction semantics, 397, 416
transaction tables, 477, 483, 484
transition, pages in, 269, 270
transition pages, 316
Transition PFN state, 297, 299
transition PTEs, 317
translation, 188, 203, 422–423. See also

address translation
translation look-aside buffer (TLB),

194, 258, 259–260, 507
translation-not-valid handler, 188
transportable shadow copies, 179
transport layer, 582
transport parameters, 578
trap command, 585–586
trap frames, 585, 588, 589, 591
trap handler, 35
traps, 35, 547, 549–550, 588–590
trap to debugger instruction, 587
traversal permissions, 436
triage dumps (minidumps), 351,

554–556, 562, 579
Triage.ini file, 566–567
trim command, 130–131
trimmed private data, 260
trimmed working sets, 315, 318
trimming

page files, 273
pretraining Superfetch, 343
system working set, 295
working sets, 330, 333–334

Triple DES algorithm (3DES), 495
triple faults, 584
Trivial FTP (TFTP), 509
troubleshooting

Application Verifier, 65
boot logging, 533–534
changes to encrypted system

components, 170
common boot problems, 537–542
crash dump tools. See crash dumps
driver loading, 529–532
Driver Verifier, 65–68, 292–296
file systems, 415–416
heap, 225–226
Knowledge Base, 549
large page allocation failures, 194
last known good. See last known

good (LKG)
processes, 351–353
Process Monitor, 415–416
safe mode, 529–534

 user process address space

 641

safe-mode-aware programs, 532
SSDs, 129
stop code help files, 549
WDK Bugcodes file, 549
Windows Recovery Environment,

534–537
without crash dumps, 581–584

troubleshooting user menus, 506
truncatememory element, 506
truncating data, 461
trusted applications, 522
Trusted Computing Group (TCG), 168
TrustedInstaller account, 538
trusted locations, 427
Trusted Platform Module. See TPM

(Trusted Platform Module)
try/except blocks, 33, 410
tunneling cache, 452
TxF (transactional NTFS), 416

APIs, 472–473
backward compatibility, 469
base log file, 446
change journal, 462
file attributes, 449
log files, 446, 469, 474
log records, 476–477
log stream, 446, 474
old page stream ($Tops), 446, 474
overview, 469–470
recovery, 478
resource managers, 473–475
snapshot device operations, 179
transaction isolation directory, 446
$TxF directory, 473
$TxfLog directory, 474
TxID (TxF file ID), 475–476

$TXF_DATA attribute, 475–476, 477
$TxF directory, 473
TxF file ID (TxID), 475–476
TxF log files ($TxfLog.blf), 446, 469,

474
TxfLog stream, 446, 474
TxF old page stream ($Tops), 446, 474
Txfw32.dll library, 469
TxID (TxF file ID), 475–476
TxR (transactional registry), 416

U
UDF (Universal Disk Format), 2, 392,

393, 398
UDFS (user defined file system), 503
Udfs.sys (UDF driver), 393, 398
UEFI systems, 139–140, 499, 512–513
UFDs. See USB flash devices
UI0Detect.exe (Interactive Services

Detection service), 525
UMDF (User-Mode Driver Framework),

6, 78–81, 79
Umpnpmgr.dll, 94

UNC (Universal Naming Convention),
85

underrun detection, 294
UNDI (Universal Network Device

Interface), 514
undocking, 82
undo entries, 481, 482
undo pass, 477, 480, 485–487
undo records, 476
undo/redo histories, 417
UNEXPECTED_KERNEL_MODE_TRAP

stop code, 549, 588–590
Unicode, 392, 395, 428–429, 448,

449–450
unified caching (Store Manager),

348–350, 520
Unified Extensible Firmware Interface

(UEFI), 139–140, 499, 512–513
unique IDs (partition manager), 138
Universal Disk Format (UDF), 2, 392,

393, 398
Universal Network Device Interface

(UNDI), 514
universal serial bus. See USB (universal

serial bus)
unkillable processes, 48–49, 51–53
“unknown driver” solutions, 564
unknown page fault errors, 269
unloading drivers, 1, 17
unload routines, 13–14
unmapped pages, 273
unnamed data attributes, 447, 448
unnamed file streams, 362, 428
unparked cores, 115, 116, 117–118
unpinning pages, 375
unresponsive systems. See hung or

unresponsive systems
unsigned drivers, 95, 97, 569, 577
untrusted locations, 427
unwinding, 281
update records, 481, 482, 484–485
update sequence numbers (USNs),

433, 461, 476
updating

device drivers, 542, 568
flash memory, 128
kernel, 568
problems with, 542
sectors, 130

uppercase characters, 446
uppercase file ($UpCase), 446
upper-level filter drivers, 90, 93
uptime, listing, 574
USB (universal serial bus)

bandwidth reservation, 64
basic disks, 139
crashes, 550
dongles, 578
drivers, 6
hierarchy prioritization strategy, 60
interfaces, 72

KMDF objects, 72
pipes, 72
ports, 505
support, 126
UMDF support, 78

USB debugger, 506, 510
USB dongles, 578
USB flash devices. See also SSDs (solid

state disks)
BitLocker, 166
BitLocker To Go, 164, 175–176
KMDF objects, 72
ReadyBoost, 347–348
recovery keys, 172–173
startup disks, 164
storage management, 125
stores, 350
UMDF display, 80

USB keyboards, 578
use after free bugs, 570
usefirmwarepcisettings element, 510
uselegacyapicmode element, 510
usephysicaldestination element, 510
useplatformclock element, 510
user address space

64-bit layouts, 237
heap randomization, 250
image randomization, 248–249
kernel address space, 250
layout overview, 246–248
security mitigations, 250
stack randomization, 249–250
viewing, 247–248
virtual address space layouts,

228–229
user buffers, 48
user code address translation, 266
user data stream caching, 356
user defined file system (UDFS), 503
user IDs, 466–467
Userinit.exe, 526, 532
user-initiated I/O cancellation, 49–50
user-mode accessible bit, 264
user-mode applications, 4–5
user-mode buffers, 20
user-mode code, 257
user-mode debugging framework,

518, 519
User-Mode Driver Framework (UMDF),

6, 78–81, 79
user-mode drivers, 6, 78–81
user-mode exceptions, 505
user-mode heaps, 222
user-mode page faults, 267
user-mode pages, 205
user-mode processes, 335–337
user-mode stack, 196–197
user-mode virtual address space, 240
User objects, 221
user process address space, 508

users

642

users
fast-user switching, 342
memory quotas, 246
user IDs, 466–467

user scripts, 526
user space layouts, 246–251
user stacks, 279, 280
Usndump.exe utility, 462
$UsnJrnl files, 446, 461–464
USN_REASON identifiers, 461–462
USNs (update sequence numbers), 433,

461, 476
UTF-16 characters, 428
utility, processor, 110–115, 118, 119,

120
Uuidgen utility, 15

V
VACB arrays, 365
VACB index arrays, 368, 369, 370
VACBs (virtual address control blocks)

cache data structures, 365
cache manager, 360–361
cache slots, 364
displaying, 367
shared cache maps, 411
structure, 366
types, 366

!vad command, 284
VADs (virtual address descriptors)

defined, 282–283
granular allocation, 200
memory manager, 282–284
overview, 282–283
page faults, 269, 270, 411
page table creation, 255
process, 283–284
process address space, 196
rotate, 284
VAD trees, 269
viewing, 284

VAD trees, 269
validation (heap debugging), 226
Valid bit (PTEs), 257
valid pages, 270, 316
Valid (Active) PFN state, 297, 299
valid PTE bits, 264
valid PTE fields, 256–257
valid PTEs, 317
valid shared pages, 270
VBO (virtual byte offset), 379
VBRs (volume boot records), 157, 444,

500, 502
VCNs (virtual cluster numbers)

compressed files, 458, 459–460
defined, 443
index mapping, 465
noncompressed files, 457
runs, 445

VCN-to-LCN mapping, 444–445,
455–456, 488

VDM (Virtual DOS Machine), 521
Vdrvroot driver, 163
VDS (Virtual Disk Service), 141,

160–162
Vdsbas.dll, 160
VDS Basic Provider, 160
VDS Dynamic Provider, 160
Vdsdyn.dll, 160
Vds.exe, 160–162
Vdsldr.exe process, 161
vendor IDs (VIDs), 90
verbose analysis, 567–568, 570, 573,

575
verification

driver errors, 569
Driver Verifier, 292–296
enabling special pool, 571–572
initializing, 519

!verifier command, 294
Verify Image Signatures option, 528
versioning information, 517
version numbers, displaying, 510
Very Low I/O priority, 58, 62–64
VESA display modes, 505
Vf* functions, 293
VfLoadDriver function, 293
VGA display, crashes and, 548
VGA display drivers, 509, 510, 531
vga element, 510
VGA font files, 511
vgaoem.fon file, 511
Vhdmp miniport driver, 163
VHDs (virtual hard disks), 125,

162–163, 503
video adapters, 6, 321, 323, 511
video drivers, 233, 284, 524
video port drivers, 7
VIDEO_TDR_FAILURE stop code, 550
VIDs (vendor IDs), 90
view indexes, 465
views (virtual address space)

cache data structures, 365
cache virtual memory

management, 360
copy-on-write, 209–210
dynamic address space, 232, 233
mapped into cache, 368
preallocated for VACBs, 366
prototype PTEs, 270
reusing, 378
section objects, 201–202
shared page mapping, 196
in system space, 229
valid and invalid pages, 271

virtual address control blocks. See
VACBs (virtual address control
blocks)

virtual address descriptors. See VADs
(virtual address descriptors)

virtual addresses, 242–245, 331–332,
341, 373

virtual address space
commit charge and limits, 275–277
fast allocation, 283
I/O completion, 37
layouts. See virtual address space

layouts
mapping files into, 356
mapping into physical memory,

187
mapping to pages. See address

translation
memory manager, 187
paged and nonpaged pools, 213
pages, 193–195
reserving/committing pages,

195–198
system virtual address spaces, 189
viewing allocations, 306, 307
vs. physical memory, 187

virtual address space layouts
64-bit layouts, 237–239
dynamic address space, 232–233
dynamic management, 242–245
memory manager, 228–251
overview, 228–229
session space, 232–235
space quotas, 245–246
system PTEs, 235–236
user space layouts, 246–251
x64 limitations, 240–242
x86 layouts, 229–232, 232–235

virtual-address-to-working-set pairs,
341

virtual allocator, 242
VirtualAlloc functions

backing stores, 275
committed storage, 276–277
growth in allocations, 231
large memory regions, 221, 282
large pages, 194
mapping views, 211
private pages, 195
viewing allocations, 306

virtual block caching, 355, 358
virtual bus drivers, 85
virtual byte offset (VBO), 379
virtual bytes, 277
virtual clients, 418
virtual cluster numbers. See VCNs

(virtual cluster numbers)
virtual devices, 78
Virtual Disk Service (VDS), 141,

160–162
Virtual DOS Machine (VDM), 521
virtual FCBs, 418
virtual files, 4
VirtualFree functions, 196
virtual hard disks (VHDs), 125,

162–163, 503

 WerFault.exe

 643

VirtualLock function, 199, 211
virtual log LSNs, 422
virtual LSNs, 422–423
Virtual Machine Extensions (VME), 521
virtual machines (VMs), 162, 582–584
virtual memory

Address Windowing Extensions,
210–212

cache manager, 360–361
Control Panel applet, 188
debugging information, 574–575
displaying information, 190–192
fast I/O, 376, 377
functions, 193
limits, 320–323
mapped file I/O, 27
releasing or decommitting pages,

196
scatter/gather I/O, 28

virtual NVRAM stores, 350
virtual page numbers, 253, 254
virtual pages, 188, 328–329
Virtual PC, 162
VirtualProtect functions, 203–204
VirtualQuery functions, 203–204
virtual size

caches, 361
paged pool, 214

virtual storage (SANs), 125, 133, 155
virtual TLB entries, 507
virtual-to-physical memory

translation, 203
Virtualxxx functions, 193
virus scanning, 58, 413
!vm command, 192, 215, 235–236, 574
VME (Virtual Machine Extensions), 521
VMKs (volume master keys), 165–168,

170–171, 172
VMMap utility, 192, 247–248, 304–310
VMs (virtual machines), 162, 582–584
vnodes, 20
volatile data, 379
volatile physical NVRAM cache, 350
VolMgr driver, 141, 146, 147
VolMgr-Internal GUID, 153
VolMgrX driver, 146, 147
Volsnap.sys driver, 179–181
volume book records (VBRs), 157, 444,

500, 502
volume device objects, 141, 155, 156
volume entries (LDM), 142–143
volume file ($Volume), 442, 445–446
$VOLUME_INFORMATION attribute,

448
volume label file ($Volume), 438, 489
volume manager (VolMgr)

associated IRPs, 46–47
bad sector handling, 490
basic disks, 141
disk I/O operations, 159–160

disk offset management, 147
dynamic disks, 146–147
file system drivers, 47, 411
layering drivers, 8
recovery, 487
storage stacks, 131
symbolic links, 136

volume master keys (VMKs), 165–168,
170–171, 172

$Volume metadata file, 438, 489
VOLUME_NAME attribute, 448
volume namespace mechanism,

153–158
volume namespaces, 153–158
volume objects, 159, 409
volume parameter blocks. See VPBs

(volume parameter blocks)
volume quotas, 433–434
volume-recognition process, 155–158,

398
volumes. See also volume manager

(VolMgr)
basic disk partitions, 140
basic disks, 139–141
boot processes, 500, 501
clone and original volumes, 177
compression, 456–461
defined, 442
defragmentation, 436–437
dependent, 163
drive letters, 141
dynamic, 141–147
encryption, 163–176
FAT cluster sizes, 393–394
file object pointers, 19
foreign, 173
indexing, 429
I/O operations, 159–160
label file ($Volume), 438
mounting, 155–158, 444
multipartition, 126, 147–152
names, 155
namespaces, 153–158
NTFS on-disk structure, 442
quotas, 433–434
recovery, 478
recovery keys, 173
redundant, 488
self-healing, 490–491
shadow copy service. See VSS

(Volume Shadow Copy Service)
simple, 126
snapshots, 131, 163
software provider interface, 160
target dump files, 550
VDS subsystem, 160–162
version and labels, 448
virtual disk service, 160–162

volume sets (spanned volumes), 148
Volume Shadow Copy Driver, 179–181

Volume Shadow Copy Service. See VSS
(Volume Shadow Copy Service)

volume snapshots, 131
!vpb command, 156
VPBs (volume parameter blocks)

device objects, 411
file object pointers, 19
file system drivers, 155
I/O manager, 399
mounting process, 155
mount operations, 155
viewing, 156–157

VSS (Volume Shadow Copy Service)
architecture, 177–178
enumeration, 178
operation, 178–181
overview, 177
shrinking volumes, 438–439
storage management, 177–186
VSS providers, 177, 178, 179–181
VSS requestors, 177, 178
VSS writers, 177, 178
Windows backup/restore, 181–186

Vssadmin utility, 185–186

W
WaitForMultipleObjects function, 54
wait functions, 335
wait locks, 72
wait states, 38
waking power state, 99–100
watermarked desktops, 506
WDF (Windows Driver Foundation),

68–77
WdfDeviceCreate function, 71
WDFDEVICE object, 71
WDFDRIVER structure, 71
Wdfkd.dll extension, 69
!wdfkd.wdfldr debugger, 69
WDF_OBJECT_ATTRIBUTES structure,

73–74
WDFQUEUE processing, 75
WDFREQUEST objects, 75
WDI (Windows Diagnostic

Infrastructure), 351
WDK (Windows Driver Kit), 14, 398,

549, 576
WDM (Windows Driver Model), 2, 6–7,

68, 74, 79
wear-leveling, 129–130
web attachments, 427
webcams, 78
websites, crash analysis, 594
weighting (affinity history), 115
well-known installers, 538
WER (Windows Error Reporting), 227,

551–552, 561–562, 563
WerFault.exe, 550–551, 562, 563–564

WHEA_UNCORRECTABLE_ERROR stop code

644

WHEA_UNCORRECTABLE_ERROR stop
code, 550

WHQL (Windows Hardware Quality
Labs), 65, 96

wild-pointer bugs, 573
WIM (Windows Installation Media),

503, 507, 509
Win32_EncryptableVolume interface,

174
Win32 GUI driver, 221
Win32k.sys (windowing system driver)

boot process, 501
Driver Verifier and, 293
graphic system calls, 281
illegal instruction faults, 573
mapping, 229
preempting, 577
session space, 233

Win32_Tpm interface, 174
WinDbg.exe

basic crash analysis, 564
breaking into hung systems,

578–581
connecting to host computer, 583
extracting minidumps, 556
loading symbols, 566
remote boot debugging, 504
unkillable processes, 52

Windiff utility, 541
windowing system driver. See Win32k.

sys (windowing system driver)
Windows

functions, 4–5
I/O manager, 4
native API, 522
object model, 425
processor execution, 501
security, 425
splash screen hangs or crashes,

540–542
Windows 7, 175, 442, 549–551
Windows Application Compatibility

Toolkit, 205
Windows Backup and Restore, 539
Windows boot process. See boot

process
“Windows could not start... “ error,

538, 540
Windows Cryptography Next

Generation (CNG), 492
Windows Defender, 58
Windows Diagnostic Infrastructure

(WDI), 351
Windows directory, 435
Windows Disk Management snap-in.

See Disk Management MMC
snap-in

Windows Driver Foundation (WDF),
68–77

Windows Driver Kit (WDK), 14, 398,
549, 576

Windows Driver Model (WDM), 2, 6–7,
68, 74, 79

Windows Embedded CE, 397
Windows Enterprise, 162, 175, 320, 321
Windows Error Reporting (WER), 227,

551–552, 561–562, 563
Windows file systems

CDFS, 392
exFAT, 396–397
FAT12, FAT16, FAT32, 393–396
NTFS. See NTFS file system
UDF, 393

Windows Hardware Quality Labs
(WHQL), 65, 96

Windows Home Basic, 320
Windows Home Premium, 320
Windows Installation Media (WIM),

503, 507, 509
Windows kernel. See kernel

(Ntoskrnl.exe, Ntkrnlpa.exe)
Windows logo animation, 506
Windows Management

Instrumentation. See WMI
(Windows Management
Instrumentation)

Windows Media Player Network
Sharing Service, 106

Windows Memory Diagnostic Tool,
534

Windows Modules Installer service,
538

Windows NT, 136
Windows PE, 506, 510
Windows Portable Device (WPD), 78
Windows Professional, 320, 321
Windows Recovery Environment

(WinRE), 534–542
Windows Resource Exhaustion

Detection and Resolution
(RADAR), 351, 352

Windows Resource Protection (WRP),
538–539

Windows Server
2008 Datacenter Edition, 155, 320
2008 R2, 134, 175, 442
BitLocker To Go, 175
Enterprise Edition, 155, 320
Foundation, 320
FTH, 227
HPC Edition, 320
for Itanium, 320
MPIO support, 134
NTFS v. 3.1, 442
physical memory support, 320
Standard Edition, 320

Windows Setup, 502, 535–537, 539
Windows Sockets 2 (Winsock2), 54
Windows software trace preprocessor

(WPP), 521
Windows Starter Edition, 320, 321
Windows subsystems, 522

Windows Task Scheduler, 58
Windows Ultimate, 162, 175, 320

physical memory support, 321
Windows Update, 95, 98, 539, 568
Windows Web Server, 320
Wininit.exe (Windows initialization

process), 501, 522–526, 545,
550

Winload.efi, 513
Winload.exe

BCD elements, 504
BCD options, 506–511
boot process tasks, 500
boot volume loading, 511–512
device and configuration

information, 511
iSCSI booting, 514
LDM invisible, 145
loading, 503
loading drivers, 85
multipartition volumes and, 150
NVRAM code, 512–513
storage management, 132
virtual addresses, 243

Winlogon.exe, 228, 524, 526–527,
542–543

Winobj.exe. See Object Viewer
(Winobj.exe)

winpe element, 510
WinPe registry keys, 521
WinRE (Windows Recovery

Environment), 534–542
Winresume.exe, 500, 503
Winsock 2 (Windows Sockets 2), 54
Winver utility, 321
WMI (Windows Management

Instrumentation)
BitLocker interface, 174
initializing, 521
instances, 72
I/O system and, 2
IRP handling, 74
IRP stress tests, 67
KMDF objects, 72
providers, 72, 164, 554
WDM drivers, 6–7
WDM WMI, 2

Wmic.exe, 554
WMI providers, 72, 164, 554
Wmpntwk.exe, 106
WM_QUERYENDSESSION message,

543, 544
worker threads, 520, 545
working set manager, 188, 314, 330,

333
working sets

active pages in, 297
aging, 341
balance set manager/swapper,

333–334
commit charge, 277

 Zw functions

 645

defined, 187
demand paging, 324
Dirty bits, 258
emptying, 307–308
expanding, 333–334
hash trees, 318
index field, 318
limits, 329
locking pages, 199
locks, 189
logical prefetcher, 324–328
management, 329–333
memory manager, 189, 324–337
memory notification events,

335–337
memory quotas, 245–246
moving pages out of, 196
overview, 324
paged pool working set, 334–335
pages trimmed from, 302
page writer, 315
physical memory, 260
placement policies, 328–329
pretraining Superfetch, 343
process working sets, 324
RAM optimization software, 346
redistributing memory, 341
session working sets, 324
share counts, 316
size, 361–362
software and hardware Write bits,

258
system cache working sets,

334–335
system PTEs working sets, 334–335
in system space, 229
system working sets, 324, 334–335
trimming, 330
types, 324
viewing, 331
viewing set lists, 332–333
working set manager, 188, 314,

330, 333
WorkingSetSize variable, 214
work items (KMDF objects), 72
work requests (cache manager), 390
Wow64 environment, 237, 280
WPD (Windows Portable Device), 78
WpdRapi2.dll, 80
WPP (Windows software trace

preprocessor), 521
writable pages, 200, 258
write-behind operations

cache manager work requests, 390
disabling lazy writing, 386
flushing mapped files, 387–388
lazy writer, 379–380
overview, 377

system threads, 390
viewing, 380–386
write-back caching, 379–380
write throttling, 388–389

Write bit (PTEs), 257, 258
write-combined memory access, 204,

257
WriteEncryptedFileRaw function, 497
WriteFileEx function, 38
WriteFile function, 25, 32, 384, 408,

411, 473
WriteFileGather function, 28
write in progress PFN flag, 317
write operations

active views, 360
bad clusters, 488
buffered I/O, 32
copies of files in memory, 288
crashes, 547, 581
explicit file I/O, 408
fast I/O, 376–377
file attributes, 447
file handles, 473
KMDF, 76, 77
large page bugs, 195
leases, 405
LFS log files, 480
logical blocks, 127
mirrored volumes, 150–151
oplocks, 401–402
PAGE attributes and, 203–204
paging files, 62
scatter/gather I/O, 28
torn writes, 421
transacted writers and readers, 470
write throttling, 388–389

WriteProcessMemory function, 196,
203

write protection, 573–574
write throttling, 388–389
Write through bit (PTEs), 257
write-through operations, 377, 387,

478
WRP (Windows Resource Protection),

538–539
!wsle command, 332–333
WUDFHost.exe, 80
WUDFPlatform.dll, 80
WUDFx.dll, 80

X
x2apicpolicy element, 510
x64 systems

address space layouts, 239
address translation, 265–266

AWE functions, 212
device memory support, 321
limitations, 240–242
MBR, 139
PAE, 260
page file size, 274
page sizes, 194
prioritized standby lists, 312
process virtual address space, 187
system code write protection, 574
virtual address limitations,

240–242
working set limits, 329

x86 systems
address translation, 252–259
boot processes, 500, 501
layouts and session space, 232–235
MBR, 139
no execute page protection, 205
non-PAE systems, 253–254
PAE systems, 260–264
page files, 274
page sizes, 194
page tables, 256
physical memory support, 321
real mode, 502–503
SEHOP, 208
session space, 233–235
system code write protection, 574
triple faults, 584
viewing page allocations, 303
virtual address space layouts,

232–235
working set limits, 329

X.509 version 3 certificates, 495, 496
XOR operation, 152
xsaveaddfeature0-7 element, 510
xsavedisable element, 511
XSAVE instruction, 511
xsavepolicy element, 510
XSAVE Policy Resource Driver

(Hwpolicy.sys), 510
xsaveprocessorsmask element, 511
xsaveremovefeature element, 510

Z
zeroed pages, 189, 195, 316
Zeroed PFN state, 297, 299, 300–302
zero-filled pages, 201, 268
zero-length buffers, 76
zero page lists, 191, 300–303, 315,

341, 346
zero page threads, 189, 301, 522
zero-size memory allocations, 66
zones, 427
Zw functions, 201, 351–352)

About the Authors

Mark Russinovich is a Technical Fellow in Windows Azure at
Microsoft, working on Microsoft’s cloud operating system. He is
the author of the cyberthriller Zero Day (Thomas Dunne Books,
2011) and coauthor of Windows Sysinternals Administrator’s
 Reference (Microsoft Press, 2011). Mark joined Microsoft in
2006 when Microsoft acquired Winternals Software, the
company he cofounded in 1996, as well as Sysinternals, where
he still authors and publishes dozens of popular Windows
administration and diagnostic utilities. He is a featured speaker
at major industry conferences. Follow Mark on Twitter at

@markrussinovich and on Facebook at http://facebook.com/markrussinovich.

David Solomon, president of David Solomon Expert Seminars
(www.solsem.com), has focused on explaining the internals of
the Microsoft Windows NT operating system line since 1992. He
has taught his world-renowned Windows internals classes to
thousands of developers and IT professionals worldwide. His
clients include all the major software and hardware companies,
including Microsoft. He was nominated a Microsoft Most
Valuable Professional in 1993 and from 2005 to 2008.

Prior to starting his own company, David worked for nine years as a project leader
and developer in the VMS operating system development group at Digital Equipment
Corporation. His first book was entitled Windows NT for Open VMS Professionals
 (Digital Press/Butterworth Heinemann, 1996). It explained Windows NT to VMS-
knowledgeable programmers and system administrators. His second book, Inside
 Windows NT, Second Edition (Microsoft Press, 1998), covered the internals of Windows
NT 4.0. Since the third edition (Inside Windows 2000) David has coauthored this book
series with Mark Russinovich.

In addition to organizing and teaching seminars, David is a regular speaker at
 technical conferences such as Microsoft TechEd and Microsoft PDC. He has also served
as technical chair for several past Windows NT conferences. When he’s not researching
Windows, David enjoys sailing, reading, and watching Star Trek.

http://facebook.com/markrussinovich
www.solsem.com
Curtis
Cross-Out

Alex Ionescu is the founder of Winsider Seminars & Solutions Inc.,
specializing in low-level system software for administrators and
developers as well as reverse engineering and security training for
government and infosec clients. He also teaches Windows
internals courses for David Solomon Expert Seminars, including at
 Microsoft. From 2003 to 2007, Alex was the lead kernel developer
for ReactOS, an open source clone of Windows XP/Server 2003
written from scratch, for which he wrote most of the Windows
NT-based kernel. While in school and part-time in summers, Alex

worked as an intern at Apple on the iOS kernel, boot loader, firmware, and drivers on
the original core platform team behind the iPhone, iPad, and AppleTV. Returning to his
Windows security roots, Alex is now chief architect at CrowdStrike, a startup based in
Seattle and San Francisco.

Alex continues to be very active in the security research community, discovering
and reporting several vulnerabilities related to the Windows kernel, and presenting
talks at conferences such as Blackhat, SyScan, and Recon. His work has led to the fixing
of many critical kernel vulnerabilities, as well as to fixing over a few dozen nonsecurity
bugs. Previous to his work in the security field, Alex’s early efforts led to the publishing
of nearly complete NTFS data structure documentation, as well as the Visual Basic
metadata and pseudo-code format specifications.

who literally wrote the book on Windows internals!
SIT DOWN WITH THE EXPERTS

“These videos drill into the core of the platform,
capture its technical essence and present it in a
powerful interactive video format.”–Rob Short,
Vice President Core Technologies,
Microsoft Corporation

If you liked their
book, you’ll love
hearing them in
person. Get one of
their video tutorials
or come to a live
class.

LIVE, INSTRUCTOR LED CLASSES
If you’re an IT professional deploying
and supporting Windows servers and
workstations, you need to be able to
dig beneath the surface when things go
wrong. In our classes, you’ll gain a deep
understanding of the internals of the
operating system and how to leverage
advanced troubleshooting tools to
solve system and application problems
and understand performance issues
more effectively. Attend a public class
or schedule a private on site seminar
at your location. For dates, course de-
tails, pricing, and registration informa-
tion, see www.solsem.com.

“The information given
in this class should be
required for all Windows
engineers/administrators.”

“This course holds the
key to understanding
Windows.”

“Should be required train-
ing for anyone responsible
for Windows software
development, administra-
tion, or design.”

To view video samples or for a detailed outline,
 visit www.solsem.com or email videos@solsem.com

INTERACTIVE DVD TUTORIAL
Sit down with the experts who
literally wrote the book on Win-
dows internals. Windows Internals
COMPLETE consists of 12 hours of
interactive training taking you under
the hood of the operating system to
learn how the kernel components
work. As the ultimate compliment,
Microsoft Corporation licensed these
videos for their corporate training
worldwide.
The Sysinternals Video Library (also
12 hours) covers essential Windows
troubleshooting topics such as crash
dump analysis and memory trouble-
shooting as well as how to leverage key
Sysinternals tools.

What do
you think of
this book?
We want to hear from you!
To participate in a brief online survey, please visit:

Tell us how well this book meets your needs —what works effectively, and what we can
do better. Your feedback will help us continually improve our books and learning
resources for you.

Thank you in advance for your input!

microsoft.com/learning/booksurvey

SurvPage_Corp_02.indd 1 5/19/2011 4:18:12 PM

	Cover
	Copyright Page

	Introduction
	Structure of the Book
	History of the Book
	Sixth Edition Changes
	Hands-on Experiments
	Topics Not Covered
	A Warning and a Caveat
	Acknowledgments
	Errata & Book Support
	We Want to Hear from You
	Stay in Touch

	Table of Contents
	Contents at a Glance
	Chapter 8: I/O System
	I/O System Components
	The I/O Manager
	Typical I/O Processing

	Device Drivers
	Types of Device Drivers
	Structure of a Driver
	Driver Objects and Device Objects
	Opening Devices

	I/O Processing
	Types of I/O
	I/O Request to a Single-Layered Driver
	I/O Requests to Layered Drivers
	I/O Cancellation
	I/O Completion Ports
	I/O Prioritization
	Container Notifications
	Driver Verifier

	Kernel-Mode Driver Framework (KMDF)
	Structure and Operation of a KMDF Driver
	KMDF Data Model
	KMDF I/O Model

	User-Mode Driver Framework (UMDF)
	The Plug and Play (PnP) Manager
	Level of Plug and Play Support
	Driver Support for Plug and Play
	Driver Loading, Initialization, and Installation
	Driver Installation

	The Power Manager
	Power Manager Operation
	Driver Power Operation
	Driver and Application Control of Device Power
	Power Availability Requests
	Processor Power Management (PPM)

	Conclusion

	Chapter 9: Storage Management
	Storage Terminology
	Disk Devices
	Rotating Magnetic Disks
	Solid State Disks

	Disk Drivers
	Winload
	Disk Class, Port, and Miniport Drivers
	Disk Device Objects
	Partition Manager

	Volume Management
	Basic Disks
	Dynamic Disks
	Multipartition Volume Management
	The Volume Namespace
	Volume I/O Operations
	Virtual Disk Service

	Virtual Hard Disk Support
	Attaching VHDs
	Nested File Systems

	BitLocker Drive Encryption
	Encryption Keys
	Trusted Platform Module (TPM)
	BitLocker Boot Process
	BitLocker Key Recovery
	Full-Volume Encryption Driver
	BitLocker Management
	BitLocker To Go

	Volume Shadow Copy Service
	Shadow Copies
	VSS Architecture
	VSS Operation
	Uses in Windows

	Conclusion

	Chapter 10: Memory Management
	Introduction to the Memory Manager
	Memory Manager Components
	Internal Synchronization
	Examining Memory Usage

	Services Provided by the Memory Manager
	Large and Small Pages
	Reserving and Committing Pages
	Commit Limit
	Locking Memory
	Allocation Granularity
	Shared Memory and Mapped Files
	Protecting Memory
	No Execute Page Protection
	Copy-on-Write
	Address Windowing Extensions

	Kernel-Mode Heaps (System Memory Pools)
	Pool Sizes
	Monitoring Pool Usage
	Look-Aside Lists

	Heap Manager
	Types of Heaps
	Heap Manager Structure
	Heap Synchronization
	The Low Fragmentation Heap
	Heap Security Features
	Heap Debugging Features
	Pageheap
	Fault Tolerant Heap

	Virtual Address Space Layouts
	x86 Address Space Layouts
	x86 System Address Space Layout
	x86 Session Space
	System Page Table Entries
	64-Bit Address Space Layouts
	x64 Virtual Addressing Limitations
	Dynamic System Virtual Address Space Management
	System Virtual Address Space Quotas
	User Address Space Layout

	Address Translation
	x86 Virtual Address Translation
	Translation Look-Aside Buffer
	Physical Address Extension (PAE)
	x64 Virtual Address Translation
	IA64 Virtual Address Translation

	Page Fault Handling
	Invalid PTEs
	Prototype PTEs
	In-Paging I/O
	Collided Page Faults
	Clustered Page Faults
	Page Files
	Commit Charge and the System Commit Limit
	Commit Charge and Page File Size

	Stacks
	User Stacks
	Kernel Stacks
	DPC Stack

	Virtual Address Descriptors
	Process VADs
	Rotate VADs

	NUMA
	Section Objects
	Driver Verifier
	Page Frame Number Database
	Page List Dynamics
	Page Priority
	Modified Page Writer
	PFN Data Structures

	Physical Memory Limits
	Windows Client Memory Limits

	Working Sets
	Demand Paging
	Logical Prefetcher
	Placement Policy
	Working Set Management
	Balance Set Manager and Swapper
	System Working Sets
	Memory Notification Events

	Proactive Memory Management (Superfetch)
	Components
	Tracing and Logging
	Scenarios
	Page Priority and Rebalancing
	Robust Performance
	ReadyBoost
	ReadyDrive
	Unified Caching
	Process Reflection

	Conclusion

	Chapter 11: Cache Manager
	Key Features of the Cache Manager
	Single, Centralized System Cache
	The Memory Manager
	Cache Coherency
	Virtual Block Caching
	Stream-Based Caching
	Recoverable File System Support

	Cache Virtual Memory Management
	Cache Size
	Cache Virtual Size
	Cache Working Set Size
	Cache Physical Size

	Cache Data Structures
	Systemwide Cache Data Structures
	Per-File Cache Data Structures

	File System Interfaces
	Copying to and from the Cache
	Caching with the Mapping and Pinning Interfaces
	Caching with the Direct Memory Access Interfaces

	Fast I/O
	Read-Ahead and Write-Behind
	Intelligent Read-Ahead
	Write-Back Caching and Lazy Writing
	Write Throttling
	System Threads

	Conclusion

	Chapter 12: File Systems
	Windows File System Formats
	CDFS
	UDF
	FAT12, FAT16, and FAT32
	exFAT
	NTFS

	File System Driver Architecture
	Local FSDs
	Remote FSDs
	File System Operation
	File System Filter Drivers

	Troubleshooting File System Problems
	Process Monitor Basic vs. Advanced Modes
	Process Monitor Troubleshooting Techniques

	Common Log File System
	NTFS Design Goals and Features
	High-End File System Requirements
	Advanced Features of NTFS

	NTFS File System Driver
	NTFS On-Disk Structure
	Volumes
	Clusters
	Master File Table
	File Record Numbers
	File Records
	File Names
	Resident and Nonresident Attributes
	Data Compression and Sparse Files
	The Change Journal File
	Indexing
	Object IDs
	Quota Tracking
	Consolidated Security
	Reparse Points
	Transaction Support

	NTFS Recovery Support
	Design
	Metadata Logging
	Recovery
	NTFS Bad-Cluster Recovery
	Self-Healing

	Encrypting File System Security
	Encrypting a File for the First Time
	The Decryption Process
	Backing Up Encrypted Files
	Copying Encrypted Files

	Conclusion

	Chapter 13: Startup and Shutdown
	Boot Process
	BIOS Preboot
	The BIOS Boot Sector and Bootmgr
	The UEFI Boot Process
	Booting from iSCSI
	Initializing the Kernel and Executive Subsystems
	Smss, Csrss, and Wininit
	ReadyBoot
	Images That Start Automatically

	Troubleshooting Boot and Startup Problems
	Last Known Good
	Safe Mode
	Windows Recovery Environment (WinRE)
	Solving Common Boot Problems

	Shutdown
	Conclusion

	Chapter 14: Crash Dump Analysis
	Why Does Windows Crash?
	The Blue Screen
	Causes of Windows Crashes

	Troubleshooting Crashes
	Crash Dump Files
	Crash Dump Generation

	Windows Error Reporting
	Online Crash Analysis
	Basic Crash Dump Analysis
	Notmyfault
	Basic Crash Dump Analysis
	Verbose Analysis

	Using Crash Troubleshooting Tools
	Buffer Overruns, Memory Corruption, and Special Pool
	Code Overwrite and System Code Write Protection

	Advanced Crash Dump Analysis
	Stack Trashes
	Hung or Unresponsive Systems
	When There Is No Crash Dump

	Analysis of Common Stop Codes
	0xD1 - DRIVER_IRQL_NOT_LESS_OR_EQUAL
	0x8E - KERNEL_MODE_EXCEPTION_NOT_HANDLED
	0x7F - UNEXPECTED_KERNEL_MODE_TRAP
	0xC5 - DRIVER_CORRUPTED_EXPOOL
	Hardware Malfunctions

	Conclusion

	Appendix: Contents of Windows Internals, Sixth Edition, Part 1
	Index
	About the Authors
	Survey

